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Abstract

When the reflected scene is captured in the 360◦ panoramic image, the actual scene of the

reflection also taken together in the image. Based on this observation, we propose an algorithm

that distinguishes the reflection and transmission layer in the glass image using the actual scene

of reflection and removes the reflected objects from the panoramic image. We first separate the

glass and background image by the user-assist manner and then extract feature points to warp

the background image. However, it is challenging to match glass and background keypoints

since the two images have different characteristics such as color and transparency. Therefore, we

extract initial pairs of matched points using on the edge pixels and use the Dense-SIFT descriptor

to match the correspondence points. We then transform the background image through APAP to

generate a reference image, which we use to discriminate the reflection and transmission edge in

the glass image. Then we determine the reflection and transmission edges based on the gradient

angle and magnitude. Finally, based on the two separated edges, we solve the layer separation

problem by minimizing the gradients of transmission image based on the gradient sparsity prior.
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Chapter 1

Introduction

With the development of electronic devices, communication system and digital image processing,

we live in a world where anyone can easily take pictures or videos and watch them regardless

of time and place. This trend is not only applied for traditional 2D images, but also for 360◦

panoramic images represented for AR and VR. However compared to the increased demand,

there is still a lack of research to assist users in taking desired 360◦ panoramic image. Although

the reflections on the glass surface interfere with taking the target scene, reflection removal

studies on the panoramic image have not yet been conducted.

Reflection removal is a method to seperate a glass image into a reflection and a transmission

layer automatically. Attempts have been conducted to remove reflection layers for 2D images,

and are classified into single image reflection removal and multi-image reflection removal.

Single image reflection removal is a study that removes a reflection image by using different

characteristics of the transmission and the reflection image. In most cases, since there is a lack

of information to distinguish the reflection and the transmission layer, they solved the problem

by employing a smooth prior that the reflected image is smoother than the transmission image.

In many cases, however, there are a lot of occations that do not fit the above prior, so there is

a limit to using single image reflection removal technique to separate transmission and reflection

scene in 360◦ panoramic images.

Another methods, multi-image reflection removal techniques, is to separate the transmission

and reflection layers with two or more(typically four or five) images. they have removed reflection

artifacts much more accurately than single layer separation as they can extract information about

reflections and transmissions. However, due to the dataset is composed of two or more similar

glass images, these methods have difficulties to directly apply for the single panoramic image.

In this thesis, we first propose an algorithm that removes reflections from 360◦ panoramic
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images. In the case of a panoramic image, there is a characteristic that an image reflected on

glass and an actual image exist in one image. With this porperty, we get an input panoramic

image and glass region coordinates from a user and automatically remove the reflection image

in the area. First, we divide the input image into a glass image and a background image, and

take edge pixel coordinates as keypoint candidates. Then match the corredpondence between

glass and background image and use RANSAC to extract inlier correspondence matching points.

we generate referecne image by transforming the background image with moving DLT method.

We divide the transmission and reflection edges based on the gradinet magnitude and angular

similarity. Finally, we reconstruct the transmission and reflection image by minimizing Levin’s

loss fucntion and Poisson solver function is used for removing color distortion. The experimental

results show that our method can be effectively remove the reflection artifacts in the panoramic

image.
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Chapter 2

Related Work

I Single Image Reflection Removal Algorithm

Reflection removal is a process to separate transmission and reflection layer from a glass image,

where the input image I is a linear combination of transmission image T and reflection image

R as illustrated in equation 2.1:

I = T +R (2.1)

