
Linear Kernels for Outbranching Problems in
Sparse Digraphs∗

Marthe Bonamy1, Łukasz Kowalik2, Michał Pilipczuk2, and
Arkadiusz Socała2

1 LIRMM, France
marthe.bonamy@lirmm.fr

2 University of Warsaw, Poland
kowalik@mimuw.edu.pl, michal.pilipczuk@mimuw.edu.pl,
arkadiusz.socala@students.mimuw.edu.pl

Abstract
In the k-Leaf Out-Branching and k-Internal Out-Branching problems we are given a
directed graph D with a designated root r and a nonnegative integer k. The question is to
determine the existence of an outbranching rooted at r that has at least k leaves, or at least k

internal vertices, respectively. Both these problems were intensively studied from the points of
view of parameterized complexity and kernelization, and in particular for both of them kernels
with O(k2) vertices are known on general graphs. In this work we show that k-Leaf Out-
Branching admits a kernel with O(k) vertices on H-minor-free graphs, for any fixed H, whereas
k-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded
expansion.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases FPT algorithm, kernelization, outbranching, sparse graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.199

1 Introduction

In this work we are interested in kernelization algorithms for two problems investigated by
Dorn et al. [4], namely k-Leaf Out-Branching (LOB) and k-Internal Out-Branching
(IOB). In both problems, we are given a directed graph D with a specified root r and a
nonnegative integer k. By an outbranching rooted at r we mean a spanning tree of D with
all the edges oriented away from r. A vertex of D is a leaf in an outbranching T if it has
outdegree 0 in T , and is internal otherwise. In LOB the question is to verify the existence of
an outbranching rooted at r that has at least k leaves, whereas in IOB we instead ask for an
outbranching rooted at r with at least k internal vertices. Both problems enjoy the existence
of kernels with O(k2) vertices on general graphs [2, 9], however up to this work no better
kernels were known even in the case of planar graphs. Although many problems for planar
graphs admit kernels of linear size by a general framework of bidimensionality (see [7]), the
directed nature of both problems studied here prevents them from satisfying even the most
basic properties needed for the bidimensionality tools to be applicable.

∗ Work partially supported by the ANR Grant EGOS (2012-2015) 12 JS02 002 01 (MB), by the National
Science Centre of Poland, grants number 2013/09/B/ST6/03136 (ŁK, AS). This work was done while
Michał Pilipczuk has been holding a post-doc position at Warsaw Centre of Mathematics and Computer
Science, and has been supported by the Foundation for Polish Science via the START stipend programme.

© Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk, and Arkadiusz Socała;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 199–211

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.199
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

200 Linear Kernels for Outbranching Problems in Sparse Digraphs

Dorn et al. [4] designed subexponential parameterized algorithms with running time
2Õ(
√

k) · nO(1) for both problems on H-minor-free graphs1. They did it, however, by circum-
venting in both cases the need of obtaining a linear kernel. In the case of LOB they show
how to apply preprocessing rules to obtain an instance that can be still large in terms of k,
but has treewidth O(

√
k) so that the dynamic programming on a tree decomposition can be

applied. In the case of IOB they apply a variant of Baker’s layering technique.

Our results and techniques. In this work we fill the gap left by Dorn et al. [4] and prove
that both LOB and IOB admit linear kernels on H-minor-free graphs. In fact, for IOB
our approach works even in the more general setting of graph classes of bounded expansion
(see Section 2 for a definition). By slightly abusing notation, in what follows we say that a
directed graph D belongs to some class of undirected graphs (e.g. is H-minor free) if the
underlying undirected graph of D has this property.

I Theorem 1. Let H be a fixed graph. There is an algorithm that, given an instance (D, k)
of LOB where D is H-minor-free, in polynomial time either resolves the instance (D, k),
or outputs an equivalent instance (D′, k′) of LOB where |V (D′)| = O(k), k′ ≤ k, and D′ is
H-minor free. The algorithm does not need to know H.

Note that Theorem 1 implies also a kernel of linear size for any minor-closed family of
graphs G. Indeed, by the Roberson and Seymour’s graph minor theorem there exists a fixed
finite family H such that G contains exactly graphs that are H-minor free for every H ∈ H.
By Theorem 1, for any input graph D ∈ G, the output graph D′ is H-minor free for every
H ∈ H. Hence, D′ is in G. In particular, it follows that Theorem 1 implies linear kernels for
planar graphs and other graphs embeddable on a surface of bounded genus.

I Theorem 2. Let G be a hereditary graph class of bounded expansion. There is an algorithm
that, given an instance (D, k) of IOB where D ∈ G, in polynomial time either resolves the
instance (D, k), or outputs an equivalent instance (D′, k) of IOB where |V (D′)| = O(k) and
D′ is an induced subgraph of D.

By applying these kernelization algorithms and then running dynamic programming on a
tree decomposition of the obtained graph, we easily obtain the following corollary.

I Theorem 3. Let H be a fixed graph. Then both LOB and IOB can be solved in time
2O(
√

k) + nO(1) when the input is an n-vertex H-minor-free graph.

