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The problemof robust fault-tolerant tracking control is investigated. Simulation on the longitudinalmodel of a flexible air-breathing
hypersonic vehicle (FAHV) with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude
track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy
is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound
of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control
strategy is effective in rejecting uncertainties even in the presence of actuator faults.

1. Introduction

Air-breathing hypersonic vehicles (AHVs) are intended to
be a reliable and cost-effective technology for access to
space. Because the slender geometries and light structures
cause significant flexible effects and strong coupling between
propulsive and aerodynamic forces resulting from the inte-
gration of the scramjet engine, AHVs are confronting many
complex problems and challenges, involving many different
research areas, such as aerodynamics, thermal protection,
and communication, and many problems of these fields have
been reported [1–3]. Meanwhile, flight control design for
AHVs is a hot topic and a challenging task [4, 5].

During the last decades, a kind of flexible hypersonic
vehicle model including flexible dynamics has been devel-
oped in [6, 7]. Based on this model, there have been several
papers discussing the challenges associated with the control
of air-breathing hypersonic vehicle (AHV) [8, 9] and many
control methods have been employed in the flight control
system. In [10], a linear quadratic regulator (LQR) was
presented for a linearized FAHVmodel. In [11–13], sequential
loop closure controller was designed for the FAHV based
on adaptive dynamic inversion together with backstepping
structure. In [14, 15], approximate feedback linearization

based on dynamic inversion method was adopted to design
controller for the FAHV. In [16, 17], a nonlinear tracking
controller was constructed by using a minimax LQR control
approach, which provides robust stability and excellent track-
ing performance with parameter uncertainties.

The approaches mentioned above do not specifically
consider possible actuator faults, which deteriorate the con-
trol performance, affect stability, and security of the AHVs,
and sometimes even lead to catastrophic accidents. Con-
sequently, it is essential that the actuator faults must be
taken into account in the controller design. In the current
papers, some fault-tolerant control schemes for AHVs have
attracted more and more research attention and gained
fruitful results, which can be reported in [18–21]. In [18–
20], the results mainly concentrate on the reentry attitude
control of the AHV. Meanwhile, the fault tolerant control
strategies for the longitudinalmodel of the AHVs are studied.
In [21], an observer-based fault-tolerant control approach
using both robust control and LMI techniques is designed
for a linearized longitudinal AHV model in the presence of
parameter uncertainties and actuator faults, but this method
was effective only in the neighborhood of the operating
point. On the other hand, nonlinear fault-tolerant control
design methods have been devoted to the longitudinal AHV
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model. A finite-time integral sliding mode control method
was proposed in [22], which could achieve superior velocity
and altitude tracking performancewith actuator fault. In [23],
the longitudinal AHV model with unknown parameters and
uncertain actuator faults is formatted into a parametric strict-
feedback form, and then an adaptive fault-tolerant control
scheme based on a combination of back-stepping control and
dynamic surface control techniques is applied to make the
velocity and altitude track the desired value.

However, the aforesaid methods only consider the rigid
body ofAHVswithout flexible effects. A fault-tolerant control
scheme for the FAHV was presented in [24], according to
the model obtained by approximate linearization in given
flight conditions. So, this scheme may not obtain good
control performances when flight dynamics undergo great
parameter perturbations. To the best of our knowledge,
although considerable effort has been made on the control
design for the AHVs, the important issue of fault-tolerant
control of the FAHV dynamical system has not been fully
investigated yet, which remains challenging and motivates us
to do this study.

As a typical robust control method, sliding mode control
(SMC) scheme is regarded as an effective method to cope
with external disturbances and parametric uncertainties [25].
Recently, the SMC method has been widely applied for the
fault tolerant control of aircraft system, spacecraft, and so on.
In [26], a fault-tolerant slidingmode controller was presented
for an aircraft system, which requires the message of the
effectiveness factor, while it may be difficult and expensive
to obtain the actuator faults online. In [27], a finite-time
convergent SMC scheme is developed to solve the problem
of fault-tolerant control for a rigid spacecraft. The drawback
of this method is that the message of the lower bound
of the effectiveness factor and the upper bound of system
uncertainties needs to be known in prior.

