The linear arboricity of planar graphs with no short cycles ${ }^{\text {² }}$

Jian-Liang Wu*, Jian-Feng Hou, Gui-Zhen Liu
School of Mathematics, Shandong University, Jinan, 250100, PR China

Received 15 December 2006; received in revised form 28 April 2007; accepted 3 May 2007

Communicated by D.-Z. Du

Abstract

The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that $\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ for any simple graph G. In the paper, it is proved that if G is a planar graph with $\Delta \geq 7$ and without i-cycles for some $i \in\{4,5\}$, then $l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$. © 2007 Elsevier B.V. All rights reserved.

Keywords: Planar graph; Linear arboricity; Cycle

1. Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [6]. For a real number $x,\lceil x\rceil$ is the least integer not less than x and $\lfloor x\rfloor$ is the largest integer not larger than x. Given a graph $G=(V, E)$. Let $N(v)=\{u \mid u v \in E(G)\}$ and $N_{k}(v)=\{u \mid u \in N(v)$ and $d(u)=k\}$, where $d(v)=|N(v)|$ is the degree of the vertex v. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum (vertex) degree and the minimum (vertex) degree, respectively. A $k-, k^{+}$- or k^{-}-vertex is a vertex of degree k, at least k, or at most k, respectively.

A linear forest is a graph in which each component is a path. A map φ from $E(G)$ to $\{1,2, \ldots, t\}$ is called a t-linear coloring if $\left(V(G), \varphi^{-1}(\alpha)\right)$ is a linear forest for $1 \leq \alpha \leq t$. The linear arboricity la (G) of a graph G defined by Harary [9] is the minimum number t for which G has a t-linear coloring. Given a t-linear coloring and a vertex v of G, let $C_{\varphi}^{i}(v)=\{j \mid$ the color j appears i times at $v\}$, where $i=0,1,2$. Then $\left|C_{\varphi}^{0}(v)\right|+\left|C_{\varphi}^{1}(v)\right|+\left|C_{\varphi}^{2}(v)\right|=t$.

Akiyama, Exoo and Harary [2] conjectured that $\operatorname{la}(G)=\lceil(\Delta(G)+1) / 2\rceil$ for any regular graph G. It is obvious that $l a(G) \geq\lceil\Delta(G) / 2\rceil$ for any graph G and $l a(G) \geq\lceil(\Delta(G)+1) / 2\rceil$ for every regular graph G. So the conjecture is equivalent to the following conjecture.
Conjecture A. For any graph $G,\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.
The linear arboricity has been determined for complete bipartite graphs [2], Halin graphs [11], series-parallel graphs [13], complete regular multipartite graphs [14], and regular graphs with $\Delta=3,4[2,3], 5,6,8$ [7], 10 [8].

[^0]Péroche [10] proved that the determination of the linear arboricity of a graph G is an $\mathbf{N P}$-hard problem, even when $\Delta=4$. Alon, Teague and Wormald [5] proved that there is an absolute constant $c>0$ such that for every d regular graph $G, l a(G) \leq \frac{d}{2}+c d^{2 / 3}(\log d)^{1 / 3}$ (A slightly weaker result has been proved in [4, p. 64]). A $\mathrm{I} t-\mathrm{djafer}$ [1] obtained some results for graphs with multiple edges. Wu, Liu and Wu [14] obtained an upper bound for the linear arboricity of composition of two graphs and proved that for a nonempty regular graph G and a null graph S_{n}, $l a\left(G\left[S_{n}\right]\right)=\left\lceil\left(\Delta\left(G\left[S_{n}\right]\right)+1\right) / 2\right\rceil$ if $\Delta(G)$ is even and G has a Hamiltonian factorization orthogonal to a linear forest, or $\Delta(G)$ is odd and the graph by removing a 1 -factor F from G has a Hamiltonian factorization orthogonal to a matching M such that $M \cup F$ is a linear forest.

