

Available online at www.sciencedirect.com



Theoretical Computer Science

Theoretical Computer Science 381 (2007) 230-233

www.elsevier.com/locate/tcs

# The linear arboricity of planar graphs with no short cycles<sup>☆</sup>

Jian-Liang Wu\*, Jian-Feng Hou, Gui-Zhen Liu

School of Mathematics, Shandong University, Jinan, 250100, PR China

Received 15 December 2006; received in revised form 28 April 2007; accepted 3 May 2007

Communicated by D.-Z. Du

#### Abstract

The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that  $\lceil \frac{\Delta(G)}{2} \rceil \le la(G) \le \lceil \frac{\Delta(G)+1}{2} \rceil$  for any simple graph G. In the paper, it is proved that if G is a planar graph with  $\Delta \ge 7$  and without *i*-cycles for some  $i \in \{4, 5\}$ , then  $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ . (© 2007 Elsevier B.V. All rights reserved.

Keywords: Planar graph; Linear arboricity; Cycle

### 1. Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [6]. For a real number x,  $\lceil x \rceil$  is the least integer not less than x and  $\lfloor x \rfloor$  is the largest integer not larger than x. Given a graph G = (V, E). Let  $N(v) = \{u \mid uv \in E(G)\}$  and  $N_k(v) = \{u \mid u \in N(v) \text{ and } d(u) = k\}$ , where d(v) = |N(v)| is the *degree* of the vertex v. We use  $\Delta(G)$  and  $\delta(G)$  to denote the maximum (vertex) degree and the minimum (vertex) degree, respectively. A k-, k<sup>+</sup>- or k<sup>-</sup>-vertex is a vertex of degree k, at least k, or at most k, respectively.

A *linear forest* is a graph in which each component is a path. A map  $\varphi$  from E(G) to  $\{1, 2, \dots, t\}$  is called a *t-linear coloring* if  $(V(G), \varphi^{-1}(\alpha))$  is a linear forest for  $1 \le \alpha \le t$ . The *linear arboricity* la(G) of a graph G defined by Harary [9] is the minimum number t for which G has a t-linear coloring. Given a t-linear coloring and a vertex v of G, let  $C_{\varphi}^{i}(v) = \{j \mid \text{the color } j \text{ appears } i \text{ times at } v\}$ , where i = 0, 1, 2. Then  $|C_{\varphi}^{0}(v)| + |C_{\varphi}^{1}(v)| + |C_{\varphi}^{2}(v)| = t$ . Akiyama, Exoo and Harary [2] conjectured that  $la(G) = \lceil (\Delta(G) + 1)/2 \rceil$  for any regular graph G. It is obvious

Akiyama, Exoo and Harary [2] conjectured that  $la(G) = \lceil (\Delta(G) + 1)/2 \rceil$  for any regular graph G. It is obvious that  $la(G) \ge \lceil \Delta(G)/2 \rceil$  for any graph G and  $la(G) \ge \lceil (\Delta(G) + 1)/2 \rceil$  for every regular graph G. So the conjecture is equivalent to the following conjecture.

**Conjecture A.** For any graph G,  $\lceil \frac{\Delta(G)}{2} \rceil \leq la(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$ .

The linear arboricity has been determined for complete bipartite graphs [2], Halin graphs [11], series-parallel graphs [13], complete regular multipartite graphs [14], and regular graphs with  $\Delta = 3, 4$  [2,3], 5, 6, 8 [7], 10 [8].

\* Corresponding author. Tel.: +86 531 87906969.

<sup>🌣</sup> This work was partially supported by National Natural Science Foundation of China (10471078, 10631070, 60673059).

E-mail address: jlwu@math.sdu.edu.cn (J.-L. Wu).