The aforementioned references could achieve desired
performance through the SMC methodology affected by
actuator faults. Although the traditional SMC can guarantee
the stability of the system, it adopts a linear switching
function. Then the system states and the errors converge to
an equilibrium point asymptotically in infinite time. In other
words, it means that finite-time convergence is not ensured.
Motivated by the above discussions, we propose a novel
adaptive sliding mode control scheme for the longitudinal
model of the FAHV with uncertainties and actuator faults in
this paper. As compared with the existing results, the main
contributions are as follows. Firstly, the design method of
slidingmode surface based on homogeneous geometry could
assure practical finite-time converged tracking of the desired
command. Secondly, the upper bounds of aerodynamic
uncertainties and the minimum value of actuator efficiency
factor are not required in prior. The adaptive law is designed
to adjust the control gains dynamically so as to ensure the
establishment of sliding mode motion, and the robustness
against uncertainties is ensured at the same time. After
the uncertainties and actuator faults are compensated using
adaptive sliding mode control scheme, the stability of the
closed-loop system can be maintained.

The rest of this paper is organized as follows. In Section 2
the FAHV model is introduced and control objective is
stated. Section 3 designs the sliding mode surface and the
corresponding adaptive finite-time fault tolerant controller
was proposed with actuator fault. Simulation results are
discussed in Section 4 and the conclusions are provided in
Section 5.

2. Problem Statement

The considered FAHVmodel is derived from [6, 28], and the
longitudinal equations of motion of the FAHV are given by

̇

𝑉 =

(𝑇 cos𝛼 − 𝐷)
𝑚

− 𝑔 sin 𝛾,

̇𝛾 =

(𝐿 + 𝑇 sin𝛼)
𝑚𝑉

−

𝑔 cos 𝛾
𝑉

,

̇

ℎ = 𝑉 sin 𝛾,

�̇� = 𝑄 − ̇𝛾,

̇

𝑄 =

𝑀𝑦𝑦

𝐼𝑦𝑦

,

̈𝜂𝑖 = −2𝜍𝑚𝜔𝑚,𝑖
̇𝜂𝑖 − 𝜔
2

𝑚,𝑖
𝜂𝑖 + 𝑁𝑖, 𝑖 = 1, 2, 3,

(1)

where 𝑥 = [𝑉, 𝛾, ℎ, 𝛼, 𝑄]

𝑇 is a vector of rigid-body state,
which includes the vehicle speed, flight path angle, altitude,
angel of attack, and pitch rate, respectively; 𝜂𝑖, 𝜔𝑚,𝑖, and 𝜍𝑚
are the generalized flexible coordinate, natural frequencies,
and damping coefficients of the 𝑖th elastic mode. The readers
may refer to [7] for a full description of the variables in this
model.

Because of coupling in aerodynamic forces of the FAHV
model (1), some simplifications must be carried out for the
purpose of feedback linearization. The simplification of the
model is necessary because we want to obtain a linearized
model, and the same simplified process can be found in [29].
An input-output linearizationmodel is developed by repeated
differentiation of the outputs 𝑉 and ℎ as follows:

⃛

𝑉 = 𝑓𝑉 + 𝑏11𝜙𝑐 + 𝑏12𝛿𝑒,
(2)

ℎ

(4)
= 𝑓ℎ + 𝑏21𝜙𝑐 + 𝑏22𝛿𝑒,

(3)

where𝜙𝑐 and𝛿𝑒 are control inputs and the specific expressions
of 𝑓𝑉, 𝑓ℎ, 𝑏11, 𝑏12, 𝑏21, and 𝑏22 are presented in [29, equation
(17)].

Compared with [29], the main propose of this study is
discussing the fault tolerant controller design for the FAHV to
follow a given desired output reference signals 𝑦𝑑 = [𝑉𝑑, ℎ𝑑]

𝑇

in the presence of partial loss of actuator effectiveness.

