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Clique Descriptor of Affine Invariant Regions

for Robust Wide Baseline Image Matching
Dongjoe Shin and Tardi Tjahjadi,

Abstract

Assuming that the image distortion between corresponding regions of a stereo pair of images with wide baseline can be

approximated as an affine transformation if the regions are reasonably small, recent image matching algorithms have focused on

affine Invariant Region (IR) detection and its description to increase the robustness in matching. However, the distinctiveness of an

intensity-based region descriptor tends to deteriorate when an image includes homogeneous texture or repetitive pattern. To address

this problem, we investigated the geometry of a local IR cluster (also called a clique) and propose a new clique-based image

matching method. In the proposed method, the clique of an IR is estimated by Delaunay triangulation in a local affine frameand

the Hausdorff distance is adopted for matching an inexact number of multiple descriptor vectors. We also introduce two adaptively

weighted clique distances, where the neighbour distance ina clique is appropriately weighted according to characteristics of the

local feature distribution. Experimental results show theclique-based matching method produces more tentative correspondences

than variants of the SIFT-based method.

Keywords:MSER, SIFT, Affine invariant feature, Wide baseline matching, Hausdorff distance

I. I NTRODUCTION

Determining correspondences between images of a scene taken at camera positions separated by a wide baseline is one of

the core problems in computer vision. Although this is commonly found in many practical vision systems, it is difficult to

obtain reliable results with traditional point-based matching algorithms due to the image distortion introduced by the large

baseline displacement. One attempt to increase the matching reliability is to include the nearby local texture of an interesting

point. For example, the Scale Invariant Feature Transform (SIFT) is designed to describe the local texture informationaround

a scale invariant point [2] and as such it successfully improves the matching performance even when an image is degraded

by noise, and by a change in scene illumination, affine transform, scale and/or 3D view point. Mikolajczyk et al. claim that

SIFT-based descriptors, where a histogram of locally re-oriented image gradient is used to describe the local characteristics of

a feature (e.g., SIFT, SIFT-PCA and GLOH), perform best amongst the state-of-the-art descriptors [3].

However, since the SIFT detector is originally devised for scale invariant matching, it does not fully cope with the affine

distortion introduced by 3D camera motion, i.e., the matching region of an interesting point is always modelled as isotropic

even if its size is adaptively determined by the scale value of the point. Consequently, the error between the estimated and

actual feature points becomes larger as the baseline increases. To overcome this limitation, the shape of a local regionshould

take into account the affine distortion involved between twoviews, as the projection of a planar surface is locally well modelled

by an affine transform [1]. For example, the Harris affine detector [4] modifies a scale invariant region to an affine invariant

region based on the fact that corresponding normalised affine regions have similarity up to 2D rotation. As a result, a shape

Dongjoe Shin and Tardi Tjahjadi are with the School of Engineering, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.



2

adaptation matrix is estimated and used to transform an isotropic and scale invariant region to an anisotropic ellipse that is

also invariant to scale and an affine transformation.

Other research for finding affine Invariant Regions (IR’s) ismotivated by wide baseline image matching where an IR is more

rigorously defined as a self-adaptive image patch that automatically deforms its shape with changing viewpoint [5]. Tuytelaars

et al. proposed two methods for IR detection. The first uses corners and nearby edges, and the second uses the intensity

function along rays emanating from the local intensity extremum to estimate an elliptical IR [5]. A Maximally Stable Extremal

Region (MSER) detector is also an intensity-based IR detector with highly desirable properties such as extremal regions are

closed under continuous geometric transform and monotonictransform of image intensity [6]. Recently, the MSER detector

has been extended for detecting maximally stable colour regions [7]. One advantage of using an intensity-based IR detector is

that it is less complex in computation.

The most intuitive IR matching scenario is to compare the image correlations of all possible IR matches and establish

Tentative Correspondences (TC’s) from highly correlated IR’s. Alternatively, the image correlation is often replaced by the

Mahalanobis distance or multiple IR’s from different scales are employed [6] to increase the possibility of having sufficient

texture information. Once initial TC’s have been estimatedfrom local intensity matching, they are further refined by enforcing

the global epipolar constraint within the more robust matching framework like RANSAC and MLESAC [8], [9].