Conjecture A has already been proved to be true for all planar graphs, see [12] and [15]. Wu also proved in [12] that for a planar graph G with maximum degree $\Delta, l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$ if $\Delta \geq 13$. In the same paper, he proved that if G is a planar graph with $\Delta \geq 7$ and without 3-cycles, then $l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Here we obtain that the result is also true for a planar graph with $\Delta \geq 7$ and without i-cycles for some $i \in\{4,5\}$.

2. Main results and their proofs

In the section, all graphs are planar graphs which have been embedded in the plane. For a planar graph G, the degree of a face f, denote by $d(f)$, is the number of edges incident with it, where each cut-edge is counted twice. A $k-, k^{+}$- or k^{-}-face is face of degree k, at least k or at most k, respectively. First, let's prove some lemmas.

Theorem 1. Suppose that d is an integer with $d \geq 4$ and G is a planar graph with maximum degree $\Delta \leq 2 d$ and without i-cycles for some $i \in\{4,5\}$. Then G has a d-linear coloring.

Proof. Let $G=(V, E)$ be a minimal counterexample to the theorem. First, we prove some lemmas for G.
Lemma 2. For any edge $u v \in E(G), d_{G}(u)+d_{G}(v) \geq 2 d+2$.
Proof. Suppose that G has an edge $u v$ with $d_{G}(u)+d_{G}(v) \leq 2 d+1$. Then $G^{\prime}=G-u v$ has a d-linear coloring φ by the minimality of G. Let $S=C_{\varphi}^{2}(u) \cup C_{\varphi}^{2}(v) \cup\left(C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)\right)$. Since $d_{G^{\prime}}(u)+d_{G^{\prime}}(v)=d(u)+d(v)-2 \leq 2 d-1$, $|S|<d$. Let $\varphi(u v) \in\{1,2, \ldots, d\} \backslash S$. Thus φ is extended to a d-linear coloring of G, a contradiction. Hence the lemma holds.

By Lemma 2, we have
(1) $\delta(G) \geq 2$, and
(2) any two 4^{-}-vertices are not adjacent, and
(3) any 3 -face is incident with three 5^{+}-vertices, or at least two 6^{+}-vertices.

Lemma 3. G has no even cycle $v_{0} v_{1} \cdots v_{2 n-1} v_{0}$ such that $d\left(v_{1}\right)=d\left(v_{3}\right)=\cdots=d\left(v_{2 n-1}\right)=2$ and $\max _{0 \leq i<n}\left|N_{2}\left(v_{2 i}\right)\right| \geq 3$.

Proof. Suppose it does contain such an even cycle. Without loss of generality, let $N_{2}\left(v_{0}\right) \geq 3$. This implies that v_{0} is adjacent to at least three 2 -vertices. Let $u \in N_{2}\left(v_{0}\right) \backslash\left\{v_{2 n-1}, v_{1}\right\}$ and $v \in N(u) \backslash\left\{v_{0}\right\}$. By the induction hypothesis, $G^{*}=G-\left\{v_{1}, \ldots, v_{2 n-1}\right\}-u v_{0}$ has a d-linear coloring φ. Now we construct directly a d-linear coloring σ of G as follows.

First of all, if $C_{\varphi}^{0}\left(v_{0}\right) \neq \emptyset$, let $\sigma\left(u v_{0}\right)=\sigma\left(v_{0} v_{1}\right) \in C_{\varphi}^{0}\left(v_{0}\right)$. Otherwise, $\left|C_{\varphi}^{1}\left(v_{0}\right)\right| \geq 3$, let $\sigma\left(u v_{0}\right) \in C_{\varphi}^{1}\left(v_{0}\right) \backslash \varphi(u v)$ and $\sigma\left(v_{1} v_{0}\right) \in C_{\varphi}^{1}\left(v_{0}\right) \backslash \sigma\left(u v_{0}\right)$. After that, let $\sigma\left(v_{0} v_{2 n-1}\right) \in\left(C_{\varphi}^{1}\left(v_{0}\right) \cup C_{\varphi}^{0}\left(v_{0}\right)\right) \backslash\left\{\sigma\left(u v_{0}\right), \sigma\left(v_{0} v_{1}\right)\right\}$. So $\sigma\left(v_{0} v_{1}\right) \neq$ $\sigma\left(v_{0} v_{2 n-1}\right)$. Furthermore, for $i=1,2, \ldots, n-1$, if $\sigma\left(v_{0} v_{2 n-1}\right) \in C_{\varphi}^{1}\left(v_{2 i}\right)$, let $\sigma\left(v_{2 i-1} v_{2 i}\right)=\sigma\left(v_{0} v_{2 n-1}\right)$. Otherwise, let $\left.\sigma\left(v_{2 i-1} v_{2 i}\right) \in\left(C_{\varphi}^{1}\left(v_{2 i}\right) \backslash \sigma\left(v_{2 i-2} v_{2 i-1}\right)\right) \cup C_{\varphi}^{0}\left(v_{2 i}\right) . \sigma\left(v_{2 i} v_{2 i+1}\right) \in C_{\varphi}^{1}\left(v_{2 i}\right) \backslash \sigma\left(v_{2 i-1} v_{2 i}\right)\right) \cup C_{\varphi}^{0}\left(v_{2 i}\right)$. Finally, the uncolored edges of G are colored the same colors as in φ of G^{*}. This contradiction proves the lemma.