3. Adaptive Finite-Time
Fault-Tolerant Controller Design

The specific controller design step includes two parts: sliding
mode surface design and sliding mode control design, which
can be described as follows.
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3.1. Sliding Mode Surface Design. Define tracking error vari-
able as follows:

𝑒𝑉 = 𝑉 − 𝑉𝑑, (4)

𝑒ℎ = ℎ − ℎ𝑑. (5)

Differentiating (4) and (5) three times, and four times
respectively, results in

⃛𝑒𝑉 = 𝑓𝑉 −
⃛

𝑉𝑑 + 𝑏11𝜙𝑐 + 𝑏12𝛿𝑒,
(6)

𝑒

(4)

ℎ
= 𝑓ℎ − ℎ

(4)

𝑑
+ 𝑏21𝜙𝑐 + 𝑏22𝛿𝑒.

(7)

Equations (6)-(7) can be expressed in matrix form:

[

[

⃛𝑒𝑉

𝑒

(4)

ℎ

]

]

=

[

[

𝑓𝑉 −
⃛

𝑉𝑑

𝑓ℎ − ℎ
(4)

𝑑

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹=
[
𝐹
1
,𝐹
2]

𝑇

+ [

𝑏11 𝑏12

𝑏21 𝑏22

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

[

𝜙𝑐

𝛿𝑒

]

⏟⏟⏟⏟⏟⏟⏟

𝑢

+ [

Δ𝐹1

Δ𝐹2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝐹=
[
Δ𝐹
1
,Δ𝐹
2]

𝑇

.

(8)

Note that the additional item Δ𝐹 is introduced to represent
the flexible effects and coupled uncertainties described in [29,
equation (14)].

Introduce new control variable:

𝑈 = [

𝑈1

𝑈2

] = [

𝑏11 𝑏12

𝑏21 𝑏22

] [

𝜙𝑐

𝛿𝑒

] . (9)

Then (8)-(9) can be rewritten as

[

[

⃛𝑒𝑉

𝑒

(4)

ℎ

]

]

= [

𝐹1

𝐹2

] + [

𝑈1

𝑈2

] + [

Δ𝐹1

Δ𝐹2

] . (10)

Assumption 1. Theuncertainties discussed in the research are
bounded ‖Δ𝐹‖ ≤ 𝜐, but the value 𝜐 is unknown in advance.

Assumption 2. The matrix 𝐵 denoted in (8) is nonsingular
over the entire flight envelope given in [12], so Assumption 1
is reasonable to be assumed.

Now, according to the definition of HOSM [30, 31], our
objective is to design controller which makes the 𝑒𝑉, 𝑒ℎ and
their derivatives converge to the neighborhood of origin.

Design sliding mode surface as follows:

𝑠𝑉 =
̈𝑒𝑉 + ∫

𝑡

0

𝜆1𝑉









𝑒𝑉









𝑎
1𝑉 sign (𝑒𝑉) + 𝜆2𝑉









̇𝑒𝑉









𝑎
2𝑉 sign ( ̇𝑒𝑉) + 𝜆3𝑉









̈𝑒𝑉









𝑎
3𝑉 sign ( ̈𝑒𝑉)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺
𝑉

, (11)

𝑠ℎ =
⃛𝑒ℎ + ∫

𝑡

0

𝜆1ℎ









𝑒ℎ









𝑎
1ℎ sign (𝑒ℎ) + 𝜆2ℎ









̇𝑒ℎ









𝑎
2ℎ sign ( ̇𝑒ℎ) + 𝜆3ℎ









̈𝑒ℎ









𝑎
3ℎ sign ( ̈𝑒ℎ) + 𝜆4ℎ









⃛𝑒ℎ









𝑎
4ℎ sign ( ⃛𝑒ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺
ℎ

𝑑𝑠. (12)

The parameters 𝜆𝑖𝑉 (𝑖 = 1, 2, 3) and 𝜆𝑗ℎ (𝑗 = 1, 2, 3, 4) are
some positive constants such that 𝜆3𝑉𝑠