In practice, to obtain more reliable initial matching results, distinctive features are extracted from an IR instead ofdirectly

using the intensity values of an IR. In addition, as distorted IRs are transformed before matching to the normalised space

where two corresponding normalised IRs have similarity up to 2D rotation, a rotation invariant IR descriptor is particularly

preferred. For example, Schaffalitzky et al. proposed a texture region descriptor where a rotation invariant bank of local operators

represents texture regions obtained from an over-segmented image [10]. Lowe applied his SIFT descriptor to a MSER with

χ2 distance [11] because the SIFT descriptor uses local gradients which are re-oriented by locally dominant gradients. Chum

et al. also proposed a non-texture based IR descriptor of a 6D-vector defined by two affine frames (called local reference

and descriptor frames) and the descriptor value is used for the index value of a geometric hash table in order to perform IR

matching in constant time [12].

The latest endeavour to increase the number of TC’s exploitsthe local neighbours of an IR. Thek-th nearest neighbour is

used as a spatial IR proximity in a shape pair descriptor, anda pair matching distance is used to determine correspondences

[11]. Thus, whenever a match is found, two pairs of IR’s are added to the current set of tentative correspondences as each

correspondence is supported by its closest neighbour in each view. Forssén et al. claim that the performance of this approach

is normally similar to a SIFT descriptor matching but is better for images with near occlusions. In this paper, we extend the

concept of the shape pair descriptor to a group descriptor, referred to as a clique descriptor in this paper. A clique descriptor is

defined on an IR cluster, which consists of a seed IR and its neighbour IR’s in a locally normalised Voronoi space. To ensure

the robustness of a clique descriptor matching to noise, a clique Hausdorff distance which can weight neighbour distances

appropriately is proposed.

This paper is organised as follows. Section 2 briefly explains the MSER detector which is used in our IR detector. The

construction of a normalised IR patch and existing descriptors (e.g., SIFT and shape descriptor) are also explained. Section

3 presents the proposed clique descriptor and Section 4 presents the associated matching method. Finally, the experimental

results and conclusions are presented in Section 5 and 6, respectively.
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II. I NVARIANT REGION DETECTOR AND DESCRIPTOR

A. MSER detector

The MSER detector is employed to detect IR’s in the proposed matching method due to its simplicity and fast implementation

(e.g., it easily detects IR’s by thresholding an image). A MSER is defined by an extremal property of the intensity function of

a region and its outer boundary [6]. Let I(p), wherep is a point in an image, be a function that returns the intensity values

of a setI, e.g., an 8-bit grey level image hasI = {0, 1, 2, · · · , 255}. A maximum intensity regionRm is then defined by

Rm = {p | I(p) > I(q), where∀p ∈ R, ∀q ∈ ∂R}, (1)

whereR represents a region in an image, i.e., a set of 8-connected neighbour points, and∂R is its boundary. The minimal

intensity regionRn is defined by the opposite condition ofRm, i.e., I(p) < I(q). In practice, the extremal regions in (1) are

estimated by image thresholding so that a current extremal region is either split into multiple regions or merged into another

region as value of the image thresholding parameter is varied, thus producing a sequence of nested extremal regions.

The MSER detector determines IR’s from every sequence of nested extremal regions that satisfy the stability condition of

d(Ei) =
|Ei+∆| − |Ei−∆|

|Ei|
, (2)

where | · | denotes the number of elements in a set and∆ is a small increment. For a sequence of nested extremal regions,

E1 ⊂ E2 · · · ⊂ Ek, the i-th extremal regionEi, where(1 < i < k), is selected as a maximally stable extremal region whenEi

is a local minimum of (2). Therefore, a result of MSER detection comprises binarised regions with areas that do not change

significantly even when there is a small change in threshold values.

The covariance matrix of a MSER defines an elliptical IR. A maximally stableEi is represented by a 2×2 matrix, Ci =

|Ei|−1
∑

p∈Ei
(p−mi)(p−mi)

T , wheremi is the mean position ofEi, T is the transpose operator, and anisotropy is measured

by the ratio of two eigen values ofCi. The eigen vectors ofCi andmi define a local reference frame of an IR, which is used

for searching a local neighbourhood.

