543 research outputs found

    Adaptive Finite-Time Control for a Flexible Hypersonic Vehicle with Actuator Fault

    Get PDF
    The problem of robust fault-tolerant tracking control is investigated. Simulation on the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV) with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control strategy is effective in rejecting uncertainties even in the presence of actuator faults

    Investigations of Model-Free Sliding Mode Control Algorithms including Application to Autonomous Quadrotor Flight

    Get PDF
    Sliding mode control is a robust nonlinear control algorithm that has been used to implement tracking controllers for unmanned aircraft systems that are robust to modeling uncertainty and exogenous disturbances, thereby providing excellent performance for autonomous operation. A significant advance in the application of sliding mode control for unmanned aircraft systems would be adaptation of a model-free sliding mode control algorithm, since the most complex and time-consuming aspect of implementation of sliding mode control is the derivation of the control law with incorporation of the system model, a process required to be performed for each individual application of sliding mode control. The performance of four different model-free sliding mode control algorithms was compared in simulation using a variety of aerial system models and real-world disturbances (e.g. the effects of discretization and state estimation). The two best performing algorithms were shown to exhibit very similar behavior. These two algorithms were implemented on a quadrotor (both in simulation and using real-world hardware) and the performance was compared to a traditional PID-based controller using the same state estimation algorithm and control setup. Simulation results show the model-free sliding mode control algorithms exhibit similar performance to PID controllers without the tedious tuning process. Comparison between the two model-free sliding mode control algorithms showed very similar performance as measured by the quadratic means of tracking errors. Flight testing showed that while a model-free sliding mode control algorithm is capable of controlling realworld hardware, further characterization and significant improvements are required before it is a viable alternative to conventional control algorithms. Large tracking errors were observed for both the model-free sliding mode control and PID based flight controllers and the performance was characterized as unacceptable for most applications. The poor performance of both controllers suggests tracking errors could be attributed to errors in state estimation, which effectively introduce unknown dynamics into the feedback loop. Further testing with improved state estimation would allow for more conclusions to be drawn about the performance characteristics of the model-free sliding mode control algorithms

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    Get PDF
    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.

    Entry Guidance for the 2011 Mars Science Laboratory Mission

    Get PDF
    The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented

    Robust intelligent flight control for hypersonic vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1992.Includes bibliographical references (leaves 325-332).by Gregory Errol Chamitoff.Ph.D

    Air data measurement system for space shuttle

    Get PDF
    It is concluded that air data measurements of angle of attack and sideslip are needed to control the space shuttle vehicles. The basis for this conclusion, along with recommended sensor design and implementation, are described

    Optimal trajectory-shaping with sensitivity and covariance techniques

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-130).Traditional trajectory design approaches apply optimal control techniques to maximize desired performance, subject to specified constraints. Normal metrics and constraints are composed of the deterministic states and controls in the plant dynamics, so classical design methods do not directly address trajectory robustness in the presence of system uncertainties. This work explores the introduction of uncertainty directly into the trajectory design process. The state transition (sensitivity) and covariance matrices both measure the impact of plant uncertainty, and each of these mathematical constructs can be adjoined to the trajectory optimization problem to generate solutions that are less sensitive to prevalent uncertainties. A simple Zermelo boat problem is used to compare the methodologies for any combination of state initialization errors, state process noise, parametric biases, and parametric process noise, under any predefined feedback control law. The covariance technique is shown to possess several advantages over the sensitivity technique. Subsequently, the covariance method is used to simultaneously design reference trajectories and feedback control laws with closed-loop performance constraints for the Zermelo problem. The covariance trajectory-shaping technique is then applied to a generic hypersonic recoverable reentry vehicle. The trajectories include uncertainties in atmospheric density, axial and normal force coefficients, commanded attitude, and initial position and velocity. Reachability footprints with uncertainty bounds are generated by the trajectory-shaping methodology, and shown to extend the vehicle's range of confidence. Relative to a fixed recovery site within the footprint boundary, the covariance technique improves the circular error probable (CEP) radius by almost 50%. Lastly, by segmenting the problem, trajectory designs successfully reach the recovery site using a balance of dispersion penalties and maximum intermediate maneuvers. Improvements in final CEP are shown to require sacrifices in planned maneuvering.by Todd V. Small.S.M

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults
    corecore