

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2011 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 1490–1505

EDGE-PARTITIONING REGULAR GRAPHS FOR RING TRAFFIC
GROOMING WITH A PRIORI PLACEMENT OF THE ADMS∗

XAVIER MUÑOZ† , ZHENTAO LI‡ , AND IGNASI SAU§

Abstract. We study the following graph partitioning problem: Given two positive integers C
and Δ, find the least integer M(C,Δ) such that the edges of any graph with maximum degree at
most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most
M(C,Δ) subgraphs. This problem is naturally motivated by traffic grooming, which is a major
issue in optical networks. Namely, we introduce a new pseudodynamic model of traffic grooming in
unidirectional rings, in which the aim is to design a network able to support any request graph with
a given bounded degree. We show that optimizing the equipment cost under this model is essentially
equivalent to determining the parameter M(C,Δ). We establish the value of M(C,Δ) for almost all
values of C and Δ, leaving open only the case where Δ ≥ 5 is odd, Δ (mod 2C) is between 3 and
C − 1, C ≥ 4, and the request graph does not contain a perfect matching. For these open cases, we
provide upper bounds that differ from the optimal value by at most one.

Key words. graph decomposition, edge partition, regular graph, optical networks, traffic groom-
ing, add drop multiplexer (ADM), cubic graph, perfect matching

AMS subject classifications. 97K30, 94C15, 90B18

DOI. 10.1137/090775440

1. Introduction. In this article we study the following graph partitioning prob-
lem: Given two positive integers C and Δ, find the least integerM(C,Δ) such that the
edges of any graph with maximum degree at most Δ can be partitioned into subgraphs
with at most C edges and such that each vertex appears in at most M(C,Δ) sub-
graphs. This problem is naturally motivated by traffic grooming in optical networks.
In the following we provide an introduction to traffic grooming and explain why this
partitioning problem is relevant to the design of optical networks. Readers interested
only in the graph-theoretic problem may safely skip to the equivalent definition of
M(C,Δ) after Remark 1 in section 2, after reading the notation paragraph.

Motivation. Traffic grooming is the generic term for packing low-rate signals into
higher-speed streams in optical networks [4,8,15,19]. By using traffic grooming, it is
possible to bypass the electronics at the nodes which are not sources or destinations
of traffic, and therefore reduce the cost of the network. Typically, in a wavelength
division multiplexing (WDM) network, instead of having one SONET add drop mul-
tiplexer (ADM) on every wavelength at every node, it is possible to have ADMs only
for the wavelengths used at that node; the other wavelengths are optically routed
without electronic switching.

∗Received by the editors October 29, 2009; accepted for publication (in revised form) July 28,
2011; published electronically November 1, 2011. Two preliminary conference versions of this work
appeared in [16] [14].

http://www.siam.org/journals/sidma/25-4/77544.html
†Graph Theory and Combinatorics group, Edifici B3, carrer Jordi Girona 1-3, 08034 Barcelona,

Cataluna, Spain (xml@ma4.upc.edu).
‡School of Computer Science, McGill University, 845 Sherbrooke St. W. Montreal, Quebec,

Canada H34 2T5 (zhentao.li@mail.mcgill.ca). This author’s work was partially supported by the
NSERC.

§AlGCo project-team, CNRS, LIRMM, Université Montpellier 2, 161 rue Ada, 34095 Montpellier
Cedex 5, France (ignasi.sau@lirmm.fr). This author’s work was partially supported by the AGAPE
(ANR-09-BLAN-0159) and GRATOS (ANR-09-JCJC-0041-01) projects from France.

1490

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1491

The so-called traffic grooming problem consists of minimizing the total number
of ADMs to be used, in order to reduce the overall cost of the network. The problem
is easily seen to be NP-hard for an arbitrary set of requests in very simple topologies.
In fact, hardness and approximation results exist for traffic grooming in ring, star,
and tree networks [2, 10, 11].

Here we consider unidirectional SONET/WDM ring networks with symmetric re-
quests. In this case, the routing is unique, and to each request between two nodes
we assign a wavelength and some bandwidth on this wavelength. If the traffic is
uniform and any given wavelength can carry at most C requests, we can assign at
most 1/C of the bandwidth to each request; the integer C is known as the groom-
ing factor. Furthermore, if the traffic requirement is symmetric, we may assume
that symmetric requests are assigned the same wavelength, as it is easy to show (by
exchanging wavelengths) that there exists an optimal solution where all symmetric
requests are given the same wavelength. Then each pair of symmetric requests uses
1/C of the bandwidth in the whole ring. If the two end-nodes are u and v, we need
one ADM at node u and one at node v. The main point is that if two requests have
a common end-node, they can share an ADM if they are assigned the same wave-
length.

The traffic grooming problem for a unidirectional SONET ring with n nodes,
grooming ratio C, and a symmetric request graph R has been modeled as a graph
partition problem as follows (see [3, 13]). Each edge of R corresponds to a pair of
symmetric requests, and edges are colored by their assigned wavelength λ. All edges
of color λ induce a connected subgraph Bλ of R, where each node corresponds to an
ADM. The grooming constraint, i.e., the fact that a wavelength can carry at most C
requests, translates to an upper bound C on the number of edges in each Bλ. The cost
corresponds to the total number of vertices used in the subgraphs, and the objective
is therefore to minimize

∑
λ |V (Bλ)|.

While most previous work has focused on the case where the requests are given as
input [2,3,4,7,8,10,11,13,15], we consider the case where only the network topology
is given, together with a bound Δ on the maximum degree of the request graph. We
would like to place, for each value of the grooming factor C, a minimum number
of ADMs at each node in such a way that they could support any traffic pattern
where each node is the end-node of at most Δ requests. This model is interesting
because the network can support dynamic traffic without replacement of the ADMs;
the existing theoretical models in the literature are much more rigid and do not allow
such adaptability.

From a practical point of view, it is interesting to design a network that is able
to support any request graph with maximum degree not exceeding a given constant.
This situation is usual in real optical networks, since due to technology constraints the
number of allowed communications for each node is usually bounded. This flexibility
can also be thought about from another point of view: given a fixed number of ADMs
and a grooming factor, it is interesting to ask which is the maximum degree of a
request graph that the network can support. Equivalently, given a maximum degree
and a number of available ADMs, it is useful to know which values of the grooming
factor the network will support.