A MSER normalisation is a process to transform various elliptical IR’s of different orientation and scale toNp ×Np image

patches for robust matching. The process is similar to a process that transforms a random data with high anisotropy ratioto

one with a normalised covariance matrix̄Ci = I. A covariance matrix can be decomposed toCi = Udiag(λ1, λ2)U
T , where

UUT = I and diag(λ1, · · · , λi) is a square diagonal matrix with elementsλ1, · · · , λi. To makeCi isotropic, it needs to be

transformed to

C̄i = diag(
1√
λ1

,
1√
λ2

)UT CiU diag(
1√
λ1

,
1√
λ2

). (3)

Thus, a normalised point̄p is obtained using

p̄ = s diag(
√

λ1,
√

λ2)U
T
p, (4)

where s is a scaling factor andp is a point belonging to an elliptical IR. A bilinear interpolation is used to estimate the

intensity value of a non-integer̄p. This is followed by Gaussian blurring.

B. IR descriptor

The SIFT descriptor extracts distinctive feature vectors from the gradients of each normalised IR and we adopt the same SIFT

implementation as in [2], [11]. The SIFT descriptor consists of two processes: re-orientation and local histogram estimation.

In the re-orientation process, all gradient directions arere-oriented according to the dominant orientations, wherethe dominant
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Fig. 1. A MSER detection: (a) A detected MSER is illustrated as an ellipse and a cross denotes its centre; (b) Textured MSERof (a); (c) MSER of (a); (b)

and (c) are normalised patches withNp = 41; (d) SIFT description of (b) and (c) are respectively represented by a dashed line with squares and a solid line

with crosses.

orientations are estimated from an orientation histogram of a normalised IR patch. The re-orientation makes the descriptor

rotation invariant. Note that an IR may have multiple dominant orientations, i.e., orientations with maximum votes andwith

more than 80% of the votes in the orientation histogram. Thus, when estimating the orientation histogram, the orientation of

a gradient is weighted by its magnitude and the value of a spatial Gaussian function centred at the normalised IR centre. In

the local histogram estimation, a normalisedNp × Np IR is divided into 16 image tiles and an 8-bin orientation histogram

is estimated for each tile. Thus, a (16×8)-by-Nd histogram matrix is obtained in each normalised IR, whereNd denotes the

number of dominant orientations.

The SIFT detector is normally applied to a textured IR but it may also be used with a MSER. It is thus referred to as a

shape descriptor in [11]. A shape descriptor has been shown in [11] to be better than the general SIFT descriptor in matching

images with near occlusions.

An example of a MSER and its normalised patches are illustrated in Fig. 1. The original image is a 800[px]×640[px] image

from the Oxford data set [13] and it has been cropped to illustrate one MSER which is represented by the ellipse in Fig. 1(a).

A texture region within the ellipse is normalised to give thetextured MSER in Fig. 1(b) and the corresponding MSER is shown

in Fig. 1(c). The scaling factors in (4) is set to 1.2 in the normalisation so that the patches are slightly larger than the estimated

IR ellipse. Also, the normalised patches are smoothed by a Gaussian kernel after a bilinear interpolation. For example,the

textured MSER shown in Fig. 1 (b) has been blurred by a Gaussian function centred at the centre of the patch with a standard

deviationσt = 1 whilst a larger standard deviationσm = 1.2 has been applied in Fig. 1 (c). The SIFT descriptors of the two

patches are shown in Fig. 1(d), where a solid line with crosses denotes that of the textured MSER and a dashed line with

squares denotes that of the shape descriptor.

III. C LIQUE DESCRIPTOR

Although the shape descriptor and SIFT descriptor perform well in the general case, the matching performance can be further

improved if descriptors of nearby features of an interesting point are also used. In this context, Forssén et al. proposed a shape

pair descriptor that combines the shape descriptor of thek-th nearest MSER [11]. Instead of pairwise matching, the proposed

clique descriptor extends this IR grouping concept by usingall the neighbours simultaneously for matching. Furthermore the

neighbour distance is appropriately weighted according tolocal geometry and size of the elliptical MSER’s.

To determine the local neighbours of a MSEREi, all MSER’s need to be transformed to a local reference framederived from
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Ei. This is because we assume that the configuration of locally adjacent IR’s is not changed significantly in a local affine frame,

and the entire feature distribution also contributes to form a local neighbour. All centres of MSER’s are thus transformed to a

new space defined by the centre ofEi and its two eigen vectors ofCi. Since this causes the selection of neighbours to be too

sensitive to small variation in centre position ifEi has a high anisotropy ratio, MSER’s with significantly smallellipses or high

anisotropy ratio are excluded from the clique descriptor estimation. The transformed points are then tessellated by Delaunay

triangulation, a dual of a Voronoi diagram that divides distinct n points according to the nearest neighbour rule [14].