Since reflection removal using a single glass image is an ill-posed problem, early studies [5], [6] as-

signed the coordinates of the reflected object directly to remove them. Levin et al. [5] separated

transmission layer and reflection layer with eqn. 2.1 by minimizing the number of edges and

corners. However, it only worked well for a simple glass scene. To alleviate this problem, Levin

and Weiss [6] decomposed the input into the transmission and reflection image by optimization

manner with the gradient sparsity prior. Based on the gradient sparsity prior, Levin proved

that the edges of two natural images rarely overlap when a new image is created by adding two

natural images. Levin reconstructed the transmission image and reflection image with the di-

vided gradient maps based on the optimization manner. However, this method has a limitation

in that the user needs to assign the region where the reflected artifacts appear. Subsequent

studies used various assumptions to remove reflected objects without user assistance. Yu Li et

al. [2] proposed SRS, which is a method of reflection removal in a single image without any help

from the user. With the smoothness prior that the gradient histogram of the reflection layer

is smoother than the transmission layer, Yu Li separated the reflection layer and transmission

layer based on the optimization manner. However, there are many cases where the gradient

histogram of the reflected image is not smoother than the transmission image, which shows a

limitation in practice.
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Since the advent of Alexnet [7], a convolutional neural network(CNN) has emerged as an im-

portant method of computer vision research. The single image reflection removal networks [3,4,8]

have also been proposed based on this research trend. In this field, researchers have used se-

mantic segmentation networks such as FCN [9] and U-Net [10] as baselines. The first research

to apply CNN to reflection removal is CEILNet [8] based on FCN. Fan et al. [8] proposed CEIL-

Net, which detects the transmission edge map and reconstructs the transmission image. They

first trained the edge prediction network(E-Net) that detects the transmission edge map when

the inputs are the glass image and the edge of the glass and trained the image reconstruction

network(I-Net) that receives the detected edge and glass image for transmission scene reconstruc-

tion. However, since the training data consisted of the glass images with the smoothness prior,

it is difficult to remove the reflection effectively when the input is not fit in the prior. Zhang et

al. [3] proposed RSPL, which used feature loss from a visual perception network, adversarial loss

to refine the output transmission layer and exclusion loss to separate transmission and reflection

edges. They consisted of glass-transmission pair dataset with 5,000 synthetic images and 110

real images. However, they could not remove the sharp reflection since the amount of data is

insufficient to train the network deals with various reflection intensities illustrated in Fig. 1. Jie

et al. [4] proposed a deep neural network with a cascaded structure, which is referred to as the

BDN. Unlike the existing methods [3, 8], which used only glass and transmission images, they

constructed a dataset including input, transmission, and reflection images. The transmission

image is extracted through the U-Net, and they put the result into the bidirectional unit to

correct the reflection and transmission layers. We compare the results of proposed algorithm

with the results of SRS [2], RSPL [3] and BDN [4] in Chapter 4.

(a) (b) (c) (d)

Figure 1: A failure case with strong reflection intensity (a) Glass image G, (b) Groundtruth, (c)

Transmission image T and (d) Reflection image R.
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II Reflection Removal Methods for Glass Images captured by

Moving Camera

Levin and Weiss separated transmission and reflection layers effectively. However, the user

assistant manner of allocating the transmission edge and the reflection edge was a drawback

of the algorithm. Several attempts have been made to compensate for this drawback using

glass images with different camera angles and positions. Li and Brown [11] proposed automatic

method for removing reflection artifacts using SIFT-flow [12]. The dataset consists of three to five

images taken from slightly different viewpoints. Such characteristics of the dataset lead to the

assumption that the edges of the transmission image are evenly present in all images, while the

edges of the reflection image are sparse and varying. As a result, Yu Li matched keypoint features

through SIFT-flow, one of the optical flow methods, and warped the remaining images to match

the reference image. After image aligning, the transmission and reflection edges were classified

with respect to the appearance frequency, which is measured by the gradient magnitudes at a

given pixel location. After edge separation, Yu Li minimize the cost function [6] by iterative

reweighted least square [13] method.

Figure 2: Overall algorithm of reflection removal using multiple images.

