1,006 research outputs found

    Advancing In Situ Modeling of ICMEs: New Techniques for New Observations

    Full text link
    It is generally known that multi-spacecraft observations of interplanetary coronal mass ejections (ICMEs) more clearly reveal their three-dimensional structure than do observations made by a single spacecraft. The launch of the STEREO twin observatories in October 2006 has greatly increased the number of multipoint studies of ICMEs in the literature, but this field is still in its infancy. To date, most studies continue to use on flux rope models that rely on single track observations through a vast, multi-faceted structure, which oversimplifies the problem and often hinders interpretation of the large-scale geometry, especially for cases in which one spacecraft observes a flux rope, while another does not. In order to tackle these complex problems, new modeling techniques are required. We describe these new techniques and analyze two ICMEs observed at the twin STEREO spacecraft on 22-23 May 2007, when the spacecraft were separated by ~8 degrees. We find a combination of non-force-free flux rope multi-spacecraft modeling, together with a new non-flux rope ICME plasma flow deflection model, better constrains the large-scale structure of these ICMEs. We also introduce a new spatial mapping technique that allows us to put multispacecraft observations and the new ICME model results in context with the convecting solar wind. What is distinctly different about this analysis is that it reveals aspects of ICME geometry and dynamics in a far more visually intuitive way than previously accomplished. In the case of the 22-23 May ICMEs, the analysis facilitates a more physical understanding of ICME large-scale structure, the location and geometry of flux rope sub-structures within these ICMEs, and their dynamic interaction with the ambient solar wind

    Clique descriptor of affine invariant regions for robust wide baseline image matching

    Get PDF
    Assuming that the image distortion between corresponding regions of a stereo pair of images with wide baseline can be approximated as an affine transformation if the regions are reasonably small, recent image matching algorithms have focused on affine invariant region (IR) detection and its description to increase the robustness in matching. However, the distinctiveness of an intensity-based region descriptor tends to deteriorate when an image includes homogeneous texture or repetitive pattern. To address this problem, we investigated the geometry of a local IR cluster (also called a clique) and propose a new clique-based image matching method. In the proposed method, the clique of an IR is estimated by Delaunay triangulation in a local affine frame and the Hausdorff distance is adopted for matching an inexact number of multiple descriptor vectors. We also introduce two adaptively weighted clique distances, where the neighbour distance in a clique is appropriately weighted according to characteristics of the local feature distribution. Experimental results show the clique-based matching method produces more tentative correspondences than variants of the SIFT-based method

    Ram pressure feeding super-massive black holes

    Get PDF
    When supermassive black holes at the center of galaxies accrete matter (usually gas), they give rise to highly energetic phenomena named Active Galactic Nuclei (AGN). A number of physical processes have been proposed to account for the funneling of gas towards the galaxy centers to feed the AGN. There are also several physical processes that can strip gas from a galaxy, and one of them is ram pressure stripping in galaxy clusters due to the hot and dense gas filling the space between galaxies. We report the discovery of a strong connection between severe ram pressure stripping and the presence of AGN activity. Searching in galaxy clusters at low redshift, we have selected the most extreme examples of jellyfish galaxies, which are galaxies with long tentacles of material extending for dozens of kpc beyond the galaxy disk. Using the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of the 7 galaxies of this sample host a central AGN, and two of them also have galactic-scale AGN ionization cones. The high incidence of AGN among the most striking jellyfishes may be due to ram pressure causing gas to flow towards the center and triggering the AGN activity, or to an enhancement of the stripping caused by AGN energy injection, or both. Our analysis of the galaxy position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another, yet unforeseen, possible mechanism for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30

    Central galaxy growth and feedback in the most massive nearby cool core cluster

    Full text link
    We present multi-wavelength observations of the centre of RXCJ1504.1-0248 - the galaxy cluster with the most luminous and relatively nearby cool core at z~0.2. Although there are several galaxies within 100 kpc of the cluster core, only the brightest cluster galaxy (BCG), which lies at the peak of the X-ray emission, has blue colours and strong line-emission. Approximately 80 Msun/yr of intracluster gas is cooling below X-ray emitting temperatures, similar to the observed UV star formation rate of ~140 Msun/yr. Most star formation occurs in the core of the BCG and in a 42 kpc long filament of blue continuum, line emission, and X-ray emission, that extends southwest of the galaxy. The surrounding filamentary nebula is the most luminous around any observed BCG. The number of ionizing stars in the BCG is barely sufficient to ionize and heat the nebula, and the line ratios indicate an additional heat source is needed. This heat source can contribute to the H\alpha-deduced star formation rates (SFRs) in BCGs and therefore the derived SFRs should only be considered upper limits. AGN feedback can slow down the cooling flow to the observed mass deposition rate if the black hole accretion rate is of the order of 0.5 Msun/yr at 10% energy output efficiency. The average turbulent velocity of the nebula is vturb ~325 km/s which, if shared by the hot gas, limits the ratio of turbulent to thermal energy of the intracluster medium to less than 6%.Comment: 15 pages, 11 figures, MNRAS in press. Corrected typo in abstract
    • 

    corecore