Let G_{2} be the subgraph induced by edges incident with 2-vertices. Since G does not contain two adjacent 2-vertices, G_{2} does not contain any odd cycle. So it follows from Lemma 3 that any component of G_{2} is either an even cycle or a tree. So it is easy to find a matching M in G saturating all 2-vertices. Thus if $u v \in M$ and $d(u)=2, v$ is called a 2 -master of u. Note that every 2 -vertex has a 2-master and each vertex of degree at least d can be the 2-master of at most one 2-vertex.

Let F be the set of faces of G. By Euler's formula $|V|-|E|+|F|=2$, we have

$$
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-6(|V|-|E|+|F|)=-12<0
$$

We define ch to be the initial charge. Let $\operatorname{ch}(x)=2 d(x)-6$ for each $x \in V(G)$ and $\operatorname{ch}(x)=d(x)-6$ for each $x \in F(G)$. In the following, we will reassign a new charge denoted by $c h^{\prime}(x)$ to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} c^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} \operatorname{ch}(x)=-12 . \tag{*}
\end{equation*}
$$

We'll show that $c h^{\prime}(x) \geq 0$ for each $x \in V(G) \cup F(G)$, a contradiction to $(*)$, completing the proof.
First, we assume that G contains no 4 -cycles. Then the discharging rules are defined as follows.
R1-1. Each 2-vertex receives 2 from its 2-master.
R1-2. Each 3-face f receives $\frac{3}{2}$ from each of its incident 5^{+}-vertex.
R1-3. Each 5-face f receives $\frac{1}{3}$ from each of its incident 5^{+}-vertex.
Let f be a face of G. Clearly, $c^{\prime}(f)=c h(f)=d(f)-6 \geq 0$ if $d(f) \geq 6$. Suppose $d(f)=3$. By (3), $c h^{\prime}(f) \geq \operatorname{ch}(f)+2 \times \frac{3}{2}=0$. If $d(f)=5$, then f is incident with at least three 5^{+}-vertices and it follows that $c h^{\prime}(f) \geq \operatorname{ch}(f)+3 \times \frac{1}{3}=0$.

Let v be a vertex of G. Since G contains no 4-cycle, v is incident with at most $\left\lfloor\frac{d(v)}{2}\right\rfloor 3$-faces. If $d(v)=2$, then $c h^{\prime}(v)=c h(v)+2=0$ by R1-1. If $d(v)=3$ or 4 , then $c h^{\prime}(v)=c h(v) \geq 0$. If $d(v)=5$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-2 \times \frac{3}{2}-3 \times \frac{1}{3}=0$. If $d(v)=6$ or 7 , then $c h^{\prime}(v) \geq \operatorname{ch}(v)-3 \times \frac{3}{2}-4 \times \frac{1}{3}>0$. If $d(v) \geq 8$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-\left\lfloor\frac{d(v)}{2}\right\rfloor \times \frac{3}{2}-\left(d(v)-\left\lfloor\frac{d(v)}{2}\right\rfloor\right) \times \frac{1}{3}>0$. Hence we complete the proof of the case that G contains no 4-cycles.