The aim of this article is to provide a theoretical framework for designing such
networks with dynamically changing traffic. We study the case where the physical
network is given by a unidirectional ring, which is a widely used topology (for instance,
SONET rings). The formal definition of the problem is provided below. We first define
the notation used throughout the article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1492 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

Notation. The (multi)graphs considered in this paper are finite and without self-
loops. Edges are denoted {u, v}. The degree of a vertex v, denoted by deg(v), is the
number of edges containing v as an end-point. When we speak about a subgraph H
of a graph G defined by a subset of edges F ⊆ E(G), we assume that V (H) is the
set of vertices spanned by the edges in F . For a positive integer C, a partition of a
(multi)graph G into subgraphs with at most C edges is called a C-edge-partition of G.
The maximum degree of a (multi)graph is the maximum degree over all its vertices. A
Δ-graph is a (multi)graph with maximum degree at most Δ. GΔ denotes the class of
all Δ-graphs. A Δ-regular (multi)graph is a graph in which all vertices have degree Δ.
An almost Δ-regular (multi)graph is a (multi)graph in which all vertices have degree
Δ except possibly one which has degree Δ− 1. A bridge in a connected (multi)graph
G is an edge whose removal disconnects G. A matching in a (multi)graph G = (V,E)
is a subset M ⊆ E which contains each vertex at most once. A perfect matching
is a matching containing all vertices. A digon is a cycle of length 2. A trail in
a (multi)graph is a sequence {{x1, x2}, {x2, x3}, . . . , {xk−1, xk}} of distinct edges in
which the second end of an edge is the first end of the next edge. (The same pair of
vertices may appear more than once if there is more than one edge between them.)
The vertices x2, x3, . . . , xk−1 of a trail are called midpoints. The length of a trail is
the number of edges in it. Given a (multi)graph G = (V,E) and a subset of vertices
V ′ ⊆ V , we denote by G − V ′ the (multi)graph obtained from G by removing the
vertices in V ′, the edges incident with vertices in V ′, and isolated vertices (if any).
Similarly, given a subset of edges E′ ⊆ E, we denote by G − E′ the (multi)graph
obtained from G by removing the edges in E′ and isolated vertices (if any).

Statement of the problem. The problem that we study can be formulated as a
graph partitioning problem as follows.

Δ-Degree-Bounded Traffic Grooming in Unidirectional Rings.

Input: Three positive integers n, C, and Δ.

Output: An assignment A : {1, . . . , n} → N such that for every n-vertex Δ-graph
G with V (G) = {v1, . . . , vn} there exists a C-edge-partition of E(G) such
that for every i ∈ {1, . . . , n} vertex vi occurs in at most A(i) subgraphs
of the partition.

Objective: Minimize
∑n

i=1 A(i). The optimum is denoted by A(n,C,Δ).

This definition indeed corresponds to the grooming problem that we discussed
above, where n is the size of the ring, C is the grooming factor, Δ is the maximum
degree of the request graph, A(i) is the number of ADMs assigned to vertex vi, and
G is the request graph.

The function A(n,C,Δ) satisfies some straightforward properties.
Lemma 1. The following statements hold:
(i) A(n,C, 1) = n for every n,C ≥ 1.
(ii) A(n, 1,Δ) = Δ · n for every Δ ≥ 1.
(iii) If C′ ≥ C, then A(n,C′,Δ) ≤ A(n,C,Δ).
(iv) If Δ′ ≥ Δ, then A(n,C,Δ′) ≥ A(n,C,Δ).
(v) A(n,C,Δ) ≥ n for every Δ ≥ 1.
(vi) If C ≥ nΔ

2 , A(n,C,Δ) = n.
Proof.
(i) For each vertex vi, consider a graph G consisting only of an edge containing

vi. Therefore, it holds that A(i) ≥ 1 for every i ∈ {1, . . . , n}. On the other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1493

hand, G must be a matching, so for every vertex vi we may assume that
A(i) ≤ 1. Therefore, A(n,C, 1) = n for every n,C ≥ 1.

(ii) A Δ-graph can be partitioned into nΔ
2 disjoint edges, and the bound is tight

for Δ-regular graphs.
(iii) Any solution for C is also a solution for C′.
(iv) If Δ′ ≥ Δ, the graphs on n vertices with maximum degree at most Δ form a

subclass of the class of graphs with maximum degree at most Δ′.
(v) Combine (i) and (iv).
(vi) In this case all the edges of any Δ-graph fit into one subgraph.
Organization of the paper. In section 2 we show that the Δ-Degree-Bounded

Traffic Grooming in Unidirectional Rings problem is essentially equivalent to
establishing the value of the parameter M(C,Δ) (see Definition 1) for each value of
C and Δ. We solve the cases where Δ ≥ 2 is even in section 3. In section 4 we focus
on the cases where Δ ≥ 3 is odd, leaving open only the cases where Δ ≥ 5 is odd, Δ
(mod 2C) is between 3 and C − 1, C ≥ 4, and the graph does not contain a perfect
matching (see Table 1). In section 4.6 we present an attempt to solve these remaining
cases, which may lead to an eventual proof. Finally, section 5 concludes the article.

2. The parameter M(C,Δ). The following definition will play a fundamental
role in the remainder of the article.

Definition 1. M(C,Δ) is the smallest number M such that A(n,C,Δ) ≤ M · n
for all n.

Lemma 2. M(C,Δ) is a natural number.
Proof. For every C ≥ 1, we know by Lemma 1 that n ≤ A(n,C,Δ) ≤ A(n, 1,Δ) =

Δ ·n. Suppose that M is not a natural number. That is, suppose that r < M < r+1
for some positive integer r. Therefore, there must be at least (r + 1−M) · n vertices
such that each of them occurs at most r times in any C-edge-partition. For each n, let
Vn,r be the subset of vertices of the request graph with at most r occurrences. Then,
since r+1−M > 0, we have limn→∞ |Vn,r| = ∞. In other words, there is an arbitrarily
big subset of vertices with at most r occurrences per vertex. But we can consider a
Δ-graph on (possibly a subset of) the set of vertices Vn,r, and this means that with r
occurrences per vertex we can construct a C-edge-partition, a contradiction with the
optimality of M .

If the request graph is further restricted to belong to a subclass of graphs C ⊆ GΔ,
then the corresponding parameter is denoted by M(C,Δ, C). Note that, as long as the
class C contains infinitely many graphs, the proof of Lemma 2 shows that M(C,Δ, C)
is a positive integer. This is the case, for instance, of the class of regular graphs with
a perfect matching.

By the discussion above, A(n,C,Δ) is of the form A(n,C,Δ) = M(C,Δ) · n −
α(C,Δ), where M(C,Δ) and α(C,Δ) are integers depending only on C and Δ. Sup-
pose that a Δ-graph H requires at least M(C,Δ) + 1 occurrences of some vertex.
Since any Δ-graph must admit a C-edge-partition with at most the same number
of occurrences, by relabeling the vertices of H we could force at least M(C,Δ) + 1
occurrences in Ω(n) vertices of the graph. This would contradict the definition of
M(C,Δ). Therefore, each vertex can appear in at most M(C,Δ) subgraphs. So we
may conclude the following.

Remark 1. For each value of C and Δ, the Δ-Degree-Bounded Traffic

Grooming in Unidirectional Rings problem reduces to finding the least integer
M(C,Δ) such that any Δ-graph admits a C-edge-partition with each vertex appearing
in at most M(C,Δ) subgraphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1494 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

This allows us to give an equivalent definition of M(C,Δ). Let G ∈ GΔ and let
PC(G) be the set of C-edge-partitions of G. For P ∈ PC(G) with P = {Bλ}1≤λ≤Λ,
let occ(P) be the maximum number of occurrences of a vertex in the partition, that
is,

occ(P) = max
v∈V (G)

|{Bλ ∈ P : v ∈ Bλ}|

and then M(C,Δ) = max
G∈GΔ

(
min

P∈PC(G)
occ(P)

)
.