Algorithms with a similar running time – but with additional log k factor in the exponent
– were obtained by Dorn et al. [4]. If one follows their approach, then for LOB it is possible
to shave off this factor in the exponent just by replacing the dynamic programming on a
tree decomposition with a more modern one. However, for IOB the logarithmic factor is
caused also by an application of the layering technique, and hence such a replacement and
manipulation of parameters in layering would only improve log k to

√
log k. By constructing

a truly linear kernel we are able to shave this factor completely off. We remark that the
running time given by Theorem 3 is optimal under the Exponential Time Hypothesis even
on planar graphs; see appendix for further details.

1 We remark that Dorn et al. state the result for IOB only for apex-minor-free graphs, but a combination
of their approach with the contraction decomposition technique of Demaine et al. [3] immediately
generalizes the result to H-minor-free graphs.

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 201

(a) A weak bipath (b) A fat bipath (the black vertices may have out-
neighbors other than those depicted and some of the
vertical edges may be contracted)

Figure 1 Different types of bipaths.

To prove Theorems 1 and 2, we revisit the quadratic kernels on general graphs given
by Daligault and Thomassé [2] (for LOB) and by Gutin et al. [9] (for IOB). For LOB we
need to modify the approach substantially, as the core reduction rule used by Daligault and
Thomassé is the following: whenever there is a cutvertex in the graph – a vertex whose
removal makes some other vertex not reachable from r – then it is safe to shortcut it: remove
it and add an arc from every its inneighbor to every its outneighbor. Observe that an
application of this rule does not preserve H-minor-freeness, so the kernel of Daligault and
Thomassé [2] may start with an H-minor free graph and go outside of this class.

To circumvent this problem, we exploit the structural approach proposed by Dorn et
al. [4]. While not achieving a linear kernel in the precise sense, Dorn et al. are able to simplify
the structure of the instance so that it fits their purposes. The main idea is to contract
cutedges instead of shortcutting cutvertices, which is a weaker operation that, however,
preserves H-minor-freeness. Dorn et al. are able to expose a set of so-called special vertices
S of size linear in k such that G \S has constant pathwidth; this is already enough to employ
the bidimensionality technique. To obtain a linear kernel, we need to perform a much more
refined analysis of the instance. More precisely, we construct a set S with |S| = O(k) such
that G \ S is consists of fat bipaths: chains as depicted in Figure 1, possibly with some
vertical (cut)edges contracted, and with outgoing edges with heads in S. After contracting
the vertical edges, such a fat bipath becomes a weak bipath: a bidirectional path possibly
with outgoing edges with heads in S. Weak bipaths are crucial in the structural approach of
Daligault and Thomassé [2], and our fat bipaths can be thought of as more fuzzy variants of
weak bipaths that cannot be reduced due to the inability to shortcut cutvertices.

To obtain a linear kernel, we need to reduce the total length of the fat bipaths. For this,
we use concepts borrowed from the analysis of graph classes of bounded expansion, of which
H-minor-free classes are special cases. Very recently Drange et al. [5] announced a linear
kernel for Dominating Set on graph classes of bounded expansion, and the main tool used
there is the analysis of the number of different neighborhoods that can arise in a graph G

from a bounded expansion graph class G. Essentially, there is a constant c such that for
every X ⊆ V (G) there are only O(|X|) vertices in V (G) \ X that neighbor more than c

vertices in X, while the vertices of V (G) \X that neighbor at most c vertices in X can be
grouped into O(|X|) classes with exactly the same neighborhoods. We apply this idea to the
instance at hand with the interior of every fat bipath contracted to one vertex. Thus, we
infer that there are only O(k) fat bipaths that neighbor more than c special vertices, and
their total length can be bounded by O(k) using reduction rules. On the other hand, fat
bipaths with neighborhoods of size at most c are reduced within their neighborhood classes,
whose number is also O(k).

The same neighborhood diversity argument plays the key role also in our kernel for IOB
(Theorem 2). The idea of Gutin et al. [9] is that if a solution to the instance cannot be
found immediately by a simple local search, then one can expose a vertex cover U of size at
most 2k in the graph. The vertices of V (D) \ U are reduced using an argument involving

IPEC’15

202 Linear Kernels for Outbranching Problems in Sparse Digraphs

crown decompositions in an auxiliary graph where vertices of V (D) \ U are matched to
pairs of adjacent vertices of U ; this gives a quadratic dependence on k of the size of the
kernel. We observe that in case D belongs to a class of bounded expansion, then there is
only O(|U |) = O(k) vertices of V (D) \ U that have super-constant neighborhood size in U ,
while the others are grouped into O(|U |) = O(k) neighborhood classes, each of which can be
reduced to constant size using the same approach via crown decompositions.

For IOB we did not need any edge contractions in the reduction rules, so the kernelization
procedure works on any graph class of bounded expansion. However, for LOB it seems
necessary to apply contractions of subgraphs of unbounded diameter, e.g. to reduce long
paths that contribute with at most one leaf to the solution. While the last phase relies mostly
on the bounded expansion properties of the graph class, we need to allow contractions in the
reduction rules and hence we do not achieve the same level of generality as for IOB.

We see the additional advantage of our approach in its simplicity. Instead of relying on
complicated decomposition theorems for H-minor free graphs, which is a standard technique
in such a setting, we use the methodology proposed by Drange et al. [5]: To exploit purely
combinatorial, abstract notions of sparsity, like the concept of bounded expansion, and in
this manner obtain a much cleaner treatment of the considered graph classes. Of particular
interest is the usefulness of the approach of grouping vertices according to their neighborhoods
in some fixed modulator X, which is the key idea in [5].