2
+ 𝜆2𝑉𝑠 + 𝜆1𝑉 and

𝜆4ℎ𝑠
3
+ 𝜆3ℎ𝑠

2
+ 𝜆2ℎ𝑠 + 𝜆1ℎ are Hurwitz polynomial. The

parameters 𝑎𝑖𝑉 (𝑖 = 1, 2, 3) and 𝑎𝑗ℎ (𝑗 = 1, 2, 3, 4) are deter-
mined by

𝑎(𝑖−1)𝑉 =

𝑎𝑖𝑉𝑎(𝑖+1)𝑉

2𝑎(𝑖+1)𝑉 − 𝑎𝑖𝑉

, 𝑖 ∈ {2, 3} ,

𝑎(𝑗−1)ℎ =

𝑎𝑗ℎ𝑎(𝑗+1)ℎ

2𝑎(𝑗+1)ℎ − 𝑎𝑗ℎ

, 𝑗 ∈ {2, 3, 4}

(13)

with 𝑎4𝑉 = 𝑎5ℎ = 1, 𝑎3𝑉 ∈ (1 − 𝜀𝑉, 1), and 𝑎4ℎ ∈ (1 − 𝜀ℎ, 1),
where 𝜀𝑉 ∈ (0, 1), 𝜀ℎ ∈ (0, 1).

Based on the homogeneity theory provided in [32], it is
easily shown that 𝑒𝑉, ̇𝑒𝑉, ̈𝑒𝑉 and 𝑒ℎ, ̇𝑒ℎ, ̈𝑒ℎ, ⃛𝑒ℎ will converge to
the neighborhood of origin in finite time if it is satisfied that
𝑠𝑉, 𝑠ℎ converge to the neighborhood of origin in finite time.

3.2. Adaptive Sliding Mode Controller Design. Now, let us
consider the situation in which the actuator experiences

partial loss of effectiveness fault.Then, differentiating (11) and
(12), we obtain

[

̇𝑠𝑉

̇𝑠ℎ

] = [

𝐹1

𝐹2

] + [

𝐺𝑉

𝐺ℎ

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺=
[
𝐺
𝑉
,𝐺
ℎ]

𝑇

+ [

𝐸1 0

0 𝐸2

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸

[

𝑈1

𝑈2

] + [

Δ𝐹1

Δ𝐹2

] ,

(14)

where𝐸 = diag(𝐸1, 𝐸2) ∈ 𝑅
2 × 2 is a matrix characterizing the

health condition of the actuators with 0 ≤ 𝐸𝑖 ≤ 1 (𝑖 = 1, 2).
Note that the case 𝐸𝑖 = 1 means that the 𝑖th actuator is
totally healthy, the case 𝐸𝑖 = 0 implies that the 𝑖th actuator
completely fails, and the case 0 < 𝐸𝑖 < 1 corresponds to the
case in which the 𝑖th actuator partially loses its effectiveness,
but it still has effect all the time. In this sense, the matrix
𝐸 becomes uncertain and even time varying but remains
positive definite. In this study, an assumption 0 < 𝐸𝑖 ≤ 1

is given.
The control objective is to design the control inputs for 𝜙𝑐

and 𝛿𝑒 such that all of the closed-loop signals are bounded
and the velocity 𝑉 and altitude ℎ track desired command
trajectories𝑉𝑑 and ℎ𝑑 in the presence of flexible uncertainties
and loss of effective actuator faults. That is to say, the velocity
sliding mode surface 𝑠𝑉 and altitude sliding mode surface
𝑠ℎ converge to an arbitrary small set containing the origin
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in finite time 𝑇0, which is ‖𝑠𝑉‖ ≤ 𝛿𝑉 and ‖𝑠ℎ‖ ≤ 𝛿ℎ for
𝑡 ≥ 𝑇0, where 𝛿𝑉 and 𝛿ℎ are arbitrary small positive constant
numbers.

Let 𝐸min = min𝑖=1,2𝐸𝑖 and denote 𝜇 = 1 − 𝐸min and then
𝜇 < 1. Selecting 𝜃 = 1/(1 − 𝜇), then the main result of the
paper is formulated in the following theorem.