<sup>0304-3975/\$ -</sup> see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2007.05.003

Péroche [10] proved that the determination of the linear arboricity of a graph *G* is an **NP**-hard problem, even when  $\Delta = 4$ . Alon, Teague and Wormald [5] proved that there is an absolute constant c > 0 such that for every *d*-regular graph *G*,  $la(G) \leq \frac{d}{2} + cd^{2/3}(\log d)^{1/3}$  (A slightly weaker result has been proved in [4, p. 64]). Alt-djafer [1] obtained some results for graphs with multiple edges. Wu, Liu and Wu [14] obtained an upper bound for the linear arboricity of composition of two graphs and proved that for a nonempty regular graph *G* and a null graph  $S_n$ ,  $la(G[S_n]) = \lceil (\Delta(G[S_n]) + 1)/2 \rceil$  if  $\Delta(G)$  is even and *G* has a Hamiltonian factorization orthogonal to a linear forest, or  $\Delta(G)$  is odd and the graph by removing a 1-factor *F* from *G* has a Hamiltonian factorization orthogonal to a matching *M* such that  $M \cup F$  is a linear forest.

Conjecture A has already been proved to be true for all planar graphs, see [12] and [15]. Wu also proved in [12] that for a planar graph G with maximum degree  $\Delta$ ,  $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$  if  $\Delta \ge 13$ . In the same paper, he proved that if G is a planar graph with  $\Delta \ge 7$  and without 3-cycles, then  $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ . Here we obtain that the result is also true for a planar graph with  $\Delta \ge 7$  and without *i*-cycles for some  $i \in \{4, 5\}$ .

## 2. Main results and their proofs

In the section, all graphs are planar graphs which have been embedded in the plane. For a planar graph G, the degree of a face f, denote by d(f), is the number of edges incident with it, where each cut-edge is counted twice. A k-,  $k^+$ - or  $k^-$ -face is face of degree k, at least k or at most k, respectively. First, let's prove some lemmas.

**Theorem 1.** Suppose that d is an integer with  $d \ge 4$  and G is a planar graph with maximum degree  $\Delta \le 2d$  and without *i*-cycles for some  $i \in \{4, 5\}$ . Then G has a d-linear coloring.

**Proof.** Let G = (V, E) be a minimal counterexample to the theorem. First, we prove some lemmas for G.

**Lemma 2.** For any edge  $uv \in E(G)$ ,  $d_G(u) + d_G(v) \ge 2d + 2$ .

**Proof.** Suppose that *G* has an edge uv with  $d_G(u) + d_G(v) \le 2d + 1$ . Then G' = G - uv has a *d*-linear coloring  $\varphi$  by the minimality of *G*. Let  $S = C_{\varphi}^2(u) \cup C_{\varphi}^2(v) \cup (C_{\varphi}^1(u) \cap C_{\varphi}^1(v))$ . Since  $d_{G'}(u) + d_{G'}(v) = d(u) + d(v) - 2 \le 2d - 1$ , |S| < d. Let  $\varphi(uv) \in \{1, 2, ..., d\} \setminus S$ . Thus  $\varphi$  is extended to a *d*-linear coloring of *G*, a contradiction. Hence the lemma holds.  $\Box$ 

By Lemma 2, we have

(1)  $\delta(G) \ge 2$ , and

(2) any two 4<sup>-</sup>-vertices are not adjacent, and

(3) any 3-face is incident with three  $5^+$ -vertices, or at least two  $6^+$ -vertices.

**Lemma 3.** G has no even cycle  $v_0v_1 \cdots v_{2n-1}v_0$  such that  $d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 2$  and  $\max_{0 \le i < n} |N_2(v_{2i})| \ge 3$ .

**Proof.** Suppose it does contain such an even cycle. Without loss of generality, let  $N_2(v_0) \ge 3$ . This implies that  $v_0$  is adjacent to at least three 2-vertices. Let  $u \in N_2(v_0) \setminus \{v_{2n-1}, v_1\}$  and  $v \in N(u) \setminus \{v_0\}$ . By the induction hypothesis,  $G^* = G - \{v_1, \ldots, v_{2n-1}\} - uv_0$  has a *d*-linear coloring  $\varphi$ . Now we construct directly a *d*-linear coloring  $\sigma$  of *G* as follows.