The i-th clique is uniquely defined by a local point cluster centred at m̄i, a normalised mean ofEi. For example, suppose

that a set of transformed MSER centres in the local referenceframe ofEi, is denoted as

Vi = {m̄k | m̄k = Timk + mi, k = 1, · · · |E|}, (5)

whereTi is the i-th affine transform which transforms thei-th MSER ellipse to a circle,mk is thek-th mean of a MSEREk

and |E| is the total number of MSER’s in an image. If thei-th Delaunay graphGi is represented by sets of points, edges and

faces, i.e., a graphGi = (Vi,Li,Fi), a point cluster called a clique is then defined as a graphicalunit of Gi. For example, the

k-th clique in thei-th local frameCi(k) consists of a point̄mk called a seed and the adjacent points directly connected to the

seed are denoted byLi. Using the clique notation in [15], a clique centred at a point m̄k in the i-th local frame is

Ci(k) = {m̄k} ∪ {m̄j | ∀(m̄k, m̄j) ∈ Li}. (6)

The proposed clique descriptor is designed to store all SIFTdescriptors of MSER’s in the same clique. Moreover, angles

defined by every two neighbours and a seed in the local frame, and normalised size of neighbour ellipses are also stored for

weighting the influence of neighbours. Thus, a clique descriptor of a MSEREi has three sets: a descriptor set, an angle set

and a size set.

A descriptor setDi(k) of Ci(k) is defined by

Di(k) = {Fj | m̄j ∈ Ci(k)}, (7)

whereFj is a 128×Nd SIFT descriptor matrix of a MSEREj whose mean ismj , and its angle set is given by

Ai(k) =

{

θj |θj = cos−1

(

(m̄n1 − m̄s) · (m̄n2 − m̄s)

|m̄n1 − m̄s||m̄n2 − m̄s|

)}

, (8)

wherem̄s is a seed ofCi(k) and∀(m̄s, m̄n1, m̄n2) ∈ Fi. Its size set is defined by

Si(k) = {sj |sj =
ds(j)

ds(k)
, ∀m̄j ∈ Ci(k) andj 6= k}, (9)

whereds(j) = λj1λj2 andλj1 andλj2 are two eigen values ofCj .

Fig. 2(a) illustrates a Delaunay graph obtained in the localreference frame of the MSER shown in Fig. 1(a). The MSER

has 7 neighbours in its clique, and the textured MSER and MSERpatches in the neighbourhood are shown in Fig. 2(b), where

T.M. denotes a textured MSER and the seed ID is 254. The angle set describing a convex shape of a clique [as shown in

Fig. 1(c)] and the normalised size of neighbour ellipses [asshown in Fig. 1(d)] are used as weighting factors.

IV. CLIQUE DISTANCE

A distance measure is required to determine a match between two corresponding cliques with different number of neighbours,

and which should be robust to the presence of any false neighbours in a clique. The Hausdorff Distance (HD) satisfies these
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Fig. 2. A clique descriptor: (a) a Delaunay graph determinedby the local reference frame of a MSER shown in Fig. 1(a); (b) 7neighbours of seed 254 in

a clique where T.M. denotes a textured MSER; (c) and (d) respectively show angle values inA254(254) and size valuesS254(254)

two criteria, i.e., it defines a distance between two point sets without point correspondences and is robust against noise or

outliers [16]. The general HD is a directional distance and the clique HD is

dhd(Ci(m), Cj(n)) = max
m̄α∈Ci

min
m̄β∈Cj

{dχ2(Fα, Fβ)}, (10)

wheredχ2(·) is a χ2 distance that returns the minimal distance between two SIFTdescriptor matrices, i.e.,

dχ2(Fα, Fβ) = min
j,k

1

2

128
∑

i

|Fα(i, j) − Fβ(i, k)|
Fα(i, j) + Fβ(i, k)

. (11)