Organization of the paper. In Section 2 we give preliminaries on tools borrowed from the
analysis of graph classes of bounded expansion. Sections 3 and 4 are devoted to the proofs of
Theorems 1 and 2, respectively. Due to space limitations, proofs of claims marked by F are
skipped in this extended abstract; the reader can find their proofs in our technical report at
arxiv [1]. By the same reason, the proof of Theorem 3 and a discussion on the optimality of
the obtained algorithms is also skipped.

Notation. In this paper we deal with digraphs. Let D = (V, E) be a digraph. Consider an
edge (u, v) ∈ E. We say that v is an out-neighbor of u and u is an in-neighbor of v. We
also say that v is a head and u is a tail of (u, v). Also, v and u are neighbors of each other.
For any vertex v we denote the sets of all its neighbors, out-neighbors and in-neighbors by
ND(v), N+

D (v) and N−D (v), respectively. Moreover, the degree, out-degree, and in-degree of v

are defined as degD(v) = |N(v)|, deg+
D(v) = |N+(v)|, and deg−D(v) = |N−(v)|. We omit the

subscripts and write simply N(v) or deg(v) whenever it does not lead to ambiguity. For any
set S ⊆ V we denote N−D (S) =

⋃
v∈S N−D (v) \ S and N+

D (S) =
⋃

v∈S N+
D (v) \ S.

2 Preliminaries on Sparse Graphs

In this section we recall some definitions and basic properties of sparse graphs, in particular
d-degenerate graphs, bounded expansion graphs and H-minor-free graphs. Although in this
section we refer to undirected graphs, all the notions and claims apply also to digraphs, by
looking at the underlying undirected graph.

We say that graph G is k-degenerate when every subgraph of G has a vertex of degree at
most k. This implies (and in fact is equivalent to) that we can remove all the edges of G

by repeatedly removing vertices of degree at most k. It follows that G has at most k|V (G)|
edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.
Degeneracy is closely linked to arboricity, i.e., minimum number arb(G) of forests that cover
the edges of G: it is well known that degeneracy is between arb(G) and 2 arb(G).

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 203

Recall that a graph H is a minor of graph G if there exists a minor model (Iu)u∈V (H) of
H in G that satisfies the following properties:

sets Iu for u ∈ V (H) are pairwise disjoint subsets of V (G) that moreover induce connected
subgraphs;
for each uv ∈ E(H), there exist xu ∈ Iu and xv ∈ Iv such that xuxv ∈ E(G).

For any fixed graph H, the class of H-minor-free graphs comprises all the graphs G that do
not have H as a minor. Note that H-minor free graphs are closed under minor operations:
vertex and edge deletions, and edge contractions. For example, graphs embeddable into a
constant genus surface are H-minor-free for some fixed H; in particular, by Kuratowski’s
theorem, planar graphs are K5-minor free and K3,3-minor free. The following lemma provides
a connection between H-minor-free graphs and degeneracy.

I Lemma 4 (see Lemma 4.1 in [10]). Any H-minor free graph is dH-degenerate for dH =
O(|H|

√
log |H|).

Let r be a nonnegative integer. If a minor model (Iu)u∈V (H) satisfies in addition that
G[Iu] has radius at most r for each u ∈ V (H), then (Iu)u∈V (H) is an r-shallow minor model
of H, and we say that H is an r-shallow minor of G. If G is a class of graphs, then by
G O r we denote the class of all r-shallow minors of graphs from G; note that G O 0 are all
subgraphs of graphs of G. We now define the greatest reduced average degree (grad) of a class
G at depth r as

∇r(G) = sup
H∈G O r

|E(H)|
|V (H)| .

That is, we take the greatest edge density among the r-shallow minors of G. Class G is said
to be of bounded expansion if ∇r(G) is a finite constant for every r. Observe that then the
graphs from G are in particular d-degenerate for d = b2∇0(G)c. For a single graph G, we
denote ∇r(G) = ∇r({G}).

Consider the class GH of H-minor-free graphs. By Lemma 4, every graph G ∈ GH has at
most dH · |V (G)| edges. Since GH is closed under taking minors, it follows that GH O r = GH

for every nonnegative r, so also ∇r(GH) ≤ dH . Thus, H-minor-free graphs form a class of
bounded expansion with all the grads bounded independently of r.

In this paper we do not use the original definition of bounded expansion graphs, but
we rather rely on the point of view of diversity of neighborhoods, which was found to be
very useful in [5]. More precisely, we now use the following result from [8, Lemma 6.6]; the
statement with adjusted notation is taken verbatim from [5].

I Proposition 5 (Proposition 2.5 of [5]). Let G be a graph, X ⊆ V (G) be a vertex subset,
and R = V (G) \X. Then for every integer p ≥ ∇1(G) it holds that
1. |{v ∈ R : |N(v) ∩X| ≥ 2p}| ≤ 2p · |X|, and
2. |{A ⊆ X : |A| < 2p and ∃v∈R A = N(v) ∩X}| ≤ (4p + 2p)|X|.
Consequently, the following bound holds:

|{A ⊆ X : ∃v∈R A = N(v) ∩X}| ≤
(

4∇1(G) + 4∇1(G)
)
· |X|.

