157,040 research outputs found

    Line graphs as social networks

    Full text link
    The line graphs are clustered and assortative. They share these topological features with some social networks. We argue that this similarity reveals the cliquey character of the social networks. In the model proposed here, a social network is the line graph of an initial network of families, communities, interest groups, school classes and small companies. These groups play the role of nodes, and individuals are represented by links between these nodes. The picture is supported by the data on the LiveJournal network of about 8 x 10^6 people. In particular, sharp maxima of the observed data of the degree dependence of the clustering coefficient C(k) are associated with cliques in the social network.Comment: 11 pages, 4 figure

    Signed graph embedding: when everybody can sit closer to friends than enemies

    Full text link
    Signed graphs are graphs with signed edges. They are commonly used to represent positive and negative relationships in social networks. While balance theory and clusterizable graphs deal with signed graphs to represent social interactions, recent empirical studies have proved that they fail to reflect some current practices in real social networks. In this paper we address the issue of drawing signed graphs and capturing such social interactions. We relax the previous assumptions to define a drawing as a model in which every vertex has to be placed closer to its neighbors connected via a positive edge than its neighbors connected via a negative edge in the resulting space. Based on this definition, we address the problem of deciding whether a given signed graph has a drawing in a given â„“\ell-dimensional Euclidean space. We present forbidden patterns for signed graphs that admit the introduced definition of drawing in the Euclidean plane and line. We then focus on the 11-dimensional case, where we provide a polynomial time algorithm that decides if a given complete signed graph has a drawing, and constructs it when applicable

    On the equivalence between graph isomorphism testing and function approximation with GNNs

    Full text link
    Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In the light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNNs, which succeeds on distinguishing these graphs and provides improvements on real-world social network datasets

    Segregation in Networks.

    Get PDF
    Schelling (1969, 1971a,b, 1978) considered a simple model with individual agents who only care about the types of people living in their own local neighborhood. The spatial structure was represented by a one- or two-dimensional lattice. Schelling showed that an integrated society will generally unravel into a rather segregated one even though no individual agent strictly prefers this. We make a first step to generalize the spatial proximity model to a proximity model of segregation. That is, we examine models with individual agents who interact ’locally’ in a range of network structures with topological properties that are different from those of regular lattices. Assuming mild preferences about with whom they interact, we study best-response dynamics in random and regular non-directed graphs as well as in small-world and scale-free networks. Our main result is that the system attains levels of segregation that are in line with those reached in the lattice-based spatial proximity model. In other words, mild proximity preferences can explain segregation not just in regular spatial networks but also in more general social networks. Furthermore, segregation levels do not dramatically vary across different network structures. That is, Schelling’s original results seem to be robust also to the structural properties of the network.Spatial proximity model, Social segregation, Schelling, Proximity preferences, Social networks, Undirected graphs, Best-response dynamics.

    Segregation in Networks

    Get PDF
    Schelling (1969, 1971, 1971, 1978) considered a simple model with individual agents who only care about the types of people living in their own local neighborhood. The spatial structure was represented by a one- or two-dimensional lattice. Schelling showed that an integrated society will generally unravel into a rather segregated one even though no individual agent strictly prefers this. We make a first step to generalize the spatial proximity model to a proximity model of segregation. That is, we examine models with individual agents who interact 'locally' in a range of network structures with topological properties that are different from those of regular lattices. Assuming mild preferences about with whom they interact, we study best-response dynamics in random and regular non-directed graphs as well as in small-world and scale-free networks. Our main result is that the system attains levels of segregation that are in line with those reached in the lattice-based spatial proximity model. In other words, mild proximity preferences can explain segregation not just in regular spatial networks but also in more general social networks. Furthermore, segregation levels do not dramatically vary across different network structures. That is, Schelling's original results seem to be robust also to the structural properties of the network.Spatial proximity model, Social segregation, Schelling, Proximity preferences, Social networks, Undirected graphs, Best-response dynamics.

    Tracing the Use of Practices through Networks of Collaboration

    Full text link
    An active line of research has used on-line data to study the ways in which discrete units of information---including messages, photos, product recommendations, group invitations---spread through social networks. There is relatively little understanding, however, of how on-line data might help in studying the diffusion of more complex {\em practices}---roughly, routines or styles of work that are generally handed down from one person to another through collaboration or mentorship. In this work, we propose a framework together with a novel type of data analysis that seeks to study the spread of such practices by tracking their syntactic signatures in large document collections. Central to this framework is the notion of an "inheritance graph" that represents how people pass the practice on to others through collaboration. Our analysis of these inheritance graphs demonstrates that we can trace a significant number of practices over long time-spans, and we show that the structure of these graphs can help in predicting the longevity of collaborations within a field, as well as the fitness of the practices themselves.Comment: To Appear in Proceedings of ICWSM 2017, data at https://github.com/CornellNLP/Macro

    Models for On-line Social Networks

    Get PDF
    On-line social networks such as Facebook or Myspace are of increasing interest to computer scientists, mathematicians, and social scientists alike. In such real-world networks, nodes represent people and edges represent friendships between them. Mathematical models have been proposed for a variety of complex real-world networks such as the web graph, but relatively few models exist for on-line social networks. We present two new models for on-line social networks: a deterministic model we call Iterated Local Transitivity (ILT), and a random ILT model. We study various properties in the deterministic ILT model such as average degree, average distance, and diameter. We show that the domination number and cop number stay the same no matter how many nodes or edges are added over time. We investigate the automorphism groups and eigenvalues of graphs generated by the ILT model. We show that the random ILT model follows a power-law degree distribution and we provide a theorem about the power law exponent of this model. We present simulations for the degree distribution of the random ILT model
    • …
    corecore