In the remainder of this paper, we use Remark 1 and focus on determining
M(C,Δ) for each value of C and Δ. Observe also that any Δ-graph H is a sub-
graph of some Δ-regular graph G (with possibly more vertices). Note also that if we
restrict a partition of G to the vertices of H , the number of occurrences of the vertices
cannot increase. Therefore, we can state the following.

Remark 2. M(C,Δ) = M(C,Δ, C), where C is the class of Δ-regular graphs.
The following lemma will be used throughout the article.
Lemma 3. The following statements hold trivially from Lemma 1:
(i) M(C, 1) = 1 for all C ≥ 1.
(ii) M(1,Δ) = Δ for all Δ ≥ 1.
(iii) If C′ ≥ C, then M(C′,Δ) ≤ M(C,Δ).
(iv) If Δ′ ≥ Δ, then M(C,Δ′) ≥ M(C,Δ).
(v) M(C,Δ) ≤ Δ for all C,Δ ≥ 1.
The following proposition establishes a general lower bound on M(C,Δ), which

will allow us to prove in many cases the optimality of the constructions of the next
sections.

Proposition 1. M(C,Δ) ≥ �C+1
C

Δ
2 	 for every C,Δ ≥ 1.

Proof. Given C,Δ ≥ 1, let G be a Δ-regular graph with girth at least C + 1,
which exists by the seminal result of Erdös and Sachs [9], and let n = |V (G)|. Let
P be a C-edge-partition of G. All the subgraphs involved in P are trees, since each
such subgraph has at most C edges and the girth of G is larger than C. Let p be the
number of subgraphs in P , so p ≥ nΔ

2C . Let n1, . . . , np be the orders of the subgraphs

in P . Since each of them is a tree,
∑p

i=1(ni − 1) = nΔ
2 , so

∑p
i=1 ni = nΔ

2 + p ≥
Δ(C+1)

2C · n. Therefore, there exists a vertex spanned by at least Δ(C+1)
2C subgraphs.

By the definition of M(C,Δ), the lower bound follows.

3. Case Δ ≥ 2 even. In this section we establish the value of M(C,Δ) for an
even Δ ≥ 2 and any value of C.

Theorem 1. Let Δ ≥ 2 be even. Then for any C ≥ 1, M(C,Δ) = �C+1
C

Δ
2 	.

Proof. The lower bound follows from Proposition 1. Let us give an explicit
construction for any Δ-regular graph G = (V,E). Orient the edges of G in an Eulerian
tour, and assign to each vertex v ∈ V its Δ/2 out-edges, namely E+

v . For each v ∈ V ,
partition E+

v into � Δ
2C 	 stars with C edges centered at v (except, possibly, one star

with fewer edges). Each vertex v appears as a leaf in stars centered at other vertices
exactly Δ −Δ/2 = Δ/2 times. Therefore, the number of occurrences of each vertex
in this partition is⌈

Δ

2C

⌉
+

Δ

2
=

⌈
Δ

2

(
1 +

1

C

)⌉
=

⌈
C + 1

C

Δ

2

⌉
.

Note that for the special case Δ = 2, Theorem 1 implies that M(C, 2) = 2 for
all C ≥ 1. In fact, for Δ = 2 it is possible to give the exact expression of the cost

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1495

function A(n,C, 2). Indeed, it is easy to see that, given a set of disjoint cycles, we can
always find a C-edge-partition such that C − 1 prescribed (arbitrary) vertices appear
in only one subgraph. On the other hand, if we pretend that at least C vertices
appear in at most one subgraph, we can consider as Δ-graph a cycle of length at
least C + 1 containing the prescribed C vertices, and then necessarily one of those
vertices appears in at least two subgraphs of any C-edge-partition, a contradiction.
Summarizing, we can claim the following.

Proposition 2. A(n,C, 2) = 2n− (C − 1).

4. Case Δ ≥ 3 odd. The cases where Δ is odd turn out to be inherently much
more complicated than the cases where Δ is even. In section 4.1, we present a general
construction which differs from the lower bound of Proposition 1 by at most 1, and we
determine when this construction is optimal. In section 4.2 we provide an improved
lower bound when Δ ≡ C (mod 2C), which meets our upper bound. In section 4.4 we
solve the case Δ = 3 and C = 4, which is the only case for Δ = 3 that does not follow
from the results presented so far. In section 4.5 we present an optimal construction
for graphs with a perfect matching, after proving that the lower bound of Proposi-
tion 1 still holds when the request graph is restricted to have a perfect matching.
We then discuss in section 4.3 the relation of the parameter M(C,Δ) with the linear
C-arboricity [1, 5, 18]. Finally, we describe in section 4.6 an attempt to solve the re-
maining cases where Δ ≥ 5 is odd, using the ideas developed in the previous sections.

4.1. General upper bound. The following proposition provides a general up-
per bound, which differs from the lower bound of Proposition 1 by at most 1.

Proposition 3. Let Δ ≥ 3 be odd. Then for any C ≥ 1, M(C,Δ) ≤ �C+1
C

Δ
2 +

C−1
2C 	.

Proof. Let G be a Δ-regular graph. Since Δ is odd, |V (G)| is even. Add a perfect
matching M to G to obtain a (Δ + 1)-regular multigraph G′. Orient the edges of G′

in an Eulerian tour, and assign to each vertex v ∈ V (G′) its (Δ+1)/2 out-edges E+
v .

Remove the edges of M and, as in the case Δ even, partition E+
v into stars with at

most C edges. To count the number of occurrences of each vertex, we distinguish two
cases. If an edge of M is in E+

v , then v appears as a center in �Δ−1
2C 	 stars and as a

leaf in Δ− Δ−1
2 stars. Summing both terms yields

⌈
Δ− 1

2C

⌉
+Δ− Δ− 1

2
=

⌈
C + 1

C

Δ

2
+

C − 1

2C

⌉
.

Otherwise, if no edge of M is in E+
v , the number of occurrences of v is⌈

Δ+ 1

2C

⌉
+Δ− Δ+ 1

2
=

⌈
C + 1

C

Δ

2
+

1− C

2C

⌉
≤

⌈
C + 1

C

Δ

2
+

C − 1

2C

⌉
.

The upper bound of Proposition 3 and the lower bound of Proposition 1 are equal
for, roughly speaking, half of the pairs C,Δ, as shown in the following corollary.

Corollary 1. Let Δ ≥ 3 be odd. If Δ (mod 2C) = 1 or Δ (mod 2C) ≥ C + 1,
then M(C,Δ) = �C+1

C
Δ
2 	.