We need a strengthening of the first claim of Proposition 5.

I Lemma 6. (F) Let G = (X, Y, E) be a bipartite graph of degeneracy at most d. Then,∑
y∈Y

degG(y)>2d

degG(y) ≤ 2d|X|.

IPEC’15

204 Linear Kernels for Outbranching Problems in Sparse Digraphs

Note that Proposition 5 has the following corollary when applied to H-minor-free graphs.

I Corollary 7. Let H be a graph. There exists cH = 2O(|H|
√

log |H|) such that in any H-
minor-free bipartite graph G = (X, Y, E), there are at most cH · |X| vertices in Y with pairwise
distinct neighborhoods in X.

3 k-Leaf Out-Branching in H-minor-free graphs

In this section we deal with rooted digraphs, i.e., digraphs with a vertex r, called root, of
in-degree 0. In such digraphs we redefine some standard connectivity notions as follows. Let
(D, r) be a rooted digraph. We say that D is connected when every vertex of D is reachable
from r. A cut-vertex is any vertex v ∈ V (D) \ {r} such that D − r is not connected. The
set of all cut-vertices of D is denoted by cv(D). We say that D is 2-connected if D has no
cut-vertex (equivalently, for every vertex v ∈ V (D) \ {r} there are at least two paths from r

to v that do not share internal vertices). Similarly, a cut-edge is any edge (u, v) ∈ E(D) such
that D − (u, v) is not connected. We say that D is 2-edge-connected if D has no cut-edge
(equivalently, for every vertex v ∈ V (D) \ {r} there are at least two edge-disjoint paths from
r to v). Note that if (u, v) is a cut-edge then u is a cut-vertex or u = r.

By a contraction of edge (a, b) in D we mean the following operation: identify a and b into
a newly introduced vertex v(a,b), replace a and b with v(a,b) in every edge of D, and remove
all the loops and parallel edges created in this manner. Note that if D is H-minor-free, then
it remains H-minor-free after contractions as well.

Following [2], we say that a vertex v of D is special if v is of in-degree at least 3 or there
is an incoming simple edge, i.e., an edge (u, v) such that (v, u) 6∈ E(D). The set of all special
vertices of D is denoted by sp(D).

A weak bipath P is a sequence of vertices u1, . . . , up for some p ≥ 3, such that for each
i = 2, . . . , p − 1, we have N−(ui) = {ui−1, ui+1} ⊆ N+(ui). The length of P is p − 1. If
additionally N+(ui) = N−(ui) = {ui−1, ui+1} for every i = 2, . . . , p − 1, we say that P is
proper bipath (or shortly a bipath). u1 and up are called the extremities of P .

We say that a cut-edge (u, v) is lonely when there is no other cut-edge with the tail
in u. We call a cut-edge branching is there is another cut-edge with the same tail. The
graph obtained from D by contracting all lonely cut-edges is denoted by Dc and called the
contracted graph. Consider a vertex v of Dc. Then either v was created by contracting some
set of cut-edges Z in D or v ∈ D. In the prior case we define the bag B of v as the set of
vertices incident to edges in Z. Also, for any edge (x, y) ∈ Z the vertex x is called a tail of
B and y is a head of B. In the latter case, i.e., when v ∈ D, we define the bag as B = {v}
and v is both head and tail of B. When B is a bag of v we denote vB = v and Bv = B. If
there is exactly one head and exactly one tail of B, then they are denoted by hB and tB,
respectively. We say that bags A and B are linked if there are edges both from A to B and
from B to A.

Our kernelization algorithm. Let us describe our algorithm which outputs a kernel for k-
Leaf Out-Branching. The algorithm exhaustively applies reduction rules. Each reduction
rule is a subroutine which finds in polynomial time a certain structure in the graph and
replaces it by another structure, so that the resulting instance is equivalent to the original
one. More precisely, we say that a reduction rule for parameterized graph problem P is
correct when for every instance (D, k) of P it returns an instance (D′, k′) such that a) (D′, k′)
is an instance of P , b) (D, k) is a yes-instance of P iff (D′, k′) is a yes-instance of P , and c)

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 205

k′ ≤ k. Below we state the rules we use. The rules are applied in the given order, i.e., in
each rule we assume that the earlier rules do not apply.

Rule 1. If there exists a vertex not reachable from r in D, then reduce to a trivial no-instance.

Rule 2. If there exists a cut-vertex v with exactly one incoming edge e then contract e.
Similarly, if there exists a cut-vertex v with exactly one outgoing edge e then contract e.

Rule 3. Let P be a proper bipath of length 4 in D. Contract any edge of P .

Rule 4. Let x be a vertex of D. If there exists y ∈ N−(x) such that the removal of
N−(x) \ {y} disconnects y from r, then delete the edge (y, x).

The correctness of the above reduction rules was proven in [2]. (In [2], Rule 2 is formulated
in a more general way, but we restrict it so that if the input digraph was H-minor-free, then
so is the resulting reduced graph.) Let us remark that Rule 4 remains true if r ∈ N−(x)\{y},
and in this case it triggers removal of all the incoming edges apart from the one coming from
the root. Below we introduce two simple rules which will make our argument a bit easier.

Rule 5. If there are two cut-edges (x1, y1) and (x2, y2) such that (x1, x2), (x2, x1) ∈ E(D),
then contract (x1, x2).