Theorem 3. Consider the nonlinear sliding mode dynamic
system (14) with Assumptions 1 and 2, if the control 𝑈 =

[𝑈1, 𝑈2]
𝑇 is designed as

𝑈 = −𝐹 − 𝐺 − 𝑘 ⋅ sig𝜏 (𝑠) − �̂� 𝑠

‖𝑠‖

− 𝜐

𝑠

‖𝑠‖

, (15)

with the adaptive gains

�̂� = −𝜓 +

̂

𝜃𝜓, 𝜓 = ‖𝐹‖ + ‖𝐺‖ +









𝑘 ⋅ sig𝜏 (𝑠)


+ 𝜐,
(16)

̇

̂

𝜃 = 𝑝0 (−𝜀0
̂

𝜃 + 𝜓 ‖𝑠‖) ,
(17)

̇

�̂� = 𝑝1 (−𝜀1𝜐 + ‖𝑠‖) ,
(18)

where 𝑠 = [𝑠𝑉, 𝑠ℎ]
𝑇, 𝑘 = [𝑘𝑉, 𝑘ℎ]

𝑇, and 0 < 𝜏 < 1, and
define the function sig𝜏(⋅) = sign(⋅)| ⋅ |𝜏, 𝑝0, 𝑝1, 𝜀0 and 𝜀1 are
positive control constants, and the initial values �̂�(0), 𝜐(0) are
chosen as positive constants. Then, the system trajectory will
converge to the neighborhood of 𝑠𝑉 = 𝑠ℎ = 0 in finite time
despite of the uncertainties Δ𝐹 and actuator faults 𝐸.

Proof. The stability analysis of system (14) is performed via
constructing the following Lyapunov function:

𝑊 =

1

2

(𝑠

𝑇
𝑠 +

1 − 𝜇

𝑝0

(𝜃 −

̂

𝜃)

2

+

1

𝑝1

(𝜐 − 𝜐)

2
) , (19)

where �̃� = 𝜎 − �̂� and 𝜐 = 𝜐 − 𝜐. The derivative of (19) is
presented

̇

𝑊 = 𝑠

𝑇
̇𝑠 −

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 −

1

𝑝1

𝜐

̇

�̂�

= 𝑠

𝑇
(𝐹 + 𝐺 + 𝐸𝑈 + Δ𝐹) −

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 −

1

𝑝1

𝜐

̇

�̂�

= 𝑠

𝑇
(𝐹 + 𝐺 + 𝑈 − (𝐼 − 𝐸)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝐸

𝑈 + Δ𝐹) −

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 −

1

𝑝1

𝜐

̇

�̂�

= 𝑠

𝑇
(−𝑘 ⋅ sig𝜏 (𝑠) − �̂� 𝑠

‖𝑠‖

− 𝜐

𝑠

‖𝑠‖

− (𝐼 − Ε)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝐸

𝑈 + Δ𝐹)

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 −

1

𝑝1

𝜐

̇

�̂�

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1

+ 𝑠

𝑇
(−�̂�

𝑠

‖𝑠‖

− 𝜐

𝑠

‖𝑠‖

− Δ𝐸𝑈 + Δ𝐹) −

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 −

1

𝑝1

𝜐

̇

�̂�

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ 𝑠

𝑇
(−�̂�

𝑠

‖𝑠‖

− Δ𝐸𝑈)

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝑠

𝑇
(Δ𝐹 − 𝜐

𝑠

‖𝑠‖

) −

1

𝑝1

𝜐

̇

�̂�

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ 𝑠

𝑇
(−�̂�

𝑠

‖𝑠‖

− Δ𝐸𝑈)

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝑠

𝑇
(Δ𝐹 − 𝜐

𝑠

‖𝑠‖

) + 𝜐 ‖𝑠‖ −

1

𝑝1

𝜐

̇

�̂�.

(20)

In view of Assumption 1 and adaptive update laws (18),
inequality (20) can be rewritten as

̇

𝑊 ≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ 𝑠

𝑇
(−�̂�

𝑠

‖𝑠‖

− Δ𝐸𝑈)

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
− �̂� ‖𝑠‖ − 𝑠

𝑇
Δ𝐸𝑈

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
− �̂� ‖𝑠‖

+ ‖Δ𝐸‖ ⋅ 𝑠

𝑇
⋅ (‖𝐹‖ + ‖𝐺‖ +









𝑘 ⋅ sig𝜏 (𝑠)


+ �̂� + 𝜐)

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐.