Proof. Let Δ = λ·2C+h, with h odd, 1 ≤ h ≤ 2C−1. Writing k := λ(C+1)+ h−1
2 ,

the lower bound of Proposition 1 equals k + � 1
2 + h

2C 	, and the upper bound of

Proposition 3 equals k + �1 + h−1
2C 	. If h = 1, both bounds equal k + 1, and if

h ≥ C + 1, both bounds equal k + 2.
In particular, when C = 2 and Δ is odd, Δ (mod 2C) is either 1 or 3, and then

by Corollary 1 the lower bound is attained, as stated in the following corollary.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1496 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

G

HH

H

v

Fig. 1. 3-regular graph with girth 4, which is a counterexample showing that M(3, 3) = 3.

Corollary 2 (case C = 2). For any Δ ≥ 3 odd, M(2,Δ) = � 3Δ
4 	.

For all the cases we have solved so far, the value of M(C,Δ) equals the lower
bound of Proposition 1. It seems natural to think that the value �C+1

C
Δ
2 	 may always

be attained. We shall see in the next section that this is not true. Namely, we prove
in Theorem 2 that if Δ ≡ C (mod 2C), then M(C,Δ) = �C+1

C
Δ
2 	+ 1.

4.2. Improved lower bound. In this section we prove a new lower bound which
strictly improves on Proposition 1 when Δ ≡ C (mod 2C).

Theorem 2. Let Δ ≥ 3 be odd and let Δ ≡ C (mod 2C). Then M(C,Δ) =
�C+1

C
Δ
2 	+ 1.

Proof. We prove that if Δ = kC with k odd, then M(C,Δ) ≥ �C+1
C

Δ
2 	+ 1, and

thus, by Proposition 3, M(C,Δ) is equal to �C+1
C

Δ
2 	 + 1. Since both Δ and k are

odd, so is C, and therefore �C+1
C

Δ
2 	 = k · C+1

2 .
We proceed to build a Δ-regular graph G with no C-edge-partition where each

vertex is incident to at most �C+1
C

Δ
2 	 subgraphs, hence implying that M(C,Δ) >

�C+1
C

Δ
2 	. First, we construct a graph H where all vertices have degree Δ except one

which has degree Δ− 1. Furthermore, we build H so that it has girth strictly greater
than C. H exists by [6, 9]. Make Δ copies of H and add a cut-vertex v joined to all
vertices of degree Δ− 1 to make our Δ-regular graph G (see Figure 1 for an example
of the construction of such a graph for Δ = C = 3).

Now suppose for the sake of contradiction that there is a C-edge-partition B of
G where each vertex is incident to at most �C+1

C
Δ
2 	 subgraphs. Since the girth of G

is greater than C, all the subgraphs in B are trees. Since �C+1
C

Δ
2 	 < Δ, v must have

degree at least 2 in some subgraph T ′ ∈ B. Since |E(T ′)| ≤ C, the tree T ′ contains
at most �C−2

2 	 = C−3
2 edges of a copy H ′ of H intersecting T ′. Now we only work in

H ′. Let α = |E(T ′ ∩H ′)| ≤ C−3
2 (note that α = 0 for C = Δ = 3).

Let B′ = {B ∩ H ′}B∈(B−{T ′}), with the empty subgraphs removed. That is, B′

contains the subgraphs in B that partition the edges in H ′ that are not in T ′. Let
n = |V (H ′)|, which is odd as in H ′ there is one vertex of degree Δ − 1 and all the
others have degree Δ. Therefore, the total number of edges of the trees in B′ is

(1)
∑
T∈B′

|E(T)| = |E(H ′)| − α =
nΔ− 1

2
− α =

nkC − 1

2
− α.

As α ≤ C−3
2 , from (1) we get

(2)
∑
T∈B′

|E(T)| ≥ nkC − 1

2
− C − 3

2
=

(
nk − 1

2

)
· C + 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1497

As each tree in B′ has at most C edges, from (2) we get that |B′|, the number of trees
in B′, satisfies

(3) |B′| ≥
⌈
nk − 1

2
+

1

C

⌉
=

nk − 1

2
+

⌈
1

C

⌉
=

nk − 1

2
+ 1.

Clearly, the total number of vertices in the trees in B′ is exactly the total number
of edges in the trees in B′ plus the number of trees in B′, that is,

∑
T∈B′ |V (T)| =∑

T∈B′ |E(T)| + |B′|. On the other hand, the tree T ′ contains α + 1 vertices of H ′,
that is, |V (T ′ ∩ H ′)| = α + 1. Therefore, using (1) and (3), we get that the total
number of occurrences of the vertices in H ′ in some tree of B is∑
v∈V (H′)

|{T ∈ B : v ∈ T }| =
∑
T∈B′

|V (T)|+ |V (T ′ ∩H ′)| =
∑
T∈B′

|E(T)|+ |B′|+ α+ 1

=
nkC − 1

2
− α+ |B′|+ α+ 1

≥ nkC − 1

2
+

nk − 1

2
+ 1 + 1

= nk · C + 1

2
+ 1 = n ·

⌈
C + 1

C

Δ

2

⌉
+ 1,

which implies that at least one vertex ofH ′ appears in at least �C+1
C

Δ
2 	+1 subgraphs,

which is a contradiction to B being a C-edge-partition of G in which each vertex
appears in at most �C+1

C
Δ
2 	 subgraphs. The theorem follows.

It turns out that Theorem 2 allows us to find the value of M(3,Δ) for any Δ ≥ 3
odd.

Corollary 3 (case C = 3). For any Δ ≥ 3 odd, M(3,Δ) = � 2Δ+1
3 	.

Proof. If Δ ≡ 1 (mod 6) or Δ ≡ 5 (mod 6), then by Corollary 1, M(3,Δ) =
� 2Δ

3 	 = � 2Δ+1
3 	. Otherwise, if Δ ≡ 3 (mod 6), then by Theorem 2, M(3,Δ) =

� 2Δ
3 	+ 1 = � 2Δ+1

3 	.
4.3. Relation of M(C,Δ) with the linear C-arboricity. A result of

Thomassen [18], which settled a conjecture of Bermond et al. [5], states that the
edges of a cubic graph can be 2-colored such that each monochromatic component is
a path of length at most 5. That is, in such a coloring (that can be seen as a partition
into paths) each vertex appears in exactly two paths with at most five edges each.
Therefore, combining this result with Lemma 3(iii), we deduce that M(C, 3) = 2 for
any C ≥ 5.

Let us now discuss how these ideas can be extended to other values of C and Δ.
A linear C-forest in a graph is a forest consisting of paths of length at most C. The
linear C-arboricity of a graphG is the minimum number of linear C-forests required to
partition E(G), and is denoted by laC(G) [5]. Let laC(Δ) = maxG∈GΔ laC(G). Clearly
M(C,Δ) ≤ laC(Δ) for all C,Δ, since the paths in a linear C-forest are graphs with
at most C edges. Therefore, the following upper bound given by Alon, Teague, and
Wormald [1] also applies to M(C,Δ).

Theorem 3 (Alon, Teague, and Wormald [1]). There is an absolute constant
β > 0 such that for

√
Δ > C ≥ 2,

(4) laC(Δ) ≤ C + 1

C

Δ

2
+ β

√
CΔ logΔ.