Rule 6. If there is a cut-edge (u, v) such that (v, u) ∈ E(D), then remove (v, u).

I Lemma 8. (F) Rules 5 and 6 are correct.

To complete the algorithm we need a final accepting rule which is applied when the
resulting graph is too big. In the remainder of this section we sketch the proof that Rule 7 is
correct for H-minor-free graphs for some constant c = 2O(|H|

√
log |H|).

Rule 7. If the graph has more than c · k vertices, return a trivial yes-instance (conclude that
there is a rooted outbranching with at least k leaves in D).

We conclude with the following lemma.

I Lemma 9. Let H be a graph. If the input is an H-minor-free graph, then the output of
each of the rules 1– 7 is a minor of D, and hence an H-minor-free graph. Moreover, each
rule can be recognized and applied in polynomial time, and the degree of the polynomial does
not depend on H.

Proof. The first claim follows from the fact that the rules modify the graph by means of
deletions and contractions only. The second claim is straightforward to check. J

A few simple properties of the reduced graph. Let us we state simple auxiliary lemmas,
which will be used in the remainder of the paper.

I Lemma 10. (F) If reduction rules do not apply to D then every bag is of size at most
two and contains at most one edge.

I Lemma 11. (F) If reduction rules 1-4 do not apply to D, then for arbitrary pair of bags
A and B every edge from A to B has head in tB.

I Lemma 12. (F) Assume no reduction rule applies to D. Let S ⊆ V (Dc) be any set of
vertices that contains the root r and every special vertex of Dc. Then one can find weak
bipaths P1, P2, . . . , Pq, such that:
(i) The sets of internal vertices of P1, P2, . . . , Pq form a partition of V (Dc) \ S.
(ii) The extremities of each Pi belong to S and are distinct.

IPEC’15

206 Linear Kernels for Outbranching Problems in Sparse Digraphs

(iii) The out-neighbors of the internal vertices of each Pi belong to S.

Weak bipaths P1, . . . , Pq given by Lemma 12 are called maximal bipaths. Note that for
every such maximal bipath P = v1, v2, . . . , vp and every j = 2, . . . , p− 1, bag Bvj is linked
to Bvj−1 and Bvj+1 , and to no other bag.

New lower bounds on the number of leaves. Now our goal is to establish a number of
lower bounds on the number of leaves. Each of the lower bounds is a linear function of a
number of some type of vertices or structures in D. These bounds will help us prove that
Rule 7 is correct. Indeed, to this end it suffices to focus on a no-instance and prove that it
has at most ck vertices. Hence, if we know that maxleaf(D) is large when there are many
vertices of some kind A, then we know that in our no-instance there are few vertices of kind
A. In other words vertices of type A are “easy”. In the final part of this section we will show
that because of sparsity arguments the number of the remaining vertices (not corresponding
to an “easy type”) is linear in the number of “easy” vertices. In fact, instead of looking for
“easy” vertices in D, we focus on Dc. This is justified by the fact that by Lemma 10 we have
|V (D)| ≤ 2|V (Dc)|, so if we prove that |V (Dc)| = O(k) then also |V (D)| = O(k).

Daligault and Thomassé [2] show the following lower bound.

I Theorem 13 ([2]). Let D be a 2-connected rooted digraph. Then maxleaf(D) ≥ |sp(D)|
30 .

Unfortunately, Dc is not necessarily 2-connected so we cannot use the above bound.
However, we can generalize Theorem 13 as follows.

I Theorem 14. (F) Let D be a connected rooted digraph such that every cut-edge is branching.
Then maxleaf(D) ≥ |sp(D)|

30 − cv(D) and maxleaf(D) ≥ |sp(D)|
60 .

We are able to show that in Dc every cut-edge is branching and maxleaf(D) ≥ maxleaf(Dc)
(proofs skipped in this extended abstract). This implies the following.

I Lemma 15. (F) Assume that rules 1-6 do not apply to D. Then, maxleaf(D) ≥ |sp(Dc)|
60 .

We say that a bag B is special when vB is special in Dc. We say that a bag B is isolated
when B is a non-special bag of size 2 and there is no edge from tB to a special bag. Vertex
v ∈ V (Dc) is isolated if v = vB for some isolated bag B. The set of all isolated vertices in
Dc is denoted by iso(Dc).

I Lemma 16. (F) If reduction rules do not apply to D then maxleaf(D) ≥ |iso(Dc)|
180 .

We will say that a vertex v of Dc is easy when v = r, or v is special, or v is isolated in Dc.
A vertex that is not easy is called hard. We now invoke Lemma 12 for S being the set of all the
easy vertices. Every maximal bipath obtained in this decomposition will be called a maximal
hard bipath. In other words, a weak bipath in Dc is hard if all its internal vertices are hard.
The sets of all easy and hard vertices in Dc are denoted by ea(Dc) and hd(Dc), respectively.
For any maximal hard weak bipath P ′ in Dc define O(P ′) = N+

Dc
(V (P ′) \ {u, v}), where u

and v are the extremities of P ′.
For every pair of easy vertices u, v ∈ ea(Dc) and a subset S ⊆ V (Dc) with {u, v} ⊆ S, if

there is a hard bipath P ′ between u and v such that O(P ′) = S, we choose arbitrarily two
such paths (or one, if only one exists) and we call them masters, while all the remaining hard
bipaths P ′′ between u and v with O(P ′′) = S are called slaves of respective masters, or just
slaves. The number of all slaves in Dc is denoted by sl(Dc).