Han and Sim [14] proposed a multi-view reflection removal algorithm using co-saliency de-

tection and low-rank matrix completion. They observed that existing methods hadn’t provided

robust removal performance for various reflective environments. Therefore they used co-saliency

detection [15] to perform correspondence matching by assigning edge pixels that have high co-

saliency values as the keypoint candidates. Then, they used the magnitude of the gradient

to separate the reflection and transmission gradient maps and fulfilled the transmission map

with low-rank matrix completion. To obtain an optimal solution, they apply the expectation-

maximization(EM) algorithm in an iterative manner.
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Chapter 3

Proposed Algorithm

I Overview

Actual objects reflected on the glass always exist in 360◦ panoramic image. With this property,

we propose the reflected objects removal algorithm using the single 360◦ panoramic image and

glass region coordinates in the user-assisted manner. We first divide the input image into a

glass image and a background image based on the glass coordinates and detect edge pixels in

both images. Set the edge pixels as the keypoints of the image and match the correspondence

between glass and background image with Dense-SIFT [16] descriptor. Use RANSAC [17] to

extract inlier correspondence matching points and transform the background image with moving

DLT method to generate a reference image. We divide the transmission and reflection edges

based on the gradient magnitude and angular similarity. Edges with similar angles to the

reference image are identified by reflection edges and vice versa by transmission edges. Finally,

we reconstruct the transmission and reflection image by minimizing Levin’s loss function, and

the Poisson solver function is used for removing color distortion. The experimental results show

that our method can effectively remove the reflection artifacts in the panoramic image.

II Image division with glass coordinates

The 360◦ panoramic image with glass can be divided into a glass area and other areas. Therefore,

with the glass coordinates R assigned by the user, we divide the image into a glass region G

and the remaining area where the actual objects reflected on the glass are located. We call that

remaining area as a background image B.

According to the law of reflection, the reflected artifacts on the glass form the reverse image

based on the normal line. Since we take photos horizontally with the floor, the reflection is
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always y-axis symmetry. Therefore we flip B on the y-axis.

(a)

(b) (c)

Figure 3: Glass and Background images (a) Input image I, (b) Glass image G, and (c) Back-

ground image B.

III Image Alignment

3.1 Correspondence Matching

[11], [14] tried to remove reflection in the set of multiple glass images with camera positions.

Since the image frames were captured along the camera movement, feature extraction could be

defined as an optical flow problem [18]. They especially used SIFT-flow [12], which extracts

the features most robustly, for the correspondence matching. However, in the 360◦ panoramic

image, it does not fit the above problem as there is no camera movement, and the two images

have different image characteristics. Therefore, we need a method of feature matching between

the glass and natural images to find the pixel pairs with the most similar description.

There are lots of keypoints-based algorithms, and one of the most famous methods is SIFT

[19]. Due to its invariance in scale and orientation, SIFT is still used today. However since

reflected scene on the glass has small gradient magnitude, most keypoints extraction methods,

including SIFT, SURF [20], BRISK [21], KAZE [22], FAST [23], and MinEigen [24] method, do
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not extract a sufficient amount of exact keypoints matching pairs.

(a) (b)

(c) (d)

Figure 4: Correspondence matching pairs of (a) SIFT, (b) SURF, (c) MSER and (d) FAST.

Therefore, we need to find enough and exact keypoints matching pairs. Han [14] suggested

using the co-saliency map to detect common objects and extract keypoints candidates around

the edges of these objects. However, co-saliency detection [1], [25], which depends on RGB or

Lab color space, cannot provide proper candidates because the object features in G and B are

different.

Figure 5: Co-saliency maps [1] of (a) Glass, and (b) Background.

To find the proper keypoints, we analyze the common features of both glass and background

images. In the glass image, the pixel values are changed a lot from the original image, and the

gradients are also different. However, when we extract the edges by lowering the threshold of the

gradient magnitude in G, we can recognize that the edges of the reflected objects are common.
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Also, since keypoints are usually detected near edges and corners, we define edge pixels of G

and B as keypoint candidate sets FG, FB respectively.

FG = {p|EG(p) = 1}, FB = {q|EB(q) = 1} (3.1)

where p denotes the pixel location of glass edge map EG, and q denotes the pixel location of

background edge map EB.

Figure 6: Binary edge maps of Glass and Background (a) Glass Edge EG, and (b) Background

Edge EB.