First of all, if  $C_{\varphi}^{0}(v_{0}) \neq \emptyset$ , let  $\sigma(uv_{0}) = \sigma(v_{0}v_{1}) \in C_{\varphi}^{0}(v_{0})$ . Otherwise,  $|C_{\varphi}^{1}(v_{0})| \geq 3$ , let  $\sigma(uv_{0}) \in C_{\varphi}^{1}(v_{0}) \setminus \varphi(uv)$ and  $\sigma(v_{1}v_{0}) \in C_{\varphi}^{1}(v_{0}) \setminus \sigma(uv_{0})$ . After that, let  $\sigma(v_{0}v_{2n-1}) \in (C_{\varphi}^{1}(v_{0}) \cup C_{\varphi}^{0}(v_{0})) \setminus \{\sigma(uv_{0}), \sigma(v_{0}v_{1})\}$ . So  $\sigma(v_{0}v_{1}) \neq \sigma(v_{0}v_{2n-1})$ . Furthermore, for  $i = 1, 2, \ldots, n-1$ , if  $\sigma(v_{0}v_{2n-1}) \in C_{\varphi}^{1}(v_{2i})$ , let  $\sigma(v_{2i-1}v_{2i}) = \sigma(v_{0}v_{2n-1})$ . Otherwise, let  $\sigma(v_{2i-1}v_{2i}) \in (C_{\varphi}^{1}(v_{2i}) \setminus \sigma(v_{2i-2}v_{2i-1})) \cup C_{\varphi}^{0}(v_{2i})$ .  $\sigma(v_{2i}v_{2i+1}) \in C_{\varphi}^{1}(v_{2i}) \setminus \sigma(v_{2i-1}v_{2i}) \cup C_{\varphi}^{0}(v_{2i})$ . Finally, the uncolored edges of G are colored the same colors as in  $\varphi$  of  $G^{*}$ . This contradiction proves the lemma.  $\Box$ 

Let  $G_2$  be the subgraph induced by edges incident with 2-vertices. Since G does not contain two adjacent 2-vertices,  $G_2$  does not contain any odd cycle. So it follows from Lemma 3 that any component of  $G_2$  is either an even cycle or a tree. So it is easy to find a matching M in G saturating all 2-vertices. Thus if  $uv \in M$  and d(u) = 2, v is called a 2-master of u. Note that every 2-vertex has a 2-master and each vertex of degree at least d can be the 2-master of at most one 2-vertex. Let F be the set of faces of G. By Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0.$$

We define *ch* to be the *initial charge*. Let ch(x) = 2d(x) - 6 for each  $x \in V(G)$  and ch(x) = d(x) - 6 for each  $x \in F(G)$ . In the following, we will reassign a new charge denoted by ch'(x) to each  $x \in V(G) \cup F(G)$  according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -12.$$
(\*)

We'll show that  $ch'(x) \ge 0$  for each  $x \in V(G) \cup F(G)$ , a contradiction to (\*), completing the proof.

First, we assume that G contains no 4-cycles. Then the discharging rules are defined as follows.

R1-1. Each 2-vertex receives 2 from its 2-master.

**R1-2**. Each 3-face f receives  $\frac{3}{2}$  from each of its incident 5<sup>+</sup>-vertex.

**R1-3**. Each 5-face f receives  $\frac{1}{3}$  from each of its incident 5<sup>+</sup>-vertex.

Let f be a face of G. Clearly,  $ch'(f) = ch(f) = d(f) - 6 \ge 0$  if  $d(f) \ge 6$ . Suppose d(f) = 3. By (3),  $ch'(f) \ge ch(f) + 2 \times \frac{3}{2} = 0$ . If d(f) = 5, then f is incident with at least three 5<sup>+</sup>-vertices and it follows that  $ch'(f) \ge ch(f) + 3 \times \frac{1}{3} = 0$ .

