6 research outputs found

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore