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The linear arboricity of planar graphs with no short cyclesI
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Abstract

The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and
Harary conjectured that d

∆(G)
2 e ≤ la(G) ≤ d

∆(G)+1
2 e for any simple graph G. In the paper, it is proved that if G is a planar

graph with ∆ ≥ 7 and without i-cycles for some i ∈ {4, 5}, then la(G) = d
∆(G)

2 e.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty
[6]. For a real number x , dxe is the least integer not less than x and bxc is the largest integer not larger than x . Given a
graph G = (V, E). Let N (v) = {u | uv ∈ E(G)} and Nk(v) = {u | u ∈ N (v) and d(u) = k}, where d(v) = |N (v)| is
the degree of the vertex v. We use ∆(G) and δ(G) to denote the maximum (vertex) degree and the minimum (vertex)
degree, respectively. A k-, k+- or k−-vertex is a vertex of degree k, at least k, or at most k, respectively.

A linear forest is a graph in which each component is a path. A map ϕ from E(G) to {1, 2, . . . , t} is called a
t-linear coloring if (V (G), ϕ−1(α)) is a linear forest for 1 ≤ α ≤ t . The linear arboricity la(G) of a graph G defined
by Harary [9] is the minimum number t for which G has a t-linear coloring. Given a t-linear coloring and a vertex v

of G, let C i
ϕ(v) = { j | the color j appears i times at v}, where i = 0, 1, 2. Then |C0

ϕ(v)| + |C1
ϕ(v)| + |C2

ϕ(v)| = t .
Akiyama, Exoo and Harary [2] conjectured that la(G) = d(∆(G) + 1)/2e for any regular graph G. It is obvious

that la(G) ≥ d∆(G)/2e for any graph G and la(G) ≥ d(∆(G) + 1)/2e for every regular graph G. So the conjecture
is equivalent to the following conjecture.

Conjecture A. For any graph G, d
∆(G)

2 e ≤ la(G) ≤ d
∆(G)+1

2 e.

The linear arboricity has been determined for complete bipartite graphs [2], Halin graphs [11], series–parallel
graphs [13], complete regular multipartite graphs [14], and regular graphs with ∆ = 3, 4 [2,3], 5, 6, 8 [7], 10 [8].
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Péroche [10] proved that the determination of the linear arboricity of a graph G is an NP-hard problem, even when
∆ = 4. Alon, Teague and Wormald [5] proved that there is an absolute constant c > 0 such that for every d-
regular graph G, la(G) ≤

d
2 + cd2/3(log d)1/3 (A slightly weaker result has been proved in [4, p. 64]). AÏt-djafer

[1] obtained some results for graphs with multiple edges. Wu, Liu and Wu [14] obtained an upper bound for the
linear arboricity of composition of two graphs and proved that for a nonempty regular graph G and a null graph Sn ,
la(G[Sn]) = d(∆(G[Sn]) + 1)/2e if ∆(G) is even and G has a Hamiltonian factorization orthogonal to a linear
forest, or ∆(G) is odd and the graph by removing a 1-factor F from G has a Hamiltonian factorization orthogonal to
a matching M such that M ∪ F is a linear forest.

Conjecture A has already been proved to be true for all planar graphs, see [12] and [15]. Wu also proved in [12]
that for a planar graph G with maximum degree ∆, la(G) = d

∆(G)
2 e if ∆ ≥ 13. In the same paper, he proved that if

G is a planar graph with ∆ ≥ 7 and without 3-cycles, then la(G) = d
∆(G)

2 e. Here we obtain that the result is also
true for a planar graph with ∆ ≥ 7 and without i-cycles for some i ∈ {4, 5}.

2. Main results and their proofs

In the section, all graphs are planar graphs which have been embedded in the plane. For a planar graph G, the
degree of a face f , denote by d( f ), is the number of edges incident with it, where each cut-edge is counted twice. A
k-, k+- or k−-face is face of degree k, at least k or at most k, respectively. First, let’s prove some lemmas.

Theorem 1. Suppose that d is an integer with d ≥ 4 and G is a planar graph with maximum degree ∆ ≤ 2d and
without i-cycles for some i ∈ {4, 5}. Then G has a d-linear coloring.

Proof. Let G = (V, E) be a minimal counterexample to the theorem. First, we prove some lemmas for G.

Lemma 2. For any edge uv ∈ E(G), dG(u) + dG(v) ≥ 2d + 2.

Proof. Suppose that G has an edge uv with dG(u)+dG(v) ≤ 2d +1. Then G ′
= G −uv has a d-linear coloring ϕ by

the minimality of G. Let S = C2
ϕ(u)∪ C2

ϕ(v)∪ (C1
ϕ(u)∩ C1

ϕ(v)). Since dG ′(u)+ dG ′(v) = d(u)+ d(v)− 2 ≤ 2d − 1,
|S| < d . Let ϕ(uv) ∈ {1, 2, . . . , d}\S. Thus ϕ is extended to a d-linear coloring of G, a contradiction. Hence the
lemma holds. �

By Lemma 2, we have
(1) δ(G) ≥ 2, and
(2) any two 4−-vertices are not adjacent, and
(3) any 3-face is incident with three 5+-vertices, or at least two 6+-vertices.

Lemma 3. G has no even cycle v0v1 · · · v2n−1v0 such that d(v1) = d(v3) = · · · = d(v2n−1) = 2 and
max

0≤i<n
|N2(v2i )| ≥ 3.

Proof. Suppose it does contain such an even cycle. Without loss of generality, let N2(v0) ≥ 3. This implies that v0
is adjacent to at least three 2-vertices. Let u ∈ N2(v0)\{v2n−1, v1} and v ∈ N (u)\{v0}. By the induction hypothesis,
G∗

= G − {v1, . . . , v2n−1} − uv0 has a d-linear coloring ϕ. Now we construct directly a d-linear coloring σ of G as
follows.

First of all, if C0
ϕ(v0) 6= ∅, let σ(uv0) = σ(v0v1) ∈ C0

ϕ(v0). Otherwise, |C1
ϕ(v0)| ≥ 3, let σ(uv0) ∈ C1

ϕ(v0)\ϕ(uv)

and σ(v1v0) ∈ C1
ϕ(v0)\σ(uv0). After that, let σ(v0v2n−1) ∈ (C1

ϕ(v0) ∪ C0
ϕ(v0))\{σ(uv0), σ (v0v1)}. So σ(v0v1) 6=

σ(v0v2n−1). Furthermore, for i = 1, 2, . . . , n−1, if σ(v0v2n−1) ∈ C1
ϕ(v2i ), let σ(v2i−1v2i ) = σ(v0v2n−1). Otherwise,

let σ(v2i−1v2i ) ∈ (C1
ϕ(v2i )\σ(v2i−2v2i−1)) ∪ C0

ϕ(v2i ). σ(v2iv2i+1) ∈ C1
ϕ(v2i )\σ(v2i−1v2i )) ∪ C0

ϕ(v2i ). Finally, the
uncolored edges of G are colored the same colors as in ϕ of G∗. This contradiction proves the lemma. �

Let G2 be the subgraph induced by edges incident with 2-vertices. Since G does not contain two adjacent 2-vertices,
G2 does not contain any odd cycle. So it follows from Lemma 3 that any component of G2 is either an even cycle or
a tree. So it is easy to find a matching M in G saturating all 2-vertices. Thus if uv ∈ M and d(u) = 2, v is called a
2-master of u. Note that every 2-vertex has a 2-master and each vertex of degree at least d can be the 2-master of at
most one 2-vertex.
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Let F be the set of faces of G. By Euler’s formula |V | − |E | + |F | = 2, we have∑
v∈V

(2d(v) − 6) +

∑
f ∈F

(d( f ) − 6) = −6(|V | − |E | + |F |) = −12 < 0.