Now assume that G contains no 5-cycles. Let's prove the following lemma.
Lemma 4. Suppose that a planar graph G contains no 5 -cycles and $\delta(G) \geq 2$. Then any of the following results holds.
(a) Any vertex v is incident with at most $\left\lfloor\frac{2 d(v)}{3}\right\rfloor 3$-faces.
(b) A 3-face is incident with a 4-face if and only if the two faces are incident with a common 2-vertex.
(c) If a face is adjacent to two nonadjacent 3-faces then the face must be 6^{+}-face.
(d) If a $d(\geq 7)$-vertex v is incident with a 3-face, then v is incident with at most $d-24^{-}$-faces.

Proof. Since if there are three 3-faces f_{1}, f_{2}, f_{3} such that they are incident with a common vertex and f_{2} is incident with f_{1} and f_{3}, then vertices incident with them form a 5-cycle, so (a) holds. If a 3-face is incident with a 4-face, then all three vertices incident with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident with these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c), suppose that a face f is adjacent to two nonadjacent 3-faces. It is obvious that f is not a 3-face for otherwise a 5-cycle is appeared. By (b), f is not a 4-face. So f must be a 6^{+}-face and (c) holds.

For (d), suppose that a $d(\geq 7)$-vertex v is incident with a 3-face. If v is a cut vertex, then (d) is obvious. So assume that v is not a cut vertex. Let $f_{1}, f_{2}, \ldots, f_{d}$ be faces incident with v clockwise, and $v_{1}, v_{2}, \ldots, v_{d}$ be vertices incident with v clockwise, and v_{i} be incident with $f_{i}, i=1,2, \ldots, d$, and v_{d} be incident with f_{d} and f_{1}. Assume that f_{1} be the 3-face. Then by (a), f_{1} or f_{d} is not a 3-face. Without loss of generality, assume that f_{d} is not a 3-face.

Suppose that f_{d} is a 4-face. Then $d\left(v_{d}\right)=2$ by (b). Thus f_{2} must be a 3 -face or a 6^{+}-face. If f_{2} is a 3 -face, then f_{3} or f_{4} must be a 6^{+}-face. So one of f_{2}, f_{3}, f_{4} is a 6^{+}-face. Similarly, if f_{d-1} is a 4 -face, then $d\left(v_{d-1}\right)=2$. So one of f_{d}, f_{d-1}, f_{d-2} is a 6^{+}-face.

Suppose that f_{d} is a 6^{+}-face. If f_{2} is a 3 -face, then f_{3} must be a 4 -face or 6^{+}-face. If f_{3} is a 4-face, then f_{4} or f_{5} must be a 6^{+}-face. So one of the faces in $\left\{f_{2}, f_{3}, f_{4}, f_{5}\right\}$ is a 6^{+}-face. Thus we prove (d).

The discharging rules are defined as follows.
R2-1. Each 2-vertex receives 2 from its 2-master.
R2-2. For a 3-face f and its incident vertex v, f receives $\frac{1}{2}$ from v if $d(v)=4,1$ if $d(v)=5, \frac{5}{4}$ if $d(v)=6$ and $\frac{3}{2}$ if $d(v) \geq 7$.

R2-3. For a 4-face f and its incident vertex v, f receives $\frac{1}{2}$ from v if $4 \leq d(v) \leq 6,1$ if $d(v) \geq 7$.
Let f be a face of G. Clearly, $c h^{\prime}(f)=c h(f)=d(f)-6 \geq 0$ if $d(f) \geq 6$. Suppose $d(f)=3$. If f is incident with a 3^{-}-vertex, then other incident vertices of f are 7^{+}vertices and it follows that $c h^{\prime}(f) \geq c h(f)+2 \times \frac{3}{2}=0$. If f is incident with a 4 -vertex, then $c h^{\prime}(f) \geq c h(f)+\frac{1}{2}+2 \times \frac{5}{4}=0$. If all vertices incident with f are 5^{+}-vertex, then $c h^{\prime}(f) \geq \operatorname{ch}(f)+3 \times 1=0$. Suppose $d(f)=4$. If f is incident with a vertex of degree at most 3 , then f is incident with at least two 7^{+}-vertices and it follows that $c h^{\prime}(f) \geq c h(f)+2 \times 1=0$. Otherwise $c h^{\prime}(f) \geq c h(f)+4 \times \frac{1}{2}=0$.

