12 research outputs found

    k-forested choosability of graphs with bounded maximum average degree

    Full text link
    A proper vertex coloring of a simple graph is kk-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than kk. A graph is kk-forested qq-choosable if for a given list of qq colors associated with each vertex vv, there exists a kk-forested coloring of GG such that each vertex receives a color from its own list. In this paper, we prove that the kk-forested choosability of a graph with maximum degree Δ≥k≥4\Delta\geq k\geq 4 is at most ⌈Δk−1⌉+1\lceil\frac{\Delta}{k-1}\rceil+1, ⌈Δk−1⌉+2\lceil\frac{\Delta}{k-1}\rceil+2 or ⌈Δk−1⌉+3\lceil\frac{\Delta}{k-1}\rceil+3 if its maximum average degree is less than 12/5, $8/3 or 3, respectively.Comment: Please cite this paper in press as X. Zhang, G. Liu, J.-L. Wu, k-forested choosability of graphs with bounded maximum average degree, Bulletin of the Iranian Mathematical Society, to appea

    Linear Choosability of Sparse Graphs

    Get PDF
    We study the linear list chromatic number, denoted \lcl(G), of sparse graphs. The maximum average degree of a graph GG, denoted \mad(G), is the maximum of the average degrees of all subgraphs of GG. It is clear that any graph GG with maximum degree Δ(G)\Delta(G) satisfies \lcl(G)\ge \ceil{\Delta(G)/2}+1. In this paper, we prove the following results: (1) if \mad(G)<12/5 and Δ(G)≥3\Delta(G)\ge 3, then \lcl(G)=\ceil{\Delta(G)/2}+1, and we give an infinite family of examples to show that this result is best possible; (2) if \mad(G)<3 and Δ(G)≥9\Delta(G)\ge 9, then \lcl(G)\le\ceil{\Delta(G)/2}+2, and we give an infinite family of examples to show that the bound on \mad(G) cannot be increased in general; (3) if GG is planar and has girth at least 5, then \lcl(G)\le\ceil{\Delta(G)/2}+4.Comment: 12 pages, 2 figure

    Author index to volume 185 (1998)

    Get PDF

    Linear colorings of subcubic graphs

    Get PDF
    A linear coloring of a graph is a proper coloring of the vertices of the graph so that each pair of color classes induce a union of disjoint paths. In this paper, we prove that for every connected graph with maximum degree at most three and every assignment of lists of size four to the vertices of the graph, there exists a linear coloring such that the color of each vertex belongs to the list assigned to that vertex and the neighbors of every degree-two vertex receive different colors, unless the graph is C5C_5 or K3,3K_{3,3}. This confirms a conjecture raised by Esperet, Montassier, and Raspaud. Our proof is constructive and yields a linear-time algorithm to find such a coloring

    Linear Colouring of Binomial Random Graphs

    Full text link
    We investigate the linear chromatic number χlin(G(n,p))\chi_{\text{lin}}(G(n,p)) of the binomial random graph G(n,p)G(n,p) on nn vertices in which each edge appears independently with probability p=p(n)p=p(n). For dense random graphs (np→∞np \to \infty as n→∞n \to \infty), we show that asymptotically almost surely χlin(G(n,p))≥n(1−O((np)−1/2))=n(1−o(1))\chi_{\text{lin}}(G(n,p)) \ge n (1 - O( (np)^{-1/2} ) ) = n(1-o(1)). Understanding the order of the linear chromatic number for subcritical random graphs (np<1np < 1) and critical ones (np=1np=1) is relatively easy. However, supercritical sparse random graphs (np=cnp = c for some constant c>1c > 1) remain to be investigated

    Linear choosability of graphs

    Get PDF
    A proper vertex coloring of a non oriented graph G=(V,E)G=(V,E) is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph GG is LL-list colorable if for a given list assignment L={L(v):v∈V}L=\{L(v): v∈V\}, there exists a proper coloring cc of GG such that c(v)∈L(v)c(v)∈L(v) for all v∈Vv∈V. If GG is LL-list colorable for every list assignment with ∣L(v)∣≥k|L(v)|≥k for all v∈Vv∈V, then GG is said kk-choosable. A graph is said to be lineary kk-choosable if the coloring obtained is linear. In this paper, we investigate the linear choosability of graphs for some families of graphs: graphs with small maximum degree, with given maximum average degree, planar graphs... Moreover, we prove that determining whether a bipartite subcubic planar graph is lineary 3-colorable is an NP-complete problem

    Proper Conflict-free Coloring of Graphs with Large Maximum Degree

    Full text link
    A proper coloring of a graph is conflict-free if, for every non-isolated vertex, some color is used exactly once on its neighborhood. Caro, Petru\v{s}evski, and \v{S}krekovski proved that every graph GG has a proper conflict-free coloring with at most 5Δ(G)/25\Delta(G)/2 colors and conjectured that Δ(G)+1\Delta(G)+1 colors suffice for every connected graph GG with Δ(G)≥3\Delta(G)\ge 3. Our first main result is that even for list-coloring, ⌈1.6550826Δ(G)+Δ(G)⌉\left\lceil 1.6550826\Delta(G)+\sqrt{\Delta(G)}\right\rceil colors suffice for every graph GG with Δ(G)≥109\Delta(G)\ge 10^{9}; we also prove slightly weaker bounds for all graphs with Δ(G)≥750\Delta(G)\ge 750. These results follow from our more general framework on proper conflict-free list-coloring of a pair consisting of a graph GG and a ``conflict'' hypergraph H{\mathcal H}. As another corollary of our results in this general framework, every graph has a proper (30+o(1))Δ(G)1.5(\sqrt{30}+o(1))\Delta(G)^{1.5}-list-coloring such that every bi-chromatic component is a path on at most three vertices, where the number of colors is optimal up to a constant factor. Our proof uses a fairly new type of recursive counting argument called Rosenfeld counting, which is a variant of the Lov\'{a}sz Local Lemma or entropy compression. We also prove an asymptotically optimal result for a fractional analogue of our general framework for proper conflict-free coloring for pairs of a graph and a conflict hypergraph. A corollary states that every graph GG has a fractional (1+o(1))Δ(G)(1+o(1))\Delta(G)-coloring such that every fractionally bi-chromatic component has at most two vertices. In particular, it implies that the fractional analogue of the conjecture of Caro et al. holds asymptotically in a strong sense