I Lemma 17. (F) maxleaf(D) ≥ sl(Dc).

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 207

The size bound. The following theorem implies the correctness of Rule 7.

I Theorem 18. Let H be a graph. Let D be an H-minor-free digraph such that rules 1–6 do
not apply. If maxleaf(D) < k, then |V (D)| = 2O(|H|

√
log |H|)k.

In what follows we prove Theorem 18. We assume that rules 1–6 do not apply to D.
Since maxleaf(D) < k, our lower bounds on maxleaf(D) imply an upper bound of O(k) on
the number of easy vertices. Our plan now is to show a linear bound on the number of hard
vertices in terms of |ea(Dc)|+ sl(Dc) and next get a bound on |V (D)| as a corollary. To this
end, we state a few useful properties of hard weak bipaths in Dc.

I Lemma 19. Let ` ≥ 9 and let P ′ = v1, . . . , v` be a hard bipath in Dc such that v1 and
v` are easy. For every i = 3, . . . , `− 6 there is at least one edge in D from tBvj

, for some
j = i, . . . , i + 4, to a vertex outside ∪`−1

j′=2Bvj′ .

Proof. Fix i ∈ {3, . . . , `− 6} and consider the length 4 bipath vi, . . . , vi+4. Denote Bj = Bvj
.

If for some j = i + 1, i + 2, i + 3 there is an edge from Bj with head h 6∈ Bj−1 ∪Bj+1, then
by Lemma 12(iii), h 6∈ ∪`−1

j′=2Bvj′ and we are done. Hence the edges leaving Bi+1, Bi+2, and
Bi+3 go only to the neighboring bags. Since Rule 3 does not apply, for some j = i, . . . , i + 4
the bag Bj is of size 2. Since vj is hard, Bj is not isolated. Hence, there is an edge e in D

from tBj
to a special bag B. Since v2, . . . , v`−1 are hard, B is none of B2, . . . , B`−1. J

I Lemma 20. For any maximal hard weak bipath P ′ in Dc, |hd(Dc)∩V (P ′)| ≤ 10|O(P ′)|+6.

Proof. Let P ′ = v1, . . . , v`. We can assume that ` ≥ 9, for otherwise |hd(Dc) ∩ V (P ′)| ≤ 6
and the claim holds trivially. For convenience denote Bi = Bvi . By Lemma 19 there are at
least b `−4

5 c edges from tails of bags B3, . . . , B`−2 to vertices outside ∪`−1
i=2Bvj

. Let Z denote
the set of these edges. We claim that for every vertex u ∈ V (D) there are at most two edges
from Z with heads in u. Indeed, assume that u has got three in-neighbors tBa

, tBb
, tBc

in D,
with a < b < c. Then N−(u) \ {tBb

} cuts tBb
(and all vertices of Ba+1, . . . , Bc−1) from r, a

contradiction to the fact that D is reduced with respect to Rule 4. Hence the edges in Z

have at least b `−4
5 c ·

1
2 ≥

`−8
5 ·

1
2 different heads. By Lemma 11 these heads are tails of bags,

and by Lemma 10 each of them corresponds to a different vertex in Dc. It follows that the
vertices v3, . . . , v`−2 have in Dc at least `−8

10 neighbors in O(P ′), so |O(P ′)| ≥ `−8
10 . Since

|hd(Dc) ∩ V (P)| = `− 2 it follows that |hd(Dc) ∩ V (P)| ≤ 10|O(P ′)|+ 6. J

In what follows we are going to bound the size of Dc using its sparsity properties. To
this end we use an auxiliary bipartite graph G, called the bipath minor of Dc, constructed as
follows. We put V (G) = A ∪ B, where A = ea(Dc), and B is the set of all maximal hard
bipaths in Dc. For every maximal hard bipath P ′ in Dc with extremities u, v ∈ ea(Dc), the
neighborhood of the corresponding vertex in B is exactly O(P).

I Lemma 21. If D is H-minor-free, then |hd(Dc)| = 2O(|H|
√

log |H|)(|ea(Dc)|+ sl(Dc)).

Proof. Consider an arbitrary hard vertex v of Dc. Consider the maximal hard weak bipath
P ′ in Dc that contains v. Then P ′ corresponds to a vertex in B and by Lemma 20, it has at
most 10|O(P ′)|+ 6 internal vertices. It follows that

|hd(Dc)| ≤
∑
v∈B

(10 degG(v) + 6) ≤
∑
v∈B

16 degG(v). (1)

Note that G is a minor of (the undirected version of) D since it can be obtained from
Dc by edge contractions and deletions, and Dc in turn is obtained from D by contractions.

IPEC’15

208 Linear Kernels for Outbranching Problems in Sparse Digraphs

Hence, G is H-minor-free. Moreover, G is simple. By Lemma 4, we know that G is dH -
degenerate, for dH = O(|H|

√
log |H|). Let Bm and Bs denote the vertices in B for which

the corresponding maximal hard bipath is master and slave, respectively. By (1) we get

|hd(Dc)| ≤ 16
∑
v∈B

degG(v) ≤ 16
∑
v∈B

degG(v)>2dH

degG(v) + 16
∑

v∈Bs

degG(v)≤2dH

degG(v) + 16
∑

v∈Bm

degG(v)≤2dH

degG(v)

Let us bound each of the terms separately. By Lemma 6, we have∑
v∈Bs

degG(v)>2dH

d(v) ≤ 2dH |A| = O(|H|
√

log |H| · |ea(Dc)|).