Thus, a non-directional HD is obtained by combining two directional distances. There are various ways to combine, e.g.,

averaging, weighted averaging, minimum and maximum of two directional distances. However, the maximum of two directional

distances is best for identification [17]. Thus, we define a non-directional HD as

d′hd(Ci(m), Cj(n)) = max(dhd(Ci(m), Cj(n)), dhd(Cj(n), Ci(m))).
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If a pair descriptor is obtained by simply appending thek-th nearest neighbour to a seed descriptor and (11) is

used as a metric, this distance is equivalent to the minimum between a seed distance and a neighbour distance, i.e.,

min(dχ2 (Fs1, Fs2), dχ2(Fn1, Fn2)). In this case the discriminant power is low because a seed distance is sometimes replaced

with its closer neighbour distance. Furthermore, even though the sum of two distances is used it may be less distinctive than

a single seed distance in some cases. Thus, the neighbour distance is appropriately weighted for best performance, i.e.,

dw(Ci(m), Cj(n)) = dχ2(Fm, Fn) + wtd
′
hd(Ni(m), Nj(n)), (12)

whereNi(m) = Ci(m)−{m̄m} andwt is a weight constant. Since (12) treats every neighbour distance equally, it is called an

Equally Weighted Clique (EWC) distance in this paper and ourexperimental results show that EWC performs well in general.

However, since it is often unclear as to how to choose an appropriatewt of EWC, we also propose an Adaptively Weighted

Clique (AWC) distance, in which each neighbour distance hasa different weighting coefficient according to the size and area

of an IR, i.e.,

wt = wm

(

dhd(Ai(m), Aj(n))

amax

+
dhd(Si(m), Sj(n))

smax

)

/2, (13)

wherewm is a maximum neighbour weight which is normally set to 0.5, and amax andsmax are respectively the maximum area

and size distance between two images. Apart from its automatic weight selection, AWC is also advantagous particularly when

the clique neighbours of a corresponding pair are changed significantly. To improve matching performance of the proposed

clique matching, the general HD of (10) can be replaced with adirectional clique Modified HD (MHD), i.e.,

dmhd(Ci(m), Cj(n)) =
1

|Ci|
∑

m̄α∈Ci

min
m̄β∈Cj

{dχ2(Fα, Fβ)}. (14)

The clique matching forms TC’s by collecting every matchingpair for which the ratio of the best and second best clique

distance is smaller than a threshold, and a neighbour IR having the smallestχ2 distance within a clique is also included as

a TC, i.e., a single matched clique produces two TC’s. RANSACis then employed to reject outliers in TC’s which do not

comply with the global geometric constraint such as epipolar geometry.

V. EXPERIMENTAL RESULTS

For the evaluation of matching performance, we compared three group descriptor matching algorithms, i.e., Equally Weighed

Clique (EWC) matching, Adaptively Weighted Clique (AWC) descriptor matching and Pair descriptor Matching (PM). In

addition, the results obtained using SIFT and Correlation Matching (CM) are presented to demonstrate the performance of

IR matching with a single descriptor and without a descriptor, respectively. As a measure of matching quality, the number of

inliers from initial matching results are counted and the inlier frequency graphs are estimated, where the larger the number of

inliers is the better is the matching performance.

As explained in Section IV, EWC represents a clique distancewherewt of (12) is fixed, so that the contributions from all

neighbour distances are equally treated when matching a seed point. However, AWC is designed to give different weight on

each neighbour distance adaptively but its maximum contribution is limited bywm which is normally set to 0.5, viz.wt of

AWC is a function of maximum weight (wm), neighbour angle ratio (A) and neighbour size ratio (S), to be accurate. PM

represents a pairwise descriptor matching method using either binarised MSERs (called a shape descriptor in [11]) or textured

MSERs. The shape descriptor is considered as the SIFT resultof a binarised MSER and accordingly it emphasises the shape

of a MSER rather than the information from its texture, whilst a PM using textured MSERs is more concentrated on the
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Fig. 3. Matching images from different views: (a) Result of equally weighted clique descriptor matching using texturedMSER’s; (b) and (c) Inliers frequency

graphs from respectively matching using textured MSER’s and binary MSER’s, where: EWC descriptor (∆), AWC descriptor (�), a pair descriptor (◦), SIFT

(x) and correlation (*).

radiometric clues. However, both methods are similar in terms of a pairwise matching and we collectively called them PM in

this paper.

In our test, a PM (e.g., either using a shape pair or texture pair descriptor) is designed to use the third nearest neighbour of

a seed IR in the local reference frame to avoid a false nearestneighbour introduced by image distortion and the TC threshold

is set to 1.4. This means a matching candidate of thei-th IR is selected when the ratio of the best and second best distance in

the i-th row vector of a distance matrix1 is greater than 1.4. To minimise the computational load, we do not permit an IR to

have multiple correspondences so that only the candidate with the closest distance is selected as a tentative correspondence.