We define ch to be the initial charge. Let ch(x) = 2d(x) − 6 for each x ∈ V (G) and ch(x) = d(x) − 6 for each
x ∈ F(G). In the following, we will reassign a new charge denoted by ch′(x) to each x ∈ V (G) ∪ F(G) according to
the discharging rules. Since our rules only move charges around, and do not affect the sum, we have∑

x∈V (G)∪F(G)

ch′(x) =

∑
x∈V (G)∪F(G)

ch(x) = −12. (∗)

We’ll show that ch′(x) ≥ 0 for each x ∈ V (G) ∪ F(G), a contradiction to (∗), completing the proof.
First, we assume that G contains no 4-cycles. Then the discharging rules are defined as follows.
R1-1. Each 2-vertex receives 2 from its 2-master.
R1-2. Each 3-face f receives 3

2 from each of its incident 5+-vertex.
R1-3. Each 5-face f receives 1

3 from each of its incident 5+-vertex.
Let f be a face of G. Clearly, ch′( f ) = ch( f ) = d( f ) − 6 ≥ 0 if d( f ) ≥ 6. Suppose d( f ) = 3. By (3),

ch′( f ) ≥ ch( f ) + 2 ×
3
2 = 0. If d( f ) = 5, then f is incident with at least three 5+-vertices and it follows that

ch′( f ) ≥ ch( f ) + 3 ×
1
3 = 0.

Let v be a vertex of G. Since G contains no 4-cycle, v is incident with at most b
d(v)

2 c 3-faces. If d(v) = 2,
then ch′(v) = ch(v) + 2 = 0 by R1-1. If d(v) = 3 or 4, then ch′(v) = ch(v) ≥ 0. If d(v) = 5, then
ch′(v) ≥ ch(v) − 2 ×

3
2 − 3 ×

1
3 = 0. If d(v) = 6 or 7, then ch′(v) ≥ ch(v) − 3 ×

3
2 − 4 ×

1
3 > 0. If d(v) ≥ 8, then

ch′(v) ≥ ch(v) − b
d(v)

2 c ×
3
2 − (d(v) − b

d(v)
2 c) ×

1
3 > 0. Hence we complete the proof of the case that G contains

no 4-cycles.
Now assume that G contains no 5-cycles. Let’s prove the following lemma.

Lemma 4. Suppose that a planar graph G contains no 5-cycles and δ(G) ≥ 2. Then any of the following results
holds.

(a) Any vertex v is incident with at most b
2d(v)

3 c 3-faces.
(b) A 3-face is incident with a 4-face if and only if the two faces are incident with a common 2-vertex.
(c) If a face is adjacent to two nonadjacent 3-faces then the face must be 6+-face.
(d) If a d(≥ 7)-vertex v is incident with a 3-face, then v is incident with at most d − 2 4−-faces.

Proof. Since if there are three 3-faces f1, f2, f3 such that they are incident with a common vertex and f2 is incident
with f1 and f3, then vertices incident with them form a 5-cycle, so (a) holds. If a 3-face is incident with a 4-face, then
all three vertices incident with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident with
these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c), suppose that a face f is adjacent
to two nonadjacent 3-faces. It is obvious that f is not a 3-face for otherwise a 5-cycle is appeared. By (b), f is not a
4-face. So f must be a 6+-face and (c) holds.

For (d), suppose that a d(≥ 7)-vertex v is incident with a 3-face. If v is a cut vertex, then (d) is obvious. So assume
that v is not a cut vertex. Let f1, f2, . . . , fd be faces incident with v clockwise, and v1, v2, . . . , vd be vertices incident
with v clockwise, and vi be incident with fi , i = 1, 2, . . . , d, and vd be incident with fd and f1. Assume that f1 be
the 3-face. Then by (a), f1 or fd is not a 3-face. Without loss of generality, assume that fd is not a 3-face.

