We present multi-wavelength observations of the centre of RXCJ1504.1-0248 -
the galaxy cluster with the most luminous and relatively nearby cool core at
z~0.2. Although there are several galaxies within 100 kpc of the cluster core,
only the brightest cluster galaxy (BCG), which lies at the peak of the X-ray
emission, has blue colours and strong line-emission. Approximately 80 Msun/yr
of intracluster gas is cooling below X-ray emitting temperatures, similar to
the observed UV star formation rate of ~140 Msun/yr. Most star formation occurs
in the core of the BCG and in a 42 kpc long filament of blue continuum, line
emission, and X-ray emission, that extends southwest of the galaxy. The
surrounding filamentary nebula is the most luminous around any observed BCG.
The number of ionizing stars in the BCG is barely sufficient to ionize and heat
the nebula, and the line ratios indicate an additional heat source is needed.
This heat source can contribute to the H\alpha-deduced star formation rates
(SFRs) in BCGs and therefore the derived SFRs should only be considered upper
limits. AGN feedback can slow down the cooling flow to the observed mass
deposition rate if the black hole accretion rate is of the order of 0.5 Msun/yr
at 10% energy output efficiency. The average turbulent velocity of the nebula
is vturb ~325 km/s which, if shared by the hot gas, limits the ratio of
turbulent to thermal energy of the intracluster medium to less than 6%.Comment: 15 pages, 11 figures, MNRAS in press. Corrected typo in abstract