Let v be a vertex of G. Since G contains no 4-cycle, v is incident with at most  $\lfloor \frac{d(v)}{2} \rfloor$  3-faces. If d(v) = 2, then ch'(v) = ch(v) + 2 = 0 by R1-1. If d(v) = 3 or 4, then  $ch'(v) = ch(v) \ge 0$ . If d(v) = 5, then  $ch'(v) \ge ch(v) - 2 \times \frac{3}{2} - 3 \times \frac{1}{3} = 0$ . If d(v) = 6 or 7, then  $ch'(v) \ge ch(v) - 3 \times \frac{3}{2} - 4 \times \frac{1}{3} > 0$ . If  $d(v) \ge 8$ , then  $ch'(v) \ge ch(v) - \lfloor \frac{d(v)}{2} \rfloor \times \frac{3}{2} - (d(v) - \lfloor \frac{d(v)}{2} \rfloor) \times \frac{1}{3} > 0$ . Hence we complete the proof of the case that G contains no 4-cycles.

Now assume that G contains no 5-cycles. Let's prove the following lemma.

**Lemma 4.** Suppose that a planar graph G contains no 5-cycles and  $\delta(G) \ge 2$ . Then any of the following results holds.

(a) Any vertex v is incident with at most  $\lfloor \frac{2d(v)}{3} \rfloor$  3-faces.

(b) A 3-face is incident with a 4-face if and only if the two faces are incident with a common 2-vertex.

(c) If a face is adjacent to two nonadjacent 3-faces then the face must be  $6^+$ -face.

(d) If a  $d \ge 7$ -vertex v is incident with a 3-face, then v is incident with at most  $d - 24^{-}$ -faces.

**Proof.** Since if there are three 3-faces  $f_1$ ,  $f_2$ ,  $f_3$  such that they are incident with a common vertex and  $f_2$  is incident with  $f_1$  and  $f_3$ , then vertices incident with them form a 5-cycle, so (a) holds. If a 3-face is incident with a 4-face, then all three vertices incident with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident with these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c), suppose that a face f is adjacent to two nonadjacent 3-faces. It is obvious that f is not a 3-face for otherwise a 5-cycle is appeared. By (b), f is not a 4-face. So f must be a 6<sup>+</sup>-face and (c) holds.

For (d), suppose that a  $d \ge 7$ -vertex v is incident with a 3-face. If v is a cut vertex, then (d) is obvious. So assume that v is not a cut vertex. Let  $f_1, f_2, \ldots, f_d$  be faces incident with v clockwise, and  $v_1, v_2, \ldots, v_d$  be vertices incident with v clockwise, and  $v_i$  be incident with  $f_i, i = 1, 2, \ldots, d$ , and  $v_d$  be incident with  $f_d$  and  $f_1$ . Assume that  $f_1$  be the 3-face. Then by (a),  $f_1$  or  $f_d$  is not a 3-face. Without loss of generality, assume that  $f_d$  is not a 3-face.

Suppose that  $f_d$  is a 4-face. Then  $d(v_d) = 2$  by (b). Thus  $f_2$  must be a 3-face or a 6<sup>+</sup>-face. If  $f_2$  is a 3-face, then  $f_3$  or  $f_4$  must be a 6<sup>+</sup>-face. So one of  $f_2$ ,  $f_3$ ,  $f_4$  is a 6<sup>+</sup>-face. Similarly, if  $f_{d-1}$  is a 4-face, then  $d(v_{d-1}) = 2$ . So one of  $f_d$ ,  $f_{d-1}$ ,  $f_{d-2}$  is a 6<sup>+</sup>-face.

Suppose that  $f_d$  is a 6<sup>+</sup>-face. If  $f_2$  is a 3-face, then  $f_3$  must be a 4-face or 6<sup>+</sup>-face. If  $f_3$  is a 4-face, then  $f_4$  or  $f_5$  must be a 6<sup>+</sup>-face. So one of the faces in { $f_2$ ,  $f_3$ ,  $f_4$ ,  $f_5$ } is a 6<sup>+</sup>-face. Thus we prove (d).

The discharging rules are defined as follows.

R2-1. Each 2-vertex receives 2 from its 2-master.

**R2-2.** For a 3-face f and its incident vertex v, f receives  $\frac{1}{2}$  from v if d(v) = 4, 1 if d(v) = 5,  $\frac{5}{4}$  if d(v) = 6 and  $\frac{3}{2}$  if  $d(v) \ge 7$ .

**R2-3**. For a 4-face f and its incident vertex v, f receives  $\frac{1}{2}$  from v if  $4 \le d(v) \le 6$ , 1 if  $d(v) \ge 7$ .