Suppose that fd is a 4-face. Then d(vd) = 2 by (b). Thus f2 must be a 3-face or a 6+-face. If f2 is a 3-face, then
f3 or f4 must be a 6+-face. So one of f2, f3, f4 is a 6+-face. Similarly, if fd−1 is a 4-face, then d(vd−1) = 2. So one
of fd , fd−1, fd−2 is a 6+-face.

Suppose that fd is a 6+-face. If f2 is a 3-face, then f3 must be a 4-face or 6+-face. If f3 is a 4-face, then f4 or f5
must be a 6+-face. So one of the faces in { f2, f3, f4, f5} is a 6+-face. Thus we prove (d). �

The discharging rules are defined as follows.
R2-1. Each 2-vertex receives 2 from its 2-master.
R2-2. For a 3-face f and its incident vertex v, f receives 1

2 from v if d(v) = 4, 1 if d(v) = 5, 5
4 if d(v) = 6 and 3

2
if d(v) ≥ 7.
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R2-3. For a 4-face f and its incident vertex v, f receives 1
2 from v if 4 ≤ d(v) ≤ 6, 1 if d(v) ≥ 7.

Let f be a face of G. Clearly, ch′( f ) = ch( f ) = d( f ) − 6 ≥ 0 if d( f ) ≥ 6. Suppose d( f ) = 3. If f is incident
with a 3−-vertex, then other incident vertices of f are 7+ vertices and it follows that ch′( f ) ≥ ch( f ) + 2 ×

3
2 = 0. If

f is incident with a 4-vertex, then ch′( f ) ≥ ch( f )+
1
2 +2×

5
4 = 0. If all vertices incident with f are 5+-vertex, then

ch′( f ) ≥ ch( f ) + 3 × 1 = 0. Suppose d( f ) = 4. If f is incident with a vertex of degree at most 3, then f is incident
with at least two 7+-vertices and it follows that ch′( f ) ≥ ch( f )+2×1 = 0. Otherwise ch′( f ) ≥ ch( f )+4×

1
2 = 0.

Let v be a vertex of G. If d(v) = 2, then ch′(v) = ch(v) + 2 = 0 by R2-1. If d(v) = 3, then ch′(v) = ch(v) = 0.
If d(v) = 4, then ch′(v) ≥ ch(v) − 4 ×

1
2 = 0. If d(v) = 5, then ch′(v) ≥ ch(v) − max{3 × 1 + 2 ×

1
2 , 2 ×

1 + 3 ×
1
2 , 1 + 4 ×

1
2 } = 0. If d(v) = 6, then ch′(v) ≥ ch(v) − 4 ×

5
4 − 2 ×

1
2 = 0. Suppose d(v) = 7. Then

it is not incident with a 2-vertex and it is incident with at most four 3-faces. At the same time, if a 3-face f is
incident with v, then there is at least one face of degree at least 6 which is incident with v and is adjacent to f . So
ch′(v) ≥ ch(v) − max{4 ×

3
2 + 2 ×

1
2 , 7 × 1} = 0. Suppose d(v) = 8. If v is not incident with a 3-face, then

ch′(v) = ch(v) − 2 − 8 × 1 = 0. So assume that v is incident with at least one 3-face. By (d), v is incident with at
most two d(v)−2 faces of degree at most 4. If v is incident with five 3-faces, then all 4+-faces incident with v must be
6+-faces by (b) and it follows that ch′(v) = ch(v)−2−5×

3
2 > 0; otherwise ch′(v) = ch(v)−2−4×

3
2 −2×1 = 0.

Suppose d(v) ≥ 9. Similarly, we have ch′(v) ≥ ch(v) − 2 − b
2d(v)

3 c ×
3
2 − (d(v) − 2 − b

2d(v)
3 c) ×

1
3 > 0. Hence we

complete the proof of the case that G contains no 5-cycles. �

Corollary 5. If G is a planar graph with ∆ ≥ 7 and without i-cycles for some i ∈ {3, 4, 5}, then la(G) = d
∆(G)

2 e.
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