A. Matching images from different viewpoints

The first test compares the matching results of images from different viewpoints. When the MSER detector is applied to two

640[px]×480[px] images of a tea shop as shown in Fig. 3(a), 519 and 546 MSER’s are detected as input IR’s. In this test, the

EWC matcher with textured MSER’s produces the best matchingresults which are illustrated as connected lines in Fig. 3(a).

In a general situation (i.e., where the difference of two viewpoints is insignificant), matching based on textured MSER’s will

generate more TC’s than matching with binary MSER’s becausetexture in an IR gives significant clues for matching unless

1The size of a distance matrix is determined by|El| × |Er | where |El| and |Er| respectively represent the total number of MSER’s in a left and right

images. Thus, thei-th row vector includes every matching distance between thei-th MESR in a left image and any MSER in a right image.
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TABLE I

INLIER RATIO OF MATCHING ALGORITHMS

AWM EWM PM SIFT CM

r1
a 57/72b 64/82 31/48 36/49 14/19

r2
c 34/47 39/57 16/24 21/27 0/1

mr
d 76.5 74.1 65.3 75.0 70.0

aresult using the textured MSER matching
bthe number of correct matching / the number of initial TC’s
cresult using the MSER matching
dAverage inlier ratio [%]

the texture is homogeneous or highly distorted. The two inlier frequency graphs in Fig. 3(b) and (c) illustrate the matching

performance of five matching algorithms with two different input IR’s. A maximum of 64 inliers are detected in the textured

MSER matching whilst a maximum of 39 inliers are found in the MSER matching. Both best results as shown in Fig. 3(b) and

(c) are obtained when the EWC descriptor is used. In this case, 82 and 57 TC’s are estimated before RANSAC is applied, i.e.,

78.0% and 68.4% of TC’s are classified as inliers. Full details of the number of inliers and inlier ratios are shown in TableI.

The pair descriptor performs less well than SIFT in both textured MSER and MSER matchings. The average inlier ratios of

the pair and SIFT descriptor matchings are 65.3% and 75%, respectively. However, the performance is significantly degraded

without a descriptor. Correlation-based matching only detects 14 inliers when textured MSER’s are used (see Table I) and

no inliers are found without texture information. The performance of AWC descriptor matching lies between that of the

SIFT descriptor matching and EWC descriptor matching, i.e., both weighted group descriptor matchings perform better than

the general SIFT descriptor matching. This result confirms that an additional neighbour distance increases the discrimination

power of a single descriptor if the neighbour distance is appropriately weighted when the configuration of neighbourhood is

not significantly changed.

Fig. 4 shows an example of a clique of MSER’s used in matching evaluation. Although most of the neighbours support the

seed MSER (ID 484), it is easily noticed that there are some false neighbours [e.g., 419 and 400 in Fig. 4(a)]. However, as the

proposed method is based on the Hausdorff distance these outliers do not affect the matching result significantly. In addition,

it is not essential that the number of neighbours are identical and shape of the clique may not be convex as the connectivity

has been estimated from a local affine frame.

B. Matching images with repetitive pattern

The second test compares matching performances on images with a repetitive pattern, i.e., the wall images [see Fig. 5(a)]

from the Oxford data set. Since the input images do not provide distinctive visual clues, matching using SIFT descriptorand

correlation give similar performance, i.e., SIFT descriptor of a textured MSER is not more distinctive than a textured MSER

without descriptor. However, the proposed distance improves the performance of SIFT descriptor matching as it exploits the

local geometry. 1885 and 1656 MSER’s are detected due to the larger size of the test images (1000[px]×700[px]). However,

the performance is more degraded than in the first test, e.g.,the total inliers of the best matching method is reduced to less

than half of the best result in the first test.

The SIFT matching of textured MSER’s detects 17 inliers from18 TC’s while correlation matching detects 26 inliers out of

31 TC’s, i.e., 94% and 84% inlier ratios are obtained, respectively. However, without texture information, correlation matching

cannot detect any correspondence. On the other hand, since the neighbourhood does not change significantly, two weighted
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Fig. 4. (a) and (b) are respectively an example of left and right cliques where the seed ID is 484 and its neighbours are connected by solid lines; (c) An

example of normalised MSER’s used in matching: top two rows show binary MSER’s and bottom two rows show textured MSER’s.

neighbour distances result in the most TC’s - 35 and 26 correspondences are detected out of 42 and 29 TC’s by EWC and AWC,

respectively [see Fig. 5(c)]. A pair distance simply adds a descriptor at thek-th nearest position from a seed IR. Thus, if the

additional descriptor is not distinctive, the addition of two descriptors does not improve the matching performance. However,

the EWC descriptor increases the chance of being distinctive by adding more than one neighbour description. Furthermore,

the AWC descriptor penalises neighbour distance accordingto the shape of two matching cliques.

