3,693 research outputs found

    Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades

    No full text
    This paper presents an aeroservoelastic modeling approach for dynamic load alleviation in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a moving base, and the rotating blades are modeled using geometrically non-linear composite beams, which are linearized around reference conditions with arbitrarily-large structural displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice method and the resulting dynamic aeroelastic model is written in a state-space formulation suitable for model reductions and control synthesis. A linear model of a single blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments, which is finally shown to provide load reductions of about 20% in closed-loop on the full wind turbine non-linear aeroelastic model

    Gramian-based optimal design of a dynamic stroke amplifier compliant micro-mechanism.

    Get PDF
    International audienceThis paper presents a new method developed for the optimal design of microrobotic compliant mechanisms. It is based on a flexible building block method, called FlexIn, which uses an evolutionary approach, to optimize a truss-like structure made of building blocks. From the first design step, in addition to conventional mechanical criteria, dynamic gramian-based metrics can be considered in the optimization procedure to fit expected frequency responses of the synthetized mechanisms. A planar monolithic compliant coupling structure is obtained by the optimal design method to act as a stroke amplifier for piezoelectric stacked actuators, to operate in both static and dynamic motions, and to passively filter out undesirable vibrations. Finally, performance comparisons between some of the pseudo-optimal FlexIn synthetized compliant mechanisms demonstrate the interests of the proposed optimization method for the design of dynamic operating smart microrobotic structures

    Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimisation method.

    Get PDF
    International audienceThis paper presents a new method developed for the optimal design of piezoactive compliant micromechanisms. It is based on a flexible building block method, called FlexIn, which uses an evolutionary approach, to optimize a truss-like planar structure made of passive and active building blocks, made of piezoelectric material. An electromechanical approach, based on a mixed finite element formulation, is used to establish the model of the active piezoelectric blocks. From the first design step, in addition to conventional mechanical criteria, innovative control-based metrics can be considered in the optimization procedure to fit the open-loop frequency response of the synthetized mechanisms. In particular, these criteria have been drawn here to optimize modal controllability and observability of the system, which is particularly interesting when considering control of flexible structures. Then, a planar monolithic compliant micro-actuator has been synthetized using FlexIn and prototyped. Finally, simulations and experimental tests of the FlexIn optimally synthetized device demonstrate the interests of the proposed optimization method for the design of micro-actuators, microrobots, and more generally for adaptronic structures

    Active Vibration Control Analysis of Cantilever Pipe Conveying Fluid Using Smart Material

    Get PDF
    In this paper, experimental and simulation studies in active vibration of smart cantilever pipe conveying fluid have been presented to investigate the open and closed loop time responses. A program to simulate the active vibration reduction of stiffened pipe with piezoelectric sensors and actuators was written in the ANSYS workbench and  Parametric Design Language (APDL). This makes use of the finite element capability of ANSYS and incorporates an estimator based on optimal linear quadratic control (LQR) schemes to investigate the open and closed loop time responses. The procedures are tested by active control for free and forced vibrations of piezoelectric smart cantiliver pipe conveying fluid. Harmonic excitation is considered in the forced vibration. Experiments have been done to verify with simulations. Smart pipe consists of aluminum pipe surface glued piezoelectric patches of MIDÉ QuickPack QP20W transducers. An experimental result is acquired by LabVIEW programs. It is found the location of the piezoelectric actuator has in influence on the response of the cantilever pipe. The displacement increases when the actuators are moved closer to the clamped. This is due to the higher strain developed near the clamped . The control performance  decrease with increasing  the flow velocity due to increased  coriolis force.The better performance of control occur at minimum velocity(Q=10L/min) and location1 of actuator, the maximum reduced the displacement response from +8mm to 1mm. Keywords: Active vibration control, LQR, cantilever pipe, smart structure, Smart material, piezoelectric

    Semi-Passive Control Strategy using Piezoceramic Patches in Non Linear Commutation Architecture for Structural-Acoustic Smart Systems

    Get PDF
    The demands for novel smart damping materials can be summarized in: external power source not required for operation; device not needing to be tuned to a specific frequency; device operation not affected by changes in modal frequency; device suppressing vibration over a number of modes, weight and size minimized; self-contained unit device. This thesis focuses on these points and it shows that the dilemma between active and passive vibration control may be solved with a new approach, implementing a semipassive technique without penalties in terms of robustness and performance. Connecting a shunt circuit to a piezoelectric transducer leads to a simple and low cost vibration controller that is able to efficiently suppress unwanted structural vibrations: this is a way to fulfil the abovementioned demands. The objective of this work is to develop and validate by an experimental campaign a computational tool integrated with finite element Nastran software. An original 4-channel switched shunt control system has been realized using a tachometer device. The control system has been tested first of all on a simple cantilevered beam attaining a max vibrations reduction of 16.2 dB for the first bending mode. Further reference test article consisted of a 10 ply fibreglass laminate plate. A multimodal control has applied within a band range of 700Hz including the first seven modes. A maximum reduction of 16 dB has been found. Further numerical and experimental tests have been planned to extend the ability of the SSC to produce structural-borne sound reduction in acoustic rigid cavities for fluid-structure interaction problems. Numerical sound power radiation of an aluminium plate, controlled by synchronized switch system, compared with the experimental acoustic energy detected in acoustic room, has been planned in the ongoing activities
    • 

    corecore