Let v be a vertex of G. If $d(v)=2$, then $c h^{\prime}(v)=c h(v)+2=0$ by R2-1. If $d(v)=3$, then $c h^{\prime}(v)=c h(v)=0$. If $d(v)=4$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-4 \times \frac{1}{2}=0$. If $d(v)=5$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-\max \left\{3 \times 1+2 \times \frac{1}{2}, 2 \times\right.$ $\left.1+3 \times \frac{1}{2}, 1+4 \times \frac{1}{2}\right\}=0$. If $d(v)=6$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-4 \times \frac{5}{4}-2 \times \frac{1}{2}=0$. Suppose $d(v)=7$. Then it is not incident with a 2 -vertex and it is incident with at most four 3 -faces. At the same time, if a 3 -face f is incident with v, then there is at least one face of degree at least 6 which is incident with v and is adjacent to f. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-\max \left\{4 \times \frac{3}{2}+2 \times \frac{1}{2}, 7 \times 1\right\}=0$. Suppose $d(v)=8$. If v is not incident with a 3-face, then $c^{\prime}(v)=\operatorname{ch}(v)-2-8 \times 1=0$. So assume that v is incident with at least one 3 -face. By (d), v is incident with at most two $d(v)-2$ faces of degree at most 4 . If v is incident with five 3 -faces, then all 4^{+}-faces incident with v must be 6^{+}-faces by (b) and it follows that $c h^{\prime}(v)=\operatorname{ch}(v)-2-5 \times \frac{3}{2}>0$; otherwise $c h^{\prime}(v)=\operatorname{ch}(v)-2-4 \times \frac{3}{2}-2 \times 1=0$. Suppose $d(v) \geq 9$. Similarly, we have $c h^{\prime}(v) \geq c h(v)-2-\left\lfloor\frac{2 d(v)}{3}\right\rfloor \times \frac{3}{2}-\left(d(v)-2-\left\lfloor\frac{2 d(v)}{3}\right\rfloor\right) \times \frac{1}{3}>0$. Hence we complete the proof of the case that G contains no 5 -cycles.
Corollary 5. If G is a planar graph with $\Delta \geq 7$ and without i-cycles for some $i \in\{3,4,5\}$, then la $(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

References

[1] H. AÏt-djafer, Linear arboricity for graphs with multiple edges, J. Graph Theory 11 (1987) 135-140.
[2] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) $405-417$.
[3] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72.
[4] N. Alon, J.H. Spencer, The Probablilistic Method, Wiley, New York, 1992.
[5] N. Alon, V.J. Teague, N.C. Wormald, Linear arboricity and linear k-arboricity of regular graphs, Graphs Combin. 17 (2001) 11-16.
[6] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[7] H. Enomoto, B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309-324.
[8] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca 36 (1986) 225-228.
[9] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175 (1970) 198-205.
[10] B. Péroche, Complexity of the linear arboricity of a graph, Oper. RAIRO Res. 16 (1982) 125-129 (in French).
[11] J.L. Wu, Some path decompositions of Halin graphs, J. Shandong Mining Institute 17 (1998) 92-96 (in Chinese).
[12] J.L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129-134.
[13] J.L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000) 367-372.
[14] J.L. Wu, The linear arboricity of composition of two graphs, J. Syst. Sci. Complex. 15 (4) (2002) 372-375.
[15] J.L. Wu, Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven are four, J. Graph Theory (submitted for publication).

[^0]: ${ }^{*}$ This work was partially supported by National Natural Science Foundation of China (10471078, 10631070, 60673059).

 * Corresponding author. Tel.: +86 53187906969.

 E-mail address: jlwu@math.sdu.edu.cn (J.-L. Wu).