C. Matching images with zoom and rotation

The shape properties of a clique (such asAi(k) andSi(k)) are not changed by camera zoom and 2D rotation because a

Delaunay graph is invariant under a similarity transform, i.e., scaling, rotation and translation. Thus, the third test evaluates

any effects of these camera operations on matching. An imageand its zoom-out and rotated version [see Fig. 5(b)] from

the Oxford data set are used. After removing small and highlyanisotropic IR’s, each image produces 617 and 653 MSER’s.

However, since the MSER detector is not scale invariant, thematching result without multi-scale MSER detection as in [11]
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Fig. 5. (a) and (b) Results of equally weighted clique descriptor matching using textured MSER’s; (c) and (d) Inlier frequency graphs of (a) and (b)

respectively, where a solid and dashed lines denote matching results using textured MSER’s and MSER’s respectively, where: EWC descriptor (�), AWC

descriptor (∆), a pair descriptor (◦), SIFT (x) and correlation (*).

is degraded. The EWC descriptor matching detects 38 inliersfrom 54 TC’s, AWC descriptor matching detects 31 inliers from

43 TC’s, and SIFT matching detects 21 inliers from 26 TC’s [see Fig. 5(d)].

To demonstrate the performance of the proposed method undersignificant distortion, 5 different methods are also applied to

img1.pgm (see Fig.5(b) left) and img5.pgm (not shown in the paper) of the boat image from the Oxford dataset. In this case,

we used a smaller TC threshold (i.e., 1.2) to create sufficient number of TCs, and CM, SIFT, PM, EWC and AWC produced

the ratios IC/TC of 5/16, 7/9, 2/8, 9/15 and 8/10, respectively. This result shows that the proposed method (i.e., EWC and

AWC) performs similarly as SIFT when two images suffer from asignificant distortion as the neighbour distance are set not

to exceed the seed contribution.

D. Matching images with 3D camera motion

The fourth test evaluates the matching of images from a circular motion using 8 images captured at every 6◦ rotation from

0◦ to 40◦ as shown in Fig. 6(a). Since matching with texture information is generally better than without it, only the matching

results of textured MSER’s are compared. Due to the use of a black background, relatively small number of MSER’s (about

130) are detected in each image. Since affine distortion is proportional to the rotation angle, the best performance of all

matching methods are achieved at 6◦ rotation and gradually decreases as the rotation angle increases [see Fig. 6(b)]. EWC

detects 56 inliers with 80% inlier ratio while SIFT matchingdetects 45 inliers from 56 TC’s. As affine distortion increases, the

performance of all methods also decreases. In particular, AWC descriptor matching detects more inliers than EWC descriptor
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Fig. 6. Examples of matching images generated from a circular motion: (a) images at 0◦ to 40◦; (b) textured MSER based matching results using correlation,

SIFT, Pair, AWC and EWC.

matching for rotation angle greater than 30◦, which approaches the SIFT result for rotation angle greater than 36◦. This is

because the neighbour configuration changes significantly as rotation angle increases. However, AWC is still better than SIFT.

E. Effects of weighting coefficient

The matching distance of (12) can adjust the amount of contributions from neighbours by varying the weighting coefficient wt

from 0.0 to 1.0. For example, it gives the same distance map asSIFT whenwt = 0, but provides more TC’s as a matched clique

in EWC produces two TCs. In another extreme case whenwt = 1, EWC has full support from neighbours like a pair descriptor

matching. However, when more than one neighbour are used in matching it is highly possible that matching candidates share

neighbours from true correspondences so that it is not appropriate to setwt = 1 but it is essential to ensure that the contribution

of neighbours do not exceed the seed distance to avoid a falsecorrespondence surrounded by true correspondences.

To demonstrate the effects of the weighting coefficient on matching, three more test images for each case (i.e., the cases

explained in Section 5.1-5.4) are used and the number of TC’sand inliers obtained using EWC are counted aswt is varied.

