28 research outputs found

    Image stitching with perspective-preserving warping

    Full text link
    Image stitching algorithms often adopt the global transformation, such as homography, and work well for planar scenes or parallax free camera motions. However, these conditions are easily violated in practice. With casual camera motions, variable taken views, large depth change, or complex structures, it is a challenging task for stitching these images. The global transformation model often provides dreadful stitching results, such as misalignments or projective distortions, especially perspective distortion. To this end, we suggest a perspective-preserving warping for image stitching, which spatially combines local projective transformations and similarity transformation. By weighted combination scheme, our approach gradually extrapolates the local projective transformations of the overlapping regions into the non-overlapping regions, and thus the final warping can smoothly change from projective to similarity. The proposed method can provide satisfactory alignment accuracy as well as reduce the projective distortions and maintain the multi-perspective view. Experiments on a variety of challenging images confirm the efficiency of the approach.Comment: ISPRS 2016 - XXIII ISPRS Congress: Prague, Czech Republic, 201

    Algorithms for trajectory integration in multiple views

    Get PDF
    PhDThis thesis addresses the problem of deriving a coherent and accurate localization of moving objects from partial visual information when data are generated by cameras placed in di erent view angles with respect to the scene. The framework is built around applications of scene monitoring with multiple cameras. Firstly, we demonstrate how a geometric-based solution exploits the relationships between corresponding feature points across views and improves accuracy in object location. Then, we improve the estimation of objects location with geometric transformations that account for lens distortions. Additionally, we study the integration of the partial visual information generated by each individual sensor and their combination into one single frame of observation that considers object association and data fusion. Our approach is fully image-based, only relies on 2D constructs and does not require any complex computation in 3D space. We exploit the continuity and coherence in objects' motion when crossing cameras' elds of view. Additionally, we work under the assumption of planar ground plane and wide baseline (i.e. cameras' viewpoints are far apart). The main contributions are: i) the development of a framework for distributed visual sensing that accounts for inaccuracies in the geometry of multiple views; ii) the reduction of trajectory mapping errors using a statistical-based homography estimation; iii) the integration of a polynomial method for correcting inaccuracies caused by the cameras' lens distortion; iv) a global trajectory reconstruction algorithm that associates and integrates fragments of trajectories generated by each camera

    Parallax-Tolerant Image Stitching

    Full text link
    Parallax handling is a challenging task for image stitch-ing. This paper presents a local stitching method to handle parallax based on the observation that input images do not need to be perfectly aligned over the whole overlapping re-gion for stitching. Instead, they only need to be aligned in a way that there exists a local region where they can be seam-lessly blended together. We adopt a hybrid alignment model that combines homography and content-preserving warp-ing to provide flexibility for handling parallax and avoiding objectionable local distortion. We then develop an efficient randomized algorithm to search for a homography, which, combined with content-preserving warping, allows for op-timal stitching. We predict how well a homography enables plausible stitching by finding a plausible seam and using the seam cost as the quality metric. We develop a seam finding method that estimates a plausible seam from only roughly aligned images by considering both geometric alignment and image content. We then pre-align input images using the optimal homography and further use content-preserving warping to locally refine the alignment. We finally compose aligned images together using a standard seam-cutting al-gorithm and a multi-band blending algorithm. Our exper-iments show that our method can effectively stitch images with large parallax that are difficult for existing methods. 1

    Reflected Object Removal in 360 Panoramic Images

    Get PDF
    Department of Electrical EngineeringWhen the reflected scene is captured in the 360 panoramic image, the actual scene of the reflection also taken together in the image. Based on this observation, we propose an algorithm that distinguishes the reflection and transmission layer in the glass image using the actual scene of reflection and removes the reflected objects from the panoramic image. We first separate the glass and background image by the user-assist manner and then extract feature points to warp the background image. However, it is challenging to match glass and background keypoints since the two images have different characteristics such as color and transparency. Therefore, we extract initial pairs of matched points using on the edge pixels and use the Dense-SIFT descriptor to match the correspondence points. We then transform the background image through APAP to generate a reference image, which we use to discriminate the reflection and transmission edge in the glass image. Then we determine the reflection and transmission edges based on the gradient angle and magnitude. Finally, based on the two separated edges, we solve the layer separation problem by minimizing the gradients of transmission image based on the gradient sparsity prior.clos