It turns out that the first addend of the right-hand side of (4) is equal to the
lower bound of Proposition 1, so Theorem 3 provides an additive O(

√
CΔ logΔ)-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1498 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

approximation of M(C,Δ) for
√
Δ > C ≥ 2. Although we have improved this bound

for M(C,Δ) in sections 3 and 4.1, the relation between M(C,Δ) and laC(Δ) is of
theoretical interest of its own.

4.4. Case Δ = 3, C = 4. As discussed in section 4.3, M(C, 3) = 2 for C ≥ 5.
On the other hand, Theorem 2 implies that M(3, 3) = 3, so by (ii) and (iii) of
Lemma 3 we have that M(C, 3) = 3 for C ≤ 3. Therefore, the interesting question is
whether M(4, 3) equals 2 or 3. The remainder of this section is devoted to proving
that M(4, 3) = 2 (see Corollary 5). First we need a classical result concerning cubic
graphs and an easy extension to cubic multigraphs.

Theorem 4 (Petersen [17]). Any cubic bridgeless graph has a perfect matching.
Corollary 4. Any cubic bridgeless multigraph without self-loops has a perfect

matching.
Proof. Let G be a cubic multigraph without self-loops. We can assume that G

has no triple edges; otherwise G has only two vertices, and any of the three edges is
a perfect matching. Consider the simple graph G′ built from G as follows: for each
digon {{u, v}, {u, v}}, add two new vertices suv and tuv, and replace the digon with
the edges {u, suv}, {u, tuv}, {v, suv}, {v, tuv}, and {suv, tuv}. By Theorem 4, G′ has a
perfect matching M ′. We now construct a perfect matching M of G from M ′. For
each edge e ∈ M ′ such that e was also an edge of G, put e in M ′. For each digon
{{u, v}, {u, v}} of G, if any of the pairs {{u, suv}, {v, tuv}} or {{u, tuv}, {v, suv}} is
in M ′, put one of the copies of {u, v} in M . Otherwise, {suv, tuv} belongs to M ′ and
we do nothing. It is easy to check that M is a perfect matching of G.

We are ready to prove the main result of this section.
Theorem 5. The edges of every almost 3-regular multigraph G without self-loops

can be partitioned into a set W = {W1,W2, . . . ,Wk} of trails of length at most 4 such
that each vertex appears as the midpoint of a trail.

Proof. Suppose the theorem is false, and let G be a counterexample with the
minimum number of vertices. G is connected, as otherwise we can take the union of
the partitions of its connected components, which exist by minimality of G.

Suppose first that G contains a bridge e = {u, v}. Then G− {e} has exactly two
components: U containing u and V containing v. Without loss of generality, we may
choose U to be the component with no degree 2 vertex in G, and e is chosen so that U
is maximal with this property. Thus this component U of G−{e} is almost 3-regular
(only u has degree 2). By minimality of G, U can be partitioned into a set Wu of
trails as in the statement of the theorem.

If v has degree 2 in G, then V − {v} is almost 3-regular. By minimality of G,
V − {v} can be partitioned into a set Wv of trails as in the theorem. Now the only
edges of G not in any trail in Wu∪Wv are those incident to v. Thus taking Wu∪Wv

together with a trail consisting of the two edges incident to v (which have v as a
midpoint) yields the required partition of the edges of G into trails. This contradicts
the fact that G is a counterexample.

If v has degree 3 in G, let x, y be the neighbors of v in V (see Figure 2(a)). We
can assume x �= y (i.e., {v, x} and {v, y} are not parallel edges) since otherwise, the
third edge incident to x = y is a cut edge whose choice (instead of e) would increase
the size of U . Let H be the graph obtained from V −{v} by adding an edge f = {x, y}
(see Figure 2(b)). By minimality of G, H can be partitioned into a set Wv of trails.
We now attempt to transform Wu ∪Wv into a partition of G into trails.

The edge f appears in some trail {W1, {x, y},W2} of Wv, where W1 is a (possibly
empty) trail ending at x and W2 is a (possibly empty) trail starting at y. At least

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1499

v deg 2x

y

u

uW Wv

deg 2x

y

u

U V

e

(a) (b)

Fig. 2. (a) A bridge e = {u, v} in an almost 3-regular graph G with components U and V of
G− {e}. (b) Graphs smaller than G from which we obtain a partition into trails Wu and W v.

(a) (b) (c)

Fig. 3. (a) A 3-regular graph G′ with no bridges. (b) A matching M of G′ (shown in dashed
lines) and an orientation of the cycles of G′ − M . (c) A partition of the edges of G′ into trails of
length 3 using M and the orientation of the cycle of G′ −M in (b).

one of the subtrails {W1, {x, y}} or {{x, y},W2} has fewer than three edges; with-
out loss of generality, it is {W1, {x, y}}. Replace this trail with {W1, {x, v}, {v, u}}
which has length at most 4, and {{v, y},W2} which has length less than or equal
to {W1, {x, y},W2}. Note that x and v are midpoints of the first trail, and y is the
midpoint of the second trail. Furthermore, any other vertex which was a midpoint in
{W1, {x, y},W2} is still a midpoint (since W1 and W2 appear as subtrails).

Thus the union of Wu and Wv with the above replacement yields a partition of
G into trails of length at most 4 with the desired property, which is a contradiction.

We may now assume that G contains no bridges. If G is 3-regular, let G′ = G.
Otherwise, let G′ be the graph obtained from G by replacing the vertex of degree 2
with an edge between its neighbors. Note that G′ is 3-regular and contains no bridges.
Therefore, by Corollary 4, G′ contains a perfect matching M ⊆ E(G′).

Since G′ is 3-regular, G′ −M is 2-regular. Thus, G′ − M is a union of disjoint
cycles. We can orient the cycles of G′ −M so that each vertex v has exactly one edge
ev pointing towards v. For each edge {u, v} ∈ M , Wuv = {eu, {u, v}, ev} is a trail of
length 3 (see Figure 3). Note that W = {Wuv | {u, v} ∈ M} is a partition of the edges
of G′ into trails of length 3. Furthermore, every vertex u in the matching appears as
the midpoint of the trail corresponding to the edge of the matching in which u appears.
Since M is a perfect matching, every vertex appears as the midpoint of some trail
in W . Thus G′ �= G, as otherwise we have constructed a partition as required by
the theorem. So G has a vertex v of degree 2 which we have replaced with an edge
e = {x, y} to obtain G′. Let W = {W1, {x, y},W2} be the trail in W containing
e, and recall that W has length 3. Replacing W with {W1, {x, v}, {v, y},W2} in
W yields a partition of E(G) into trails of length at most 4, which is a contradic-
tion.

Note that the simple trees with some vertex of degree 3 and the digon with a
pendant edge at each side are not allowed in the partition stated in Theorem 5, since
these graphs cannot be thought of as trails. The following corollary settles the value
of M(4, 3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1500 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

Corollary 5. M(4, 3) = 2.
Proof. By Remark 2, we may restrict ourselves to 3-regular graphs. Thus, a 3-

regular graphG is almost 3-regular, and we may apply Theorem 5 to obtain a partition
W . Let B = {E(W)}W∈W . Each vertex of G appears in at most two elements of B,
as G is 3-regular and each vertex appears as the midpoint of some trail in W .