Obviously, ∑
v∈Bs

degG(v)≤2dH

degG(v) ≤ 2dHsl(Dc) = O(|H|
√

log |H|sl(Dc)).

Finally,∑
v∈Bm

degG(v)≤2dH

degG(v) =
∑
S⊆A
|S|≤2dH

|S|·|{v ∈ Bm : NG(v) = S}| ≤ 2dH

∑
S⊆A
|S|≤2dH

|{v ∈ Bm : NG(v) = S}|.

By Corollary 7, there is a constant cH = 2O(|H|
√

log |H|) such that there are at most cH |A|
distinct neighborhoods of vertices in B. For each such neighborhood S ⊆ A and for every
pair of vertices u, v ∈ S there are at most two master bipaths P ′ with endpoints u and v

and such that O(P ′) = S. Therefore for a fixed neighborhood S of size at most 2dH we have
|{v ∈ Bm|NG(v) = S}| ≤ 2

(|S|
2
)
≤ 2
(2dH

2
)

= O(d2
H). Hence∑

S⊆A,|S|≤2dH

|{v ∈ Bm|NG(v) = S}| = O(cH · d2
H · |ea(Dc)|) = 2O(|H|

√
log |H|)|ea(Dc)|.

The claim follows. J

Now we can finish the proof of Theorem 18. Assume maxleaf(D) < k. By Lemmas 15
and 16, ea(Dc) < 60k + 180k. Moreover, by Lemma 17, sl(Dc) < k. This, with Lemma 21
gives the claim of Theorem 18.

4 k-internal Out-Branching in graphs of bounded expansion

In this section we give a linear kernel for IOB on any graph class G of bounded expansion.
To this end, we modify the approach of Gutin, Razgon and Kim [9]. Before we proceed to the
argumentation, let us remark that Gutin et al. work with a slightly more general problem,
where the root of the outbranching is not prescribed; of course, the outbranching is still
required to span the whole vertex set. Note that the variant with a prescribed root r can be
reduced to this variant simply by removing all in-arcs of r, which forces r to be the root of
any outbranching of the given digraph. Since our kernel will be an induced subgraph of D

and r will not be removed by any reduction, it will be still true that r is the only candidate
for the root of an outbranching. Hence, the resulting instance will be equivalent in both
variants. Therefore, from now on we work with variant without prescribed root in order to
be able to use the observations of Gutin et al. as black-boxes.

First, Gutin et al. observe that in an instance that cannot be easily resolved, one can
find a small vertex cover (of the underlying undirected graph).

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 209

I Lemma 22 ([9]). Given a digraph D, we can either build an out-branching with at least k

internal vertices or obtain a vertex cover of size at most 2k − 2 in O(n2m) time.

For a given directed graph D and a vertex cover U in D we build an undirected bipartite
graph BD,U as follows. Let W = V (D) \ U . Then,

V (B) = U ′ ∪W , where U ′ = N−(W) ∪ (U × U);

E(B) = {{xy, w} : xy ∈ U × U, w ∈W, (x, w) ∈ E(D), (w, y) ∈ E(D)} ∪
{{x, w} : x ∈ U, w ∈W, (x, w) ∈ E(D)}.

A crown decomposition of an undirected graph G is a partitioning of V (G) into three
parts C, H and R, such that

C is an independent set.
There are no edges between vertices of C and R. That is, H separates C and R.
C can be partitioned into Cm ∪ Cu with |Cm| = |H|, such that G[Cm ∪H] contains a
perfect matching that matches each vertex of Cm with a vertex of H.

Crown decompositions are used in multiple kernelization algorithms. In particular, the
following lemma, which Gutin et al. attribute to Fellows et al. [6], shows that in certain
situations a crown decomposition can be found efficiently.

I Lemma 23 (see [9]). Suppose G is an undirected graph on n vertices, and suppose I

is an independent set in G such that |I| ≥ 2n
3 . Then G admits a crown decomposition

(C = Cu] Cm, H, R) with C ⊆ I, H ⊆ V (G) \ I and Cu 6= ∅. Moreover, given I, the
decomposition (C = Cu] Cm, H, R) can be found in O(nm) time.

The main idea of Gutin et al. is to search for crowns in BD,U with C ⊆W and Cu 6= ∅.
Such crowns can be conveniently reduced using the following reduction rule, whose correctness
is proved in Lemma 4.4 of [9].

Rule 1. Let U be a vertex cover in D and let W = V (D) \ U . Assume there is a crown
decomposition (C = Cm ∪ Cu, H, R) in BD,U with C ⊆ W and Cu 6= ∅. Then remove Cu

from D.