    Viewpoint-Free Photography for Virtual Reality

    Get PDF
    Viewpoint-free photography, i.e., interactively controlling the viewpoint of a photograph after capture, is a standing challenge. In this thesis, we investigate algorithms to enable viewpoint-free photography for virtual reality (VR) from casual capture, i.e., from footage easily captured with consumer cameras. We build on an extensive body of work in image-based rendering (IBR). Given images of an object or scene, IBR methods aim to predict the appearance of an image taken from a novel perspective. Most IBR methods focus on full or near-interpolation, where the output viewpoints either lie directly between captured images, or nearby. These methods are not suitable for VR, where the user has significant range of motion and can look in all directions. Thus, it is essential to create viewpoint-free photos with a wide field-of-view and sufficient positional freedom to cover the range of motion a user might experience in VR. We focus on two VR experiences: 1) Seated VR experiences, where the user can lean in different directions. This simplifies the problem, as the scene is only observed from a small range of viewpoints. Thus, we focus on easy capture, showing how to turn panorama-style capture into 3D photos, a simple representation for viewpoint-free photos, and also how to speed up processing so users can see the final result on-site. 2) Room-scale VR experiences, where the user can explore vastly different perspectives. This is challenging: More input footage is needed, maintaining real-time display rates becomes difficult, view-dependent appearance and object backsides need to be modelled, all while preventing noticeable mistakes. We address these challenges by: (1) creating refined geometry for each input photograph, (2) using a fast tiled rendering algorithm to achieve real-time display rates, and (3) using a convolutional neural network to hide visual mistakes during compositing. Overall, we provide evidence that viewpoint-free photography is feasible from casual capture. We thoroughly compare with the state-of-the-art, showing that our methods achieve both a numerical improvement and a clear increase in visual quality for both seated and room-scale VR experiences

    Distributed scene reconstruction from multiple mobile platforms

    Get PDF
    Recent research on mobile robotics has produced new designs that provide house-hold robots with omnidirectional motion. The image sensor embedded in these devices motivates the application of 3D vision techniques on them for navigation and mapping purposes. In addition to this, distributed cheapsensing systems acting as unitary entity have recently been discovered as an efficient alternative to expensive mobile equipment. In this work we present an implementation of a visual reconstruction method, structure from motion (SfM), on a low-budget, omnidirectional mobile platform, and extend this method to distributed 3D scene reconstruction with several instances of such a platform. Our approach overcomes the challenges yielded by the plaform. The unprecedented levels of noise produced by the image compression typical of the platform is processed by our feature filtering methods, which ensure suitable feature matching populations for epipolar geometry estimation by means of a strict quality-based feature selection. The robust pose estimation algorithms implemented, along with a novel feature tracking system, enable our incremental SfM approach to novelly deal with ill-conditioned inter-image configurations provoked by the omnidirectional motion. The feature tracking system developed efficiently manages the feature scarcity produced by noise and outputs quality feature tracks, which allow robust 3D mapping of a given scene even if - due to noise - their length is shorter than what it is usually assumed for performing stable 3D reconstructions. The distributed reconstruction from multiple instances of SfM is attained by applying loop-closing techniques. Our multiple reconstruction system merges individual 3D structures and resolves the global scale problem with minimal overlaps, whereas in the literature 3D mapping is obtained by overlapping stretches of sequences. The performance of this system is demonstrated in the 2-session case. The management of noise, the stability against ill-configurations and the robustness of our SfM system is validated on a number of experiments and compared with state-of-the-art approaches. Possible future research areas are also discussed
    corecore