5 research outputs found

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if GΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8knO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    Scattered classes of graphs

    Full text link
    For a class C\mathcal C of graphs GG equipped with functions fGf_G defined on subsets of E(G)E(G) or V(G)V(G), we say that C\mathcal{C} is kk-scattered with respect to fGf_G if there exists a constant \ell such that for every graph GCG\in \mathcal C, the domain of fGf_G can be partitioned into subsets of size at most kk so that the union of every collection of the subsets has fGf_G value at most \ell. We present structural characterizations of graph classes that are kk-scattered with respect to several graph connectivity functions. In particular, our theorem for cut-rank functions provides a rough structural characterization of graphs having no mK1,nmK_{1,n} vertex-minor, which allows us to prove that such graphs have bounded linear rank-width.Comment: 42 pages, 5 figures. Adding a new section comparing these concepts with tree-depth, rank-depth, shrub-depth, modular-width, neighborhood diversity, et
    corecore