Our idea is to combine Rule 1 with the knowledge that D belongs to a graph class of
bounded expansion G, and hence Proposition 5 can be used to reason about the sparseness
of the adjacency structure between U and W . Let us introduce some notation. Consider
a vertex cover U and an independent set W = V (D) \ U in D. Let Ws = {w ∈ W :
degD(w) < 2∇0(G)}, and let Wb = W \Ws. Moreover, for N ⊆ U with |N | < 2∇0(G), let
WN = {w ∈ Ws : N(w) = N}. Let N (U) = {N ⊆ U : |N | < 2∇0(G), WN 6= ∅}. Note
that |N (U)| ≤ |Ws|. Our kernelization algorithm is as follows.

1. If the algorithm from Lemma 22 returns an outbranching, answer YES and terminate;
otherwise it returns a vertex cover U of size at most 2k − 2. Let W = V (D) \ U .

2. Construct the graph B := BD,U and compute Ws, N (U), and nonempty sets WN .
3. If there is a set N ∈ N (U) such that |WN | > 2|NB(WN)|, then apply Lemma 23 to graph

B[NB[WN]] with I = WN . This gives us a crown decomposition (C = Cu] Cm, H, R)
of B[NB[WN]] with C ⊆ WN , H ⊆ NB(WN), and Cu 6= ∅. Observe that (C = Cu]
Cm, H, R∪ (V (B)\NB [WN])) is a crown decomposition of B. Apply Rule 1 to this crown
decomposition in order to remove Cu from D, and restart the algorithm in the reduced
graph.

4. Otherwise, return D.

IPEC’15

210 Linear Kernels for Outbranching Problems in Sparse Digraphs

In case we have a prescribed root r of the outbranching that we would like to preserve in
the kernelization process, we can add it to the constructed vertex cover U , thus increasing
its size up to at most 2k − 1. The reduction rules never remove any vertex of U .

Given this algorithm, we can restate and prove our main result for IOB.

I Theorem 2. Let G be a hereditary graph class of bounded expansion. There is an algorithm
that, given an instance (D, k) of IOB where D ∈ G, in polynomial time either resolves the
instance (D, k), or outputs an equivalent instance (D′, k) of IOB where |V (D′)| = O(k) and
D′ is an induced subgraph of D.

Proof. The correctness of our kernelization algorithm and a polynomial bound on its running
time follows from Lemmas 22 and 23. Note that the kernelization algorithm never decrements
the budget k, so it suffices to show that it outputs an instance (D, k) such that |V (D)| = O(k).

We can assume that the algorithm constructed a vertex cover U of D of size at most 2k−2
(2k − 1 if we want to preserve a prescribed root), because otherwise the algorithm would
terminate and provide a positive answer. Let W = V (D) \ U . Then V (D) = U ∪Ws ∪Wb.
By the first claim of Proposition 5 we get |Wb| ≤ 2∇0(G)|U | ≤ 4∇0(G)k. Hence it suffices to
bound the size of Ws. Note that Ws =

⋃
N∈N (U) WN . By the second claim of Proposition 5 we

get |N (U)| ≤ (4∇1(G) +2∇1(G))|U | = O(4∇1(G)k). However, since Step 2 of the kernelization
algorithm cannot be applied, for every N ∈ N (U) we have |WN | ≤ 2|NBD,U

(WN)|. However,
by the construction of BD,U it is clear that |NBD,U

(WN)| ≤ |N |2 + |N | < 4∇0(G)2 +
2∇0(G), and hence |WN | < 8∇0(G)2 + 4∇0(G). It follows that |Ws| =

∑
N∈N (U) |WN | =

O(4∇1(G)∇0(G)2k), and hence |V (D)| = |U |+ |Ws|+ |Wb| = O(4∇1(G)∇0(G)2k). This finishes
the proof. J

Acknowledgments. The authors are very grateful to Marcin Pilipczuk for reading the
manuscript carefully and providing useful comments.

References
1 Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk, and Arkadiusz Socała. Linear kernels

for outbranching problems in sparse digraphs. CoRR, abs/1509.01675, 2015.
2 Jean Daligault and Stéphan Thomassé. On finding directed trees with many leaves. In

Parameterized and Exact Computation, pages 86–97. Springer, 2009.
3 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction

decomposition in H-minor-free graphs and algorithmic applications. In Proc. STOC’11,
pages 441–450. ACM, 2011.

4 Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. Inf.
Comput., 233:60–70, 2013.

5 Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lok-
shtanov, Marcin Pilipczuk, Michał Pilipczuk, Felix Reidl, Saket Saurabh, Fernando Sánchez
Villaamil, and Somnath Sikdar. Kernelization and sparseness: the case of dominating set.
CoRR, abs/1411.4575, 2014.

6 Mike Fellows, Pinar Heggernes, Frances A. Rosamond, Christian Sloper, and Jan Arne
Telle. Finding k disjoint triangles in an arbitrary graph. In WG’04, pages 235–244, 2004.

7 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. SODA’10, pages 503–510, 2010.

8 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sanchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. In ESA 2013, pages 529–540. Springer, 2013.

M. Bonamy, Ł. Kowalik, M. Pilipczuk, and A. Socała 211

9 Gregory Gutin, Igor Razgon, and Eun Jung Kim. Minimum leaf out-branching and related
problems. Theor. Comput. Sci., 410(45):4571–4579, 2009.

10 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and Combinatorics. Springer, 2012.

IPEC’15

	Introduction
	Preliminaries on Sparse Graphs
	k-Leaf Out-Branching in H-minor-free graphs
	k-internal Out-Branching in graphs of bounded expansion