(21)

According to (16), inequality (21) can be rewritten as

̇

𝑊 ≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ (1 −

̂

𝜃)𝜓 ‖𝑠‖ + 𝜇 ⋅

̂

𝜃 ⋅ 𝜓 ‖𝑠‖

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ (1 − (1 − 𝜇)

̂

𝜃)𝜓 ‖𝑠‖

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1

+ ((1 − 𝜇) 𝜃 − (1 − 𝜇)

̂

𝜃)𝜓 ‖𝑠‖ −

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑉









𝑠𝑉









𝜏+1
− 𝑘ℎ









𝑠ℎ









𝜏+1
+ (1 − 𝜇)

̃

𝜃𝜓 ‖𝑠‖

−

1 − 𝜇

𝑝0

̃

𝜃

̇

̂

𝜃 + 𝜀1𝜐𝜐.

(22)
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According to the adaptive update laws defined in (17), the
inequality (22) can be rewritten as

̇

𝑊 ≤ −𝑘 (









𝑠𝑉









𝜏+1
+









𝑠ℎ









𝜏+1
) + (1 − 𝜇) 𝜀0

̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐,
(23)

where 𝑘 = min𝑖=𝑉,ℎ𝑘𝑖 . In view of Lemma 3.1 in [33],
inequality (23) can be written as

̇

𝑊 ≤ −𝑘(









𝑠𝑉









2
+









𝑠ℎ









2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘(

1

2









𝑠𝑉









2
+









𝑠ℎ









2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐.

(24)

Inspired by [33] for any positive numbers 𝛿0 > 0.5 and 𝛿1 >
0.5, inequality (24) can be rewritten as

̇

𝑊 ≤ −𝑘(

1

2

𝑠

𝑇
𝑠)

(𝜏+1)/2

− (

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

− (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ (

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

+ (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐.

(25)

denote

𝑝0 =

𝛿0𝑘
2/(𝜏+1)

𝜀0 (2𝛿0 − 1)

, 𝑝1 =

𝛿1𝑘
2/(𝜏+1)

𝜀1 (2𝛿1 − 1)

. (26)

Then, inequality (25) can be rewritten as

̇

𝑊 ≤ −𝑘[(

1

2

𝑠

𝑇
𝑠)

(𝜏+1)/2

+ (

(1 − 𝜇)

2𝑝0

̃

𝜃

2
)

(𝜏+1)/2

+ (

1

2𝑝1

𝜐

2
)

(𝜏+1)/2

]

+ (

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

+ (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐.

(27)

According to Lemma 3.2 in [33], when 𝛿0 > 0.5, 𝛿1 > 0.5,
and 0.5 < 0.5(𝜏 + 1) < 1, the time derivative of the Lyapunov
function ̇

𝑊 becomes

̇

𝑊 ≤ −𝑘[(

1

2

𝑠

𝑇
𝑠) + (

(1 − 𝜇)

2𝑝0

̃

𝜃

2
) + (

1

2𝑝1

𝜐

2
)]

(𝜏+1)/2

+ (

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

+ (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐

≤ −𝑘𝑊

(𝜏+1)/2
+ (

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

+ (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 + 𝜀1𝜐𝜐.

(28)

Note that, for any positive constants 𝛿0 > 0.5 and 𝛿1 > 0.5,
the following inequality holds:

𝜀1𝜐𝜐 = 𝜀1 (−𝜐
2
+ 𝜐𝜐)

≤ 𝜀1 (−𝜐
2
+

1

2𝛿1

𝜐

2
+

𝛿1

2

𝜐

2
)

≤

−𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
+

𝜀1𝛿1

2

𝜐

2
.

(29)

Similarly (1 − 𝜇)𝜀0̃𝜃̂𝜃 satisfies the following inequality:

(1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃 ≤

−𝜀0 (1 − 𝜇) (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
+

𝜀0 (1 − 𝜇) 𝛿0

2

𝜃

2
.

(30)

According to inequality (29), if (𝜀1(2𝛿1 − 1)/2𝛿1)𝜐
2
> 1, we

obtain

(

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ 𝜀1𝜐𝜐

≤

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
+ 𝜀1𝜐𝜐 ≤

𝜀1𝛿1

2

𝜐

2
.

(31)

If (𝜀1(2𝛿1 − 1)/2𝛿)𝜐
2
≤ 1, we have

(

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2
















(𝜀
1
(2𝛿
1
−1)/2𝛿

1
)𝜐2≤1

< (

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2
















(𝜀
1
(2𝛿
1
−1)/2𝛿

1
)𝜐2>1

.

