11 research outputs found

    Separation dimension of bounded degree graphs

    Full text link
    The 'separation dimension' of a graph GG is the smallest natural number kk for which the vertices of GG can be embedded in Rk\mathbb{R}^k such that any pair of disjoint edges in GG can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F\mathcal{F} of total orders of the vertices of GG such that for any two disjoint edges of GG, there exists at least one total order in F\mathcal{F} in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on nn vertices is Θ(logn)\Theta(\log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree dd is at most 29logdd2^{9log^{\star} d} d. We also demonstrate that the above bound is nearly tight by showing that, for every dd, almost all dd-regular graphs have separation dimension at least d/2\lceil d/2\rceil.Comment: One result proved in this paper is also present in arXiv:1212.675

    The linear arboricity of planar graphs with no short cycles

    Get PDF
    AbstractThe linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that ⌈Δ(G)2⌉≤la(G)≤⌈Δ(G)+12⌉ for any simple graph G. In the paper, it is proved that if G is a planar graph with Δ≥7 and without i-cycles for some i∈{4,5}, then la(G)=⌈Δ(G)2⌉

    Edge-partitioning regular graphs for ring traffic grooming with a priori placement od the ADMs

    Get PDF
    We study the following graph partitioning problem: Given two positive integers C and Δ, find the least integer M(C,Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C,Δ) subgraphs. This problem is naturally motivated by traffic grooming, which is a major issue in optical networks. Namely, we introduce a new pseudodynamic model of traffic grooming in unidirectional rings, in which the aim is to design a network able to support any request graph with a given bounded degree. We show that optimizing the equipment cost under this model is essentially equivalent to determining the parameter M(C, Δ). We establish the value of M(C, Δ) for almost all values of C and Δ, leaving open only the case where Δ ≥ 5 is odd, Δ (mod 2C) is between 3 and C − 1, C ≥ 4, and the request graph does not contain a perfect matching. For these open cases, we provide upper bounds that differ from the optimal value by at most one.Peer ReviewedPostprint (published version

    Short tours through large linear forests

    Get PDF
    Abstract. A tour in a graph is a connected walk that visits every vertex at least once, and returns to the starting vertex. Vishno

    Three ways to cover a graph

    Full text link
    We consider the problem of covering an input graph HH with graphs from a fixed covering class GG. The classical covering number of HH with respect to GG is the minimum number of graphs from GG needed to cover the edges of HH without covering non-edges of HH. We introduce a unifying notion of three covering parameters with respect to GG, two of which are novel concepts only considered in special cases before: the local and the folded covering number. Each parameter measures "how far'' HH is from GG in a different way. Whereas the folded covering number has been investigated thoroughly for some covering classes, e.g., interval graphs and planar graphs, the local covering number has received little attention. We provide new bounds on each covering number with respect to the following covering classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical graph parameters that result this way are interval number, track number, linear arboricity, star arboricity, and caterpillar arboricity. As input graphs we consider graphs of bounded degeneracy, bounded degree, bounded tree-width or bounded simple tree-width, as well as outerplanar, planar bipartite, and planar graphs. For several pairs of an input class and a covering class we determine exactly the maximum ordinary, local, and folded covering number of an input graph with respect to that covering class.Comment: 20 pages, 4 figure
    corecore