To conclude this section, we would like to mention that Fouquet and Vanherpe
study in [12] normal partitions of cubic graphs, which are defined as a partition of
the edges of a cubic graph into trails such that each vertex is the end-point of exactly
one trail of the partition. The length of a normal partition is the length (in terms of
number of edges) of the longest trail in it. Following this notation, Theorem 5 implies
that any cubic multigraph admits a normal partition of length at most 4.

4.5. Optimal construction for graphs with a perfect matching. In this
section we focus on the case where the Δ-regular graphs are further restricted to
contain a perfect matching. First observe that the proof of the general lower bound
provided in Proposition 1 does not imply that the same lower bound carries over to
Δ-regular graphs with a perfect matching. Indeed, the proof of Proposition 1 uses
the existence of Δ-regular graphs with girth at least C + 1, but those graphs may
not necessarily contain a perfect matching. Fortunately, we can prove that the lower
bound does not decrease when we assume that the graph contains a perfect matching.

Proposition 4. Let Δ ≥ 3 be odd, and let C be the class of Δ-regular graphs
that contain a perfect matching. Then M(C,Δ, C) ≥ �C+1

C
Δ
2 	 for all C ≥ 1.

Proof. We shall construct a Δ-regular graph G with a perfect matching and girth
at least C + 1, and then the proof of Proposition 1 applied to G yields the desired
bound. The details follow.

For any two positive integers Δ and C, Chandran provided in [6, section 2.1] an
explicit and simple construction of a graph H such that

◦ H has girth strictly greater than C;
◦ H contains a perfect matching (in fact, H is obtained from a perfect matching
by adding the appropriate edges); and

◦ the degree of a vertex of H is either Δ− 2, Δ− 1, or Δ.
We will construct from H our Δ-regular graph G. Let v1, . . . , vk1 be the vertices of
degree Δ − 1 in H , and let vk1+1, . . . , vk1+k2 be the vertices of degree Δ − 2 in H .
Let F be a (k1 + 2k2)-regular graph with girth at least C + 1 (which exists by the
result of Erdös and Sachs [9]), and let f = |V (F)|. Let the vertices of F be u1, . . . , uf .
To construct G, first make f copies of H , and let vji be the copy of vertex vi in the
jth copy of H , for i = 1, . . . , k1 + k2 and j = 1, . . . , f . Intuitively, each copy of H
corresponds to a vertex of F . We now add |E(F)| edges among the f copies of H
as follows. We assign labels from 1 to k1 + 2k2 to the vertices of H with degree
less than Δ in the following way: for i = 1, . . . , k1, vertex vi gets label i, and for
i = k1 + 1, . . . , k1 + k2, vertex vi gets labels i and k2 + i. For each vertex of F ,
we arbitrarily label the edges incident to it with distinct integers from 1 to k1 + 2k2
(recall that F is (k1 + 2k2)-regular). This way, each edge of F gets two labels, one
from each end-vertex. Then, for each edge {uj1 , uj2} ∈ E(F) with labels (�1, �2), we
add an edge between the vertices labeled �1 and �2 in the j1th and j2th copies of H ,
respectively.

This completes the construction of G. Note that the copies of the vertices that
had degree Δ in H also have degree Δ in G. Since one (resp., two) edges have been
added to each vertex of degree Δ − 1 (resp. Δ − 2), it is clear that G is Δ-regular.
Since each copy of H had a perfect matching and no edge of any copy of H has been

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1501

removed, G also has a perfect matching. Finally, the girth of G is at least C + 1.
Indeed, the girth of each copy of H is at least C + 1 by [6]. Therefore, each cycle
c of length at most C in G should visit strictly more than one copy of H . By the
construction of G, such a cycle c in G would induce a cycle of length at most C
in F among the vertices corresponding to the copies of H visited by c. But this is
impossible as the girth of F is at least C + 1.

We are now ready to provide an optimal construction for all Δ ≥ 3 odd and C ≥ 1
when the request graph is restricted to have a perfect matching.

Proposition 5. Let Δ ≥ 3 be odd, and let C be the class of Δ-regular graphs
that contain a perfect matching. Then M(C,Δ, C) = �C+1

C
Δ
2 	 for all C ≥ 1.

Proof. The lower bound follows from Proposition 4. To prove the upper bound,
let G be Δ-regular with a perfect matching M . Then G−M is (Δ− 1)-regular with
Δ − 1 even. We orient the edges of G −M in an Eulerian tour, and assign to each
vertex v ∈ V (G) its Δ−1

2 out-edges E+
v . We distinguish three cases:

(a) Δ < C. For each edge {u, v} ∈ M , build a tree with Δ edges consisting
of {u, v}, Δ−1

2 edges from E+
u , and Δ−1

2 edges from E+
v . The number of

occurrences of each vertex is 1 + Δ − Δ+1
2 = Δ+1

2 . The lower bound equals

�C+1
C

Δ
2 	 = Δ−1

2 + � 1
2 + Δ

2C 	, which equals Δ+1
2 as Δ < C.

(b) Δ ≥ C and C ≥ 3 is odd (the case C = 1 is trivial by Lemma 3). For each edge
{u, v} ∈ M , build a tree with C edges consisting of {u, v}, C−1

2 edges from

E+
u , and C−1

2 edges from E+
v . Partition the remaining Δ−1

2 − C−1
2 = Δ−C

2

edges assigned to each vertex into �Δ−C
2C 	 stars with at most C edges. The

number of occurrences of each vertex is

1 +

⌈
Δ− C

2C

⌉
+Δ− Δ+ 1

2
=

⌈
C + 1

C

Δ

2

⌉
.

(c) Δ ≥ C and C ≥ 4 is even (the case C = 2 is solved by Corollary 2). Build
a tree with C − 1 edges consisting of {u, v}, C−2

2 edges from E+
u , and C−2

2

edges from E+
v . Partition the remaining Δ−1

2 − C−2
2 = Δ−C+1

2 edges assigned
to each vertex into stars with at most C edges. The number of occurrences
of each vertex is

1 +

⌈
Δ− C + 1

2C

⌉
+

Δ− 1

2
=

⌈
Δ(C + 1) + 1

2C

⌉
=

⌈
C + 1

C

Δ

2

⌉
,

where the last equality holds because both Δ and (C + 1) are odd.

4.6. Towards a proof for the remaining cases. In this section, we describe
an attempt to prove that the lower bound �C+1

C
Δ
2 	 of Proposition 1 is attained in

the remaining cases where Δ ≥ 5 is odd. We attempt to resolve the remaining cases
by using induction and Tutte’s matching theorem. We may assume that Δ is odd by
Theorem 1.