(32)

Therefore, combining (31) and (32) yields

(

𝜀1 (2𝛿1 − 1)

2𝛿1

𝜐

2
)

(𝜏+1)/2

+ 𝜀1𝜐𝜐 ≤

𝜀1𝛿1

2

𝜐

2
.

(33)
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Figure 1: Regulated outputs and control inputs with actuator faults.

Similar to (33), the following inequality can be obtained:

(

(1 − 𝜇) 𝜀0 (2𝛿0 − 1)

2𝛿0

̃

𝜃

2
)

(𝜏+1)/2

+ (1 − 𝜇) 𝜀0
̃

𝜃

̂

𝜃

≤

(1 − 𝜇) 𝜀0𝛿0

2

𝜃

2
.

(34)

Thus, from (28)–(34), the derivative of the Lyapunov function
(28) becomes

̇

𝑊 ≤ −𝑘𝑊

(𝜏+1)/2
+ 𝜇0,

(35)

where

𝜇0 =

𝜀1𝛿1

2

𝜐

2
+

(1 − 𝜇) 𝜀0𝛿0

2

𝜃

2
.

(36)

According to Lemma 3.6 in [33], the decrease of𝑊can drive
the sliding mode surfaces 𝑠𝑉 and 𝑠ℎ to converge to a neigh-
borhood of the sliding surface in finite time. Furthermore,
selecting 0 < 𝛽 ≤ 1, inequality (35) can be expressed as

̇

𝑊 ≤ −𝛽𝑘𝑊

(𝜏+1)/2
− (1 − 𝛽) 𝑘𝑊

(𝜏+1)/2
+ 𝜇0.

(37)

If −(1 − 𝛽)𝑘𝑊(𝜏+1)/2 + 𝜇0 < 0, then ̇

𝑊 ≤ −𝛽𝑘𝑊

(𝜏+1)/2.
Based on the conclusion from [30], the decrease of𝑊drives
the trajectories of the closed-loop system into 𝑊(𝜏+1)/2 ≤
𝜇0/(1 − 𝛽)𝑘. Therefore, the trajectories of the closed-loop
system is bounded in finite time as

lim
𝛽→𝛽

0

𝑠 (𝑡) ∈ (‖𝑠‖ ≤ (

𝜇0

(1 − 𝛽0)𝑘

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜀

1/(𝜏+1)

), (38)
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Figure 2: Other flight states with actuator faults.

where 0 < 𝛽0 < 1 and 𝜀 is a small set containing the origin of
the closed-loop system. And the time needed to reach (38) is
bound as

𝑇 ≤

2𝑊(0)

(1−𝜏)/2

𝑘𝛽0 (1 − 𝜏)

,
(39)

where𝑊(0) is the initial value of𝑊. After that, the control
objective that the 𝑒𝑉, ̇𝑒𝑉, ̈𝑒𝑉 and 𝑒ℎ, ̇𝑒ℎ, ̈𝑒ℎ, ⃛𝑒ℎ converge to the
neighborhood of origin is established.

When the control 𝑈 = [𝑈1, 𝑈2]
𝑇 is designed via (9),

according to Assumption 2 the actual control variable is
calculated as

[

𝜙𝑐

𝛿𝑒

] = [

𝑏11 𝑏12

𝑏21 𝑏22

]

−1

[

𝑈1

𝑈2

] .
(40)

It is evident from (40) that the finite-time convergent per-
formance of the proposed adaptive fault tolerant controller

can be obtained without the knowledge of the minimum
value of actuator effectiveness factor. Meanwhile, the upper
bound of uncertainties does not need to be known in
advance.

4. Simulation

To illustrate the efficiency of controller designed previously,
a climbing maneuver with longitudinal acceleration for a
100 ft/s velocity change and a 1000 ft altitude change is
considered. Simulation studies have been done on the full
nonlinear flexible hypersonic vehicle defined in (1). The
reference commands have been generated by filtering step
reference commands by a second-order prefilter with natural
frequency 𝜔𝑓 = 0.06 rad/s and damping ratio 𝜁𝑓 = 0.95.

The initial trim condition is selected as 𝑉 = 7710ft/s and
ℎ = 85000ft. Simulation parameters are provided in Table 1.