    Acyclic and frugal colourings of graphs

    Get PDF
    Given a graph G = (V, E), a proper vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper t-frugal colourings and Yuster [19] studied acyclic proper 2-frugal colourings. In this paper, we expand and generalise this study. In particular, we consider vertex colourings that are not necessarily proper, and in this case, we find qualitative connections with colourings that are t-improper -colourings in which the colour classes induce subgraphs of maximum degree at most t -for choices of t near to d

    A Study on Graph Coloring and Digraph Connectivity

    Get PDF
    This dissertation focuses on coloring problems in graphs and connectivity problems in digraphs. We obtain the following advances in both directions.;1. Results in graph coloring. For integers k,r \u3e 0, a (k,r)-coloring of a graph G is a proper coloring on the vertices of G with k colors such that every vertex v of degree d( v) is adjacent to vertices with at least min{lcub}d( v),r{rcub} different colors. The r-hued chromatic number, denoted by chir(G ), is the smallest integer k for which a graph G has a (k,r)-coloring.;For a k-list assignment L to vertices of a graph G, a linear (L,r)-coloring of a graph G is a coloring c of the vertices of G such that for every vertex v of degree d(v), c(v)∈ L(v), the number of colors used by the neighbors of v is at least min{lcub}dG(v), r{rcub}, and such that for any two distinct colors i and j, every component of G[c --1({lcub}i,j{rcub})] must be a path. The linear list r-hued chromatic number of a graph G, denoted chiℓ L,r(G), is the smallest integer k such that for every k-list L, G has a linear (L,r)-coloring. Let Mad( G) denotes the maximum subgraph average degree of a graph G. We prove the following. (i) If G is a K3,3-minor free graph, then chi2(G) ≤ 5 and chi3(G) ≤ 10. Moreover, the bound of chi2( G) ≤ 5 is best possible. (ii) If G is a P4-free graph, then chir(G) ≤q chi( G) + 2(r -- 1), and this bound is best possible. (iii) If G is a P5-free bipartite graph, then chir( G) ≤ rchi(G), and this bound is best possible. (iv) If G is a P5-free graph, then chi2(G) ≤ 2chi(G), and this bound is best possible. (v) If G is a graph with maximum degree Delta, then each of the following holds. (i) If Delta ≥ 9 and Mad(G) \u3c 7/3, then chiℓL,r( G) ≤ max{lcub}lceil Delta/2 rceil + 1, r + 1{rcub}. (ii) If Delta ≥ 7 and Mad(G)\u3c 12/5, then chiℓ L,r(G)≤ max{lcub}lceil Delta/2 rceil + 2, r + 2{rcub}. (iii) If Delta ≥ 7 and Mad(G) \u3c 5/2, then chi ℓL,r(G)≤ max{lcub}lcei Delta/2 rceil + 3, r + 3{rcub}. (vi) If G is a K 4-minor free graph, then chiℓL,r( G) ≤ max{lcub}r,lceilDelta/2\rceil{rcub} + lceilDelta/2rceil + 2. (vii) Every planar graph G with maximum degree Delta has chiℓL,r(G) ≤ Delta + 7.;2. Results in digraph connectivity. For a graph G, let kappa( G), kappa\u27(G), delta(G) and tau( G) denote the connectivity, the edge-connectivity, the minimum degree and the number of edge-disjoint spanning trees of G, respectively. Let f(G) denote kappa(G), kappa\u27( G), or Delta(G), and define f¯( G) = max{lcub}f(H): H is a subgraph of G{rcub}. An edge cut X of a graph G is restricted if X does not contain all edges incident with a vertex in G. The restricted edge-connectivity of G, denoted by lambda2(G), is the minimum size of a restricted edge-cut of G. We define lambda 2(G) = max{lcub}lambda2(H): H ⊂ G{rcub}.;For a digraph D, let kappa;(D), lambda( D), delta--(D), and delta +(D) denote the strong connectivity, arc-strong connectivity, minimum in-degree, and out-degree of D, respectively. For each f ∈ {lcub}kappa,lambda, delta--, +{rcub}, define f¯(D) = max{lcub} f(H): H is a subdigraph of D{rcub}.;Catlin et al. in [Discrete Math., 309 (2009), 1033-1040] proved a characterization of kappa\u27(G) in terms of tau(G). We proved a digraph version of this characterization by showing that a digraph D is k-arc-strong if and only if for any vertex v in D, D has k-arc-disjoint spanning arborescences rooted at v. We also prove a characterization of uniformly dense digraphs analogous to the characterization of uniformly dense undirected graphs in [Discrete Applied Math., 40 (1992) 285--302]. (Abstract shortened by ProQuest.)
    corecore