Let f be a face of G. Clearly,  $ch'(f) = ch(f) = d(f) - 6 \ge 0$  if  $d(f) \ge 6$ . Suppose d(f) = 3. If f is incident with a 3<sup>-</sup>-vertex, then other incident vertices of f are 7<sup>+</sup> vertices and it follows that  $ch'(f) \ge ch(f) + 2 \times \frac{3}{2} = 0$ . If f is incident with a 4-vertex, then  $ch'(f) \ge ch(f) + \frac{1}{2} + 2 \times \frac{5}{4} = 0$ . If all vertices incident with f are 5<sup>+</sup>-vertex, then  $ch'(f) \ge ch(f) + 3 \times 1 = 0$ . Suppose d(f) = 4. If f is incident with a vertex of degree at most 3, then f is incident with at least two 7<sup>+</sup>-vertices and it follows that  $ch'(f) \ge ch(f) + 4 \times \frac{1}{2} = 0$ .

Let v be a vertex of G. If d(v) = 2, then ch'(v) = ch(v) + 2 = 0 by R2-1. If d(v) = 3, then ch'(v) = ch(v) = 0. If d(v) = 4, then  $ch'(v) \ge ch(v) - 4 \times \frac{1}{2} = 0$ . If d(v) = 5, then  $ch'(v) \ge ch(v) - \max\{3 \times 1 + 2 \times \frac{1}{2}, 2 \times 1 + 3 \times \frac{1}{2}, 1 + 4 \times \frac{1}{2}\} = 0$ . If d(v) = 6, then  $ch'(v) \ge ch(v) - 4 \times \frac{5}{4} - 2 \times \frac{1}{2} = 0$ . Suppose d(v) = 7. Then it is not incident with a 2-vertex and it is incident with at most four 3-faces. At the same time, if a 3-face f is incident with v, then there is at least one face of degree at least 6 which is incident with v and is adjacent to f. So  $ch'(v) \ge ch(v) - \max\{4 \times \frac{3}{2} + 2 \times \frac{1}{2}, 7 \times 1\} = 0$ . Suppose d(v) = 8. If v is not incident with a 3-face, then  $ch'(v) = ch(v) - 2 - 8 \times 1 = 0$ . So assume that v is incident with five 3-faces, then all 4<sup>+</sup>-faces incident with v must be  $6^+$ -faces by (b) and it follows that  $ch'(v) \ge ch(v) - 2 - [\frac{2d(v)}{3}] \times \frac{3}{2} - (d(v) - 2 - [\frac{2d(v)}{3}]) \times \frac{1}{3} > 0$ . Hence we complete the proof of the case that G contains no 5-cycles.  $\Box$ 

**Corollary 5.** If G is a planar graph with  $\Delta \geq 7$  and without i-cycles for some  $i \in \{3, 4, 5\}$ , then  $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ .

#### References

- [1] H. AÏt-djafer, Linear arboricity for graphs with multiple edges, J. Graph Theory 11 (1987) 135-140.
- [2] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405-417.
- [3] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72.
- [4] N. Alon, J.H. Spencer, The Probablilistic Method, Wiley, New York, 1992.
- [5] N. Alon, V.J. Teague, N.C. Wormald, Linear arboricity and linear k-arboricity of regular graphs, Graphs Combin. 17 (2001) 11–16.
- [6] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [7] H. Enomoto, B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309–324.
- [8] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca 36 (1986) 225-228.

[9] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175 (1970) 198-205.

- [10] B. Péroche, Complexity of the linear arboricity of a graph, Oper. RAIRO Res. 16 (1982) 125–129 (in French).
- [11] J.L. Wu, Some path decompositions of Halin graphs, J. Shandong Mining Institute 17 (1998) 92-96 (in Chinese).

[12] J.L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129–134.

- [13] J.L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000) 367–372.
- [14] J.L. Wu, The linear arboricity of composition of two graphs, J. Syst. Sci. Complex. 15 (4) (2002) 372–375.
- [15] J.L. Wu, Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven are four, J. Graph Theory (submitted for publication).