8 Mathematical Problems in Engineering

0 50 100 150 200

0

1

Time (s)

−3

−2

−1s V

(a)

0 50 100 150 200

0

10

20

30

40

Time (s)

−10

s h

(b)

0 50 100 150 200
0

5

10

15

20

25

30

Time (s)

Ad
ap

tiv
e p

ar
am

et
er

𝜐

(c)

0 50 100 150 200
0

1

2

3

4

Time (s)

Ad
ap

tiv
e p

ar
am

et
er

𝜃

(d)

Figure 3: Sliding mode surface and adaptive parameters 𝜐 and ̂𝜃 with actuator faults.

Table 1: Simulation parameters setting.

Items Values Items Values Items Values
𝜆

1𝑉
10 𝜆

4ℎ
10 𝑎

3ℎ
3/5

𝜆

2𝑉
15 𝑎

1𝑉
1/2 𝑎

4ℎ
3/4

𝜆

3𝑉
15 𝑎

2𝑉
3/5 𝜏 0.7

𝜆

1ℎ
15 𝑎

3𝑉
3/4 𝑘

𝑉
10

𝜆

2ℎ
25 𝑎

1ℎ
3/7 𝑘

ℎ
10

𝜆

3ℎ
20 𝑎

2ℎ
1/2

It is assumed that actuator faults are chosen as
𝐸1 = 0.7, 𝑡 ≥ 100,

𝐸2 = 0.7, 𝑡 ≥ 100.

(41)

The simulation results are provided in Figures 1–4. Fig-
ure 1 denotes the response to the 100 ft/s step velocity and
1000 ft step altitude. It has been observed that the velocity and

altitude converge to the desired value. The control inputs of
𝜙𝑐 and 𝛿𝑒 could be seen in bottom plots of Figure 1.

Figure 2 shows the performance of the angle of attack 𝛼
and the pitch rate𝑄 at the top, as well as the canard deflection
𝛿𝑐 and the flight path angle 𝛾 at the bottom.

The velocity and altitude sliding mode surfaces 𝑠𝑉, 𝑠ℎ
are shown in Figure 3, which are oscillation with small
magnitudes when actuator fault occurred. The convergent
performance verifies the effectiveness of the proposed control
strategy. The adaptive parameters 𝜐 and ̂𝜃 in control laws of
(15)–(18) could be seen in bottom plots of Figure 3, where the
convergence of 𝜐 is confirmed. From the simulation results
in Figure 3, the approximate equation ̂𝜃 ≈ 3 can be obtained.
According to the relationship based on equation 𝜃 = 1/(1−𝜇),
we can solve that 𝜇 = 0.67 and denote the estimated error as

𝑒𝜇 = 𝜇 − 𝜇 ≈ 0.7 − 0.67 = 0.03. (42)
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Figure 4: The dynamic response curves of flexile modes with actuator faults.

The value of 𝑒𝜇 in our research is in tolerance. Meanwhile, the
stability of flexible states is depicted by Figure 4. And it can be
seen that the flexible states 𝜂1, 𝜂2, and 𝜂3 converge to constant
values, respectively.

In summary, the simulation results demonstrate that,
although there are actuator faults and uncertainties in the
system, the good tracking performance and satisfactory
system responses can be guaranteed.

5. Conclusions and Future Work

In this paper, an effective method has been proposed for
linearizing the nonlinear model of the FAHV via feedback,
which simplifies the complexity of the controller design pro-
cess. Furthermore, an adaptive fault-tolerant control scheme
based on finite-time slidingmode control technique has been
brought forward for the FAHV without any information
about the upper bound of uncertainties or the minimum
value of actuator effectiveness. Simulation results have been
presented to evaluate the validity of the proposed control
scheme and to show its robustness to uncertainties and the
loss of actuator effectiveness.

Further research work includes two aspects. Firstly, only
the loss-of-effectiveness fault has been investigated in this
paper; other types of actuator faults such as float failure and
actuator faults in FAHV with unknown structure are worth
being dealt with. Furthermore, the FAHV model considered
in this paper is highly nonlinear and strongly coupled, and a
more general active FTC scheme as adaptive fault diagnosis
observer in [34, 35] should be investigated in our future study.
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