The SIFT descriptor is a 128-dimensional vector representing very strong features that are

invariant to illumination, translation, and scale for each keypoint. We can see in Fig. 4 (a) that

though the number of matched pairs is insufficient, the matching pairs between G and B are

highly accurate. Therefore we use Dense-SIFT [16], which extracts the SIFT descriptors for

specified pixels, and then tries to find correspondence matching between the two images. So

we extract the descriptor DG from the FG and descriptor DB from the FB and calculate the

Euclidean distance of these two descriptors L2(DG, DB).

Initial correspondence matchingMinit takes only pairs with satisfy:

Minit = {pi ↔ qj | L2(DG(pi), DB(qj)) ∗ β ≤ L1(DG(pi))} (3.2)

where DG(pi) is the descriptor of i-th pixel pi and DB(qj) is the descriptor of j-th pixel qj .

L2(DG(pi), DB(qj)) is the Euclidean distance of the two descriptors, β is the threshold and

L1(DG(pi)) is the Manhattan distance of descriptor DG(pi).

Then, we adopt RANSAC [17] for eliminating false matching pairs. We set inlier matching

pairs asMR
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(a)

(b)

Figure 7: Matching Pairs (a) Initial correspondenceMinit, and (b) Inlier correspondenceMR.

3.2 Image Transformation

Traditionally, the most commonly used image alignment method is the homography transform,

which transforms the image into R2 plane. It works well in situations where the scene is planar

or taken only with the camera rotates. However, since the 360◦ panoramic image is a spherical

image, the conditions mentioned above are not satisfied in reality, and artifacts such as ghosting

effects occur frequently.

To overcome these situations where homography warping does not work well, Zaragoza et al.

[26] proposed a model called APAP that splits the image into patches and warps each local area

by moving Direct Linear Transformation(Moving DLT) manner. APAP reduced ghosting effects
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significantly and increased the image stitching accuracy compared to conventional homography

warping. Therefore, we apply APAP to transform the background image B to generate the

reference image B̃, where the edge pixels are almost similar to G.

(a) (b)

Figure 8: Results of Transformation (a) Glass image G, and (b) Reference image B̃

IV Edge Separation

Based on the gradient sparsity prior to natural image [6], it is negligible that the edges in the

glass image belong to both the transmission and the reflection scene. Therefore we will divide

the glass edges EG into the transmission ET , and the reflection edges ER.

Previous reflection removal algorithms with single glass image [2], [8], [27] have removed

reflected artifacts with the smoothness prior that the reflection images are smoother or blurrier

than the transmission image. It works well in situations where the reflection scene has no

apparent features such as edge or corner points. However, in most cases, the reflection image is

not smooth and has distinct features. Therefore, the prior is inconsistent, and the conventional

single-layer separation methods do not work well.

Since we use two images(the glass image and the reference image), it can be considered as

the multiple images. But unlike the existing methods [2], [28], [14], this problem has different

set of data. Existed multiple glass datasets consisted of images with slightly different camera

positions, and it was related to the fact that reflection edges are distributed without consistency.

Since the features of transmission objects are similar, existed methods estimated consistency of

transmission edges using gradient magnitudes. However, the images used in this problem have

different characteristics. Therefore, it is unnatural to separate edges with the above manner

because the gradient difference is large.

We separate the edges differently from the conventional method. Though the gradient mag-

nitudes of the two images are different, the gradient angle of the reflection scene in the glass
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image and the reference image are similar. Therefore we distinguish reflection and transmission

edges by the magnitude and angle of the gradient.

Figure 9: The gradient angle of reflection and transmission object. Blue circles represent reflected

object which appear on the both images and red circles represent transmission object which only

appear in G.

We first select pixels with the gradient magnitude exceeding the threshold from G and B̃,

respectively. Then do hadamard products to take pixels on both the glass and reference images

as the reflection edge candidates E .

EG =


1, ||∇G||2 > Thg

0, otherwise

, EB̃ =


1, ||∇B̃||2 > Thb

0, otherwise

(3.3)

E = EG ◦ EB̃ (3.4)

where ◦ is hadamard product.