The idea is to use the construction from Proposition 5 of section 4.5, which
solves the case where the graph contains a perfect matching, as a base case for a
proof by induction. Then, if the graph does not contain a perfect matching, an easy
consequence of Tutte’s matching theorem shows that it contains an edge-cut of size
at most Δ− 1. We would then like to recurse on each side of the cut as we did in the
proof of Theorem 5 and combine the edge-partitions of each side into a partition of
the whole graph. However, as opposed to Theorem 5, it is more difficult to deal with
the edges across the cut in this case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1502 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

We may orient each edge e = {u, v} across the cut from u to v and let the side
containing u decide which partition will contain e. To guarantee that v is not incident
to too many subgraphs at the end, we can simply force v to be incident to one fewer
subgraph in the edge-partition of the side containing v.

We note that, since the cuts have size less than Δ, it is possible to recursively
orient the edges of cuts so that no side has more than Δ− 1 edges pointing towards
it (including edges from previous steps of the recursion).

However, it seems difficult to control the distribution of the edges pointing towards
a side. If, for example, a single vertex v had Δ − 1 edges pointing towards it, then
it would clearly be impossible to obtain the desired edge-partition, as v would need
to be in a negative number of parts. On the other hand, if it were possible to control
the distribution of the edges pointing towards a side, the following strengthening of
Proposition 5 would be sufficient to prove the base case of the induction.

Definition 2. G is near-Δ-regular if the vertices of G have degrees between Δ
2

and Δ and |E(G)| ≥ Δ
2 (|V (G)|−1)−1 (i.e., the total degree is off by at most Δ−1).

Lemma 4. Let LB(C,Δ) = �C+1
C

Δ
2 	, the lower bound of Proposition 1. Let

C,Δ be positive integers with Δ odd and (Δ − 1)/2 not a multiple of C. Let G be
a near-Δ-regular graph with girth at least 5 and a perfect matching. Then G has an
edge-partition where each vertex v is incident to at most LB(C,Δ) − (Δ − deg(v))
subgraphs of the partition.

We note that it may be possible to first recursively find all the cuts and then
orient the edges so that no vertex has more than (Δ − 1)/2 edges pointing towards
it. We also note that the above lemma is not in its strongest form (e.g., the total
degree could differ even more from the Δ-regular case), but we clearly cannot relax the
condition that every vertex v have degree greater than Δ/2 (otherwise, v is contained
in too many subgraphs even if we use stars of size C centered at v). We now prove
Lemma 4.

Proof. Let M be a perfect matching in G. Since at most Δ vertices of G have
degree not equal to Δ, at most Δ edges in M connect an odd degree vertex to an
even degree vertex. Let G′ be the graph obtained from G by removing edges of M
matching odd degree vertices of G and adding (at most Δ/2) edges to pair up the
remaining odd degree vertices of G. Thus, G′ is an even graph, and we may obtain
an Eulerian orientation O′ of G′.

O′ induces an orientation of some of the edges of G. We orient the remaining
edges of G “both ways” and count half towards the in-degree and half towards the
out-degree of the vertex. Let S be the set of vertices of G with degree less than Δ.
We reverse some of the arcs of O so that all vertices in S have out-degree at least
Δ/2. This can be done greedily since G has no C4 and we are only off by Δ− 1 from
the total degree. We call this new orientation O.

Let S′ be the set of vertices with out-degree less than Δ/2 in O. Note that the
vertices of S′ have degree Δ and out-degree at least (Δ− 3)/2. Let N−(v) denote the
set of vertices with an arc to v in O. Note that for two distinct vertices u and v in
G, their neighborhood intersects in at most one vertex (since G has girth at least 5).
Therefore N−(u) ∩N−(v) also contains at most one vertex.

Therefore, we may find a subgraph H of the graph induced by the edges N−(v)
to v for all v in S′ with the following properties:

◦ Each vertex in N−(S′) has degree at most 1.
◦ Each vertex in s ∈ S′ has degree at least δ−(s)−(Δ−1)/2 ≥ δ−(s)−(2C−1),
where δ−(s) is the in-degree of s.

We say that a star or double-star is full if it contains exactly C edges.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1503

Now, we can find a set S = S1∪S2 ∪S3 of edge disjoint subgraphs of G such that
◦ S1 is a set of full double stars centered at the endpoints of unoriented edges
in O,

◦ S2 is a set of full stars,
◦ S3 = {Sv}v∈V (G), where Sv is a star centered at v of size at most C − 1, and
◦ only stars in S3 contain edges of H .

These edge disjoint subgraphs can be found greedily by first finding S1 and then
partitioning the out-edges of each vertex into sets of size C and a remainder set of
edges of size ≤ C.

Now, for each s ∈ S′, remove all but two stars centered at s in S2 and remove
one star centered at s in S3. Let R be the set of edges removed in this way. For each
edge e = {u, v} ∈ E(H), add an out-edge of v in R if there is any left (and remove
this edge from R) to the star containing e. By the properties of H , no edges of R are
left in the end.

We claim that this new set of subgraphs form a C-edge-partition where each
vertex v is incident to at most LB(C,Δ) − (Δ− deg(v)) partitions.

Indeed, the elements of S ′ are edge disjoint and have size at most C (since every
star in S3 has size at most C − 1). The vertices v ∈ V − S′′ are incident to

Δ + 1

2C
+ deg(v)− Δ+ 1

2
=

Δ+ 1

2C
+

Δ− 1

2
− (Δ− deg(v))

=
Δ(C + 1) + 1− C

2C
− (Δ− deg(v))

≤ LB(C,Δ) − (Δ− deg(v))

subgraphs if v is not incident to an unoriented edge, and

1 +

⌈
Δ− C

2C

⌉
+ deg(v)− Δ+ 1

2
= 1 +

⌈
Δ− C

2C

⌉
+

Δ− 1

2
− (Δ− deg(v))

=

⌈
Δ+ C + C(Δ− 1)

2C

⌉
− (Δ− deg(v))

=

⌈
(C + 1)Δ

2C

⌉
− (Δ− deg(v))

= LB(C,Δ) − (Δ− deg(v))

subgraphs if v is incident to an unoriented edge. This satisfies the conditions in the
lemma.

Recall that vertices in S′ have out-degree at least (Δ − 3)/(2C). If v ∈ S′ and v
is incident to an unoriented edge, v appears in

Δ− 3− (2C − 2)

2C
+ deg(v)− Δ− 3

2
=

Δ− 1− 2C

2C
+ deg(v)− Δ+ 1

2
+

4

2

=
Δ− 1

2C
− 2 + deg(v) − Δ+ 1

2
+ 2

≤ Δ+ 1

2C
+ deg(v) − Δ+ 1

2
≤ LB(C,Δ) − (Δ− deg(v))

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1504 XAVIER MUÑOZ, ZHENTAO LI, AND IGNASI SAU

subgraphs. If v ∈ S′ and and v is not incident to an unoriented edge, v appears in

1 +

⌈
Δ− 3− C − (2C − 2)

2C

⌉
+ deg(v)− Δ− 3

2

= 1 +

⌈
Δ− 1− C

2C

⌉
− 2 + deg(v)− Δ+ 1

2
+ 2

≤ 1 +

⌈
Δ− C

2C

⌉
+ deg(v)− Δ+ 1

2

= LB(C,Δ)− (Δ− deg(v))

subgraphs. Again, the conditions in the lemma are satisfied as required.