The angular similarity α(x) is the angle between reflection and transmission gradients. We

calculated the reflection and transmission probabilities for the pixels on E as eqn.3.6, 3.7

α(x) = arccos

(
〈∇G(x),∇B̃(x)〉
||∇G(x)||2||∇B̃(x)||2

)
(3.5)

where 〈, 〉 is the inner product operation.

PrR(x) =
1

1 + e−α(x)/σ
(3.6)

PrT = 1− PrR (3.7)
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Finally, we designate the reflection edges R and transmission edges T . Empiricaly, we set

the reflection edges that PrR > 0.9 and the transmission edges are the glass edges except the

reflection edges. Separated edges are illustrated in Fig. 10.

(a) (b)

Figure 10: Results of edge separation (a) R, and (b) T

V Layer Reconstruction

After the separation of gradient edges, we follow the [6] to reconstruct the transmission and

reflection image from the gradients. Levin and Weiss proved that the gradient distribution of

natural images could be modeled by the linear sum of two Laplacian distribution and be a key

to reconstruct the images by minimizing the cost function defined as eqn. ??. Here, we use two

orientations and two degrees of Sobel filters. The first term enforces the sparsity while the last

two terms require the recovered image gradients to follow our separation.

(a) (b)

Figure 11: Results of Transformation (a) Transmission T , and (b) Reflection R

Since Levin’s method occurs color distortion, we use Poisson solver function [29] with the G

as a boundary map on the gradient T to alleviate the distortion.
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Figure 12: Reconstructed 360◦ panoramic image
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Chapter 4

Experimental Results

Since there is no existing research to remove reflections from 360◦ panoramic images, there are no

360◦ panorama datasets with reflected objects, so we have taken the images with GoPro Fusion,

a 360◦ panoramic camera. The camera consists of two fisheye lenses and generates a spherical

image by stitching the two images taken from each lens. We experimented by transforming it

into a 2D image. Since the resolution of the panoramic image is 5760× 2880, which means the

computation is too complex, we use 0.3 rescaled images, 1728× 864.

We compare with a single reflection removal algorithm, SRS [2], and two deep learning

methods, RSPL [3] and BDN [4]. The methods based on multiple images did not work since

correspondence matching points could not be extracted properly, resulting in severe homography

transform error.

BDN showed strong points for removing the smooth objects well, yet weak performance for

the strongly reflected objects. The rest of the methods rarely erase the reflected objects from

the image. This suggests that the proposed algorithm is better than the existing algorithm

and deep learning network for the reflection removal of the panoramic image, especially for the

strong reflection.
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(a)

(b) (c)

(d)

(e) (f)

Figure 13: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 14: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 15: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 16: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 17: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 18: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a)

(b) (c)

(d)

(e) (f)

Figure 19: Experimental images and resluts (a) Original, (b) Glass, (c) Reference image, (d) the

proposed algorithm, (e) Transmission layer, and (f) Reflection layer.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 20: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(g) (h)

(i) (j)

Figure 21: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(a) (b)
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(e) (f)

(g) (h)

(i) (j)

Figure 22: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(e) (f)

(g) (h)

(i) (j)

Figure 23: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(g) (h)

(i) (j)

Figure 24: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(g) (h)

(i) (j)

Figure 25: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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(g) (h)

(i) (j)

Figure 26: Experiment results of comparison. (a) Glass image, (b) Reference image, (c - d) T

and R of [2], (e - f) T and R of [3], (g - h) T and R of [4] and (i - j) T and R of Proposed

method.
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Chapter 5

Conclusions

We proposed a reflected object removal algorithm for 360 irc panoramic images. The reflection

and the transmission image were distinguished using the characteristics of the panoramic image

that the actual image reflected on the glass exists in the image. We reconstruct the transmission

scene using the layer separation method proposed with Levin. While the existing deep learning

techniques are weak for strong reflections, our algorithms do a good performance of removing

reflected artifacts. However, it is still weak in removing homogeneous objects like the sky. Future

work will be carried out to remove the homogenious areas.
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