5. Conclusions. In this article we introduced the traffic grooming problem in
unidirectional WDM rings when the request graph belongs to the class of graphs
with maximum degree Δ. Such a model allows the network to support dynamic
traffic without reconfiguring the electronic equipment. We showed that this problem
is essentially equivalent to finding the least integer M(C,Δ) such that the edges of
any graph with maximum degree at most Δ can be partitioned into subgraphs with at
most C edges and such that each vertex appears in at most M(C,Δ) subgraphs. We
established the value ofM(C,Δ) for many cases, leaving open only the case where Δ ≥
5 is odd, Δ (mod 2C) is between 3 and C− 1, C ≥ 4, and the graph does not contain
a perfect matching. Table 1 summarizes what is known about M(C,Δ), including
the case where the graph has a perfect matching. For the remaining cases, we hope
to either extend the counterexample given in section 4.2 or to complete the partial
proof given in section 4.6, which can be seen as a strengthening of Proposition 5.

Considering bounded-degree request graphs is natural from a networking perspec-
tive. It would be also interesting to consider as input other families of request graphs
that make sense from a telecommunications point of view, like circulant graphs or
graphs of bounded diameter.

Table 1

Known values of M(C,Δ). The bold cases with “≥” remain open. The cases in brackets only
hold if the graph has a perfect matching; “(=)” means that the corresponding lower bound is attained.

C|Δ 1 2 3 4 5 6 7 8 9 . . . Δ even Δ odd

1 1 2 3 4 5 6 7 8 9 . . . Δ Δ

2 1 2 3 3 4 5 6 6 7 . . .
⌈
3Δ
4

⌉ ⌈
3Δ
4

⌉

3 1 2 3 (2) 3 4 5 (4) 5 6 7 (6) . . .
⌈
2Δ
3

⌉ ⌈
2Δ+1

3

⌉ (⌈
2Δ
3

⌉)

4 1 2 2 3 4 4 5 5 6 . . .
⌈
5Δ
8

⌉
≥

⌈
5Δ
8

⌉
(=)

5 1 2 2 3 4 (3) 4 5 5 6 . . .
⌈
3Δ
5

⌉
≥

⌈
3Δ
5

⌉
(=)

6 1 2 2 3 ≥ 3 (=) 4 5 5 6 . . .
⌈
7Δ
12

⌉
≥

⌈
7Δ
12

⌉
(=)

7 1 2 2 3 ≥ 3 (=) 4 5 (4) 5 6 . . .
⌈
4Δ
7

⌉
≥

⌈
4Δ
7

⌉
(=)

8 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 . . .
⌈
9Δ
16

⌉
≥

⌈
9Δ
16

⌉
(=)

9 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 (5) . . .
⌈
5Δ
9

⌉
≥

⌈
5Δ
9

⌉
(=)

. .

C 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 ≥ 5 (=) . . .
⌈
C+1
C

Δ
2

⌉
≥

⌈
C+1
C

Δ
2

⌉
(=)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EDGE-PARTITIONING REGULAR GRAPHS 1505

Acknowledgments. The authors would like to thank J.-C. Bermond, N. Cohen,
F. Havet, D. Král’, A. Marchetti-Spaccamela, M. Shalom, and S. Zaks for insightful
discussions. We are also grateful to the anonymous referee for remarks which improved
the presentation of the paper.

REFERENCES

[1] N. Alon, V. Teague, and N. C. Wormald, Linear arboricity and linear k-arboricity of regular
graphs, Graphs and Combin., 17 (2001), pp. 11–16.

[2] O. Amini, S. Pérennes, and I. Sau, Hardness and approximation of traffic grooming, Theoret.
Comput. Sci., 410 (2009), pp. 3751–3760.

[3] J.-C. Bermond and D. Coudert, Traffic grooming in unidirectional WDM ring networks using
design theory, in Proceedings of the 2003 IEEE International Conference on Communica-
tions (ICC), Anchorage, AK, IEEE Press, Piscataway, NJ, 2003, Vol. 2, pp. 1402–1406.

[4] J-C. Bermond and D. Coudert, Grooming, in The CRC Handbook of Combinatorial Designs,
2nd ed., C. J. Colbourn and J. H. Dinitz, eds., Discrete Math. Appl. 42, CRC Press, Math.
Appl., Boca Raton, FL, 2006, pp. 493–496.

[5] J.-C. Bermond, J.-L. Fouquet, M. Habib, and B. Péroche, On linear k-arboricity, Discrete
Math., 52 (1984), pp. 123–132.

[6] L. S. Chandran, A high girth graph construction, SIAM J. Discrete Math., 16 (2003), pp. 366–
370.

[7] C. J. Colbourn, A. C. H. Ling, G. Quattrocchi, and V. R. Syrotiuk, Grooming traffic to
minimize load, Discrete Math., to appear. doi:10.1016/j.disc.2011.03.016.

[8] R. Dutta and N. Rouskas, Traffic grooming in WDM networks: Past and future, IEEE
Network, 16 (2002), pp. 46–56.

[9] P. Erdös and H. Sachs, Reguläre graphe gegebener taillenweite mit minimaler knotenzahl,
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12 (1963), pp. 251–
257.

[10] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks, Approximating the
traffic grooming problem in tree and star networks, J. Parallel Distribut. Comput., 68
(2008), pp. 939–948.

[11] M. Flammini, L. Moscardelli, M. Shalom, and S. Zaks, Approximating the traffic grooming
problem, J. Discrete Algorithms, 6 (2008), pp. 472–479.

[12] J.-L. Fouquet and J. M. Vanherpe, On normal partitions in cubic graphs, Discuss. Math.
Graph Theory, 29 (2009), pp. 293–312.

[13] O. Goldschmidt, D. Hochbaum, A. Levin, and E. Olinick, The SONET edge-partition
problem, Networks, 41 (2003), pp. 13–23.

[14] Z. Li and I. Sau, Graph partitioning and traffic grooming with bounded degree request graph, in
Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), Lecture Notes in Comput. Sci. 5911, Springer, New York, 2009, pp. 250–261.

[15] E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun. Mag., 39 (2001),
pp. 124–129.

[16] X. Muñoz and I. Sau, Traffic grooming in unidirectional WDM rings with bounded-degree
request science, in Proceedings of the 34th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), Lecture Notes in Comput. Sci. 5344, Springer, New
York, 2008, pp. 300–311.

[17] J. P. Petersen, Die Theorie der regulären Graphs, Acta Math., 15 (1891), pp. 193–220.
[18] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic com-

ponent is a path of length at most 5, J. Combin. Theory Ser. B, 75 (1999), pp. 100–109.
[19] K. Zhu and B. Mukherjee, A review of traffic grooming in WDM optical networks: Archi-

tectures and challenges, Optical Networks Mag., 4 (2003), pp. 55–64.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