Figure 7(a) shows the test images, where indices A(a)-(c), B(a)-(c), C(a)-(c), and D(a)-(c) respectively represent cases of images

with repetitive pattern, images from different view points, images with zoom and rotation, and images from a circular motion2.

A solid line and a dashed line in Fig. 7(b)-(e) respectively represent the number of TC’s and inliers obtained from the images

in Fig. 7(a). The maximum number of TC’s is normally found with smallwt (e.g., less than 0.5) and the number decreases

with increasingwt. However, these are not always the case, e.g., the maximum iswith wt = 1.0 for A(b) as shown in Fig.

7(b), and the number of TC’s is not decreasing in D(b) as shownin Fig. 7(b).

Another interesting observation from Fig. 7(e) is that bothD(a) and D(b) have the best inlier ratio aroundwt = 0.4. This

behaviour is related to the rotation angle of a circular motion as both images have been chosen with about 20 degree rotation

(e.g., D(a) and D(b) in Fig. 7(a) are obtained with rotation of 20 degree and 25 degree, respectively). This is because if

the rotation is too small it is difficult to demonstrate the distortion effect due to a rotation. Otherwise, overlapped regions

between two images are too small for matching particularly when an image has a relatively small number of MSERs, e.g.,

2Test images for a circular motion are obtained from the Amsterdam Library of object images [18].
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Fig. 7. Effects of weighting coefficientwt: (a) input images are classified into four cases from A to D; (b)-(e) the number of TC’s (solid line) and inliers

(dashed line) obtained respectively for case A (images withrepetitive pattern), case B (images from different view points), case C (zoomed and rotated

images), and case D (images from a circular motion).

D(b). However, when employing an image with a small rotation(e.g., D(c) with 10 degree rotation) EWC has an inlier ratio

peak atwt = 0.9.

In order to compare the matching performance of five matchingalgorithms with textured MSERs, we present Table II with

Inlier Count (IC), TC and inlier ratio of the 16 images shown in Fig. 3(a), Fig. 5(a)-(b), Fig. 6(a) and Fig. 7(a), andwt of

EWC andwm of AWC are both fixed at 0.5. When the number of inliers is difficult to be estimated due to insufficient number

of TCs (e.g., TC’s< 10), we employ the fundamental matrix estimated from the best matching result and consider a TC of

which the mean square error is less than 1.0 as an inlier. For example, IC of AWC of D(c) is found using a fundamental

matrix estimated from EWM matching result. In terms of IC, the performance of EWC is the best, followed by AWC, SIFT,

CM and PM.

To prove the hypothesis that EWC is better than the SIFT method is statistically significant, Wilcoxon signed rank test [19]

was performed using the number of inliers from 16 image pairs, with the null hypothesis defined when the number of inliers

from EWC and SIFT is the same. The resulting p-value is 3.052e-5 and positive and negative ranks are computed as 136 and

0, respectively. Thus, it is possible to reject the null hypothesis and say EWC can produce more inliers than SIFT at the 1%

significance level.
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TABLE II

INLIER COUNT (IC), TC, AND INLIER RATIO (r) OF 16 IMAGES USING5 ALGORITHMS

AWMa EWMb PM SIFT CM

IC TC r IC TC r IC TC r IC TC r IC TC r

A(a) 26 30 0.87 21 24 0.88 6 8 0.75 15 16 0.94 17 21 0.81

A(b) 35 38 0.92 47 52 0.90 17 21 0.81 20 26 0.77 26 28 0.93

A(c) 28 29 0.97 39 43 0.91 12 16 0.75 17 19 0.89 11 14 0.79

Fig.5(a) 26 29 0.90 35 42 0.83 10 10 1.0 17 18 0.94 26 31 0.84

B(a) 19 26 0.73 18 27 0.67 3 6 0.50 15 15 1.0 9 11 0.82

B(b) 44 60 0.73 54 71 0.76 22 43 0.51 41 52 0.79 15 23 0.65

B(c) 22 33 0.67 24 38 0.63 13 23 0.57 18 27 0.67 12 15 0.80

Fig3.(a) 57 72 0.80 64 82 0.78 31 48 0.65 36 49 0.73 14 19 0.74

C(a) 24 33 0.73 25 33 0.76 9 14 0.64 16 17 0.94 11 12 0.92

C(b) 32 43 0.74 35 49 0.71 18 27 0.67 28 33 0.85 17 24 0.71

C(d) 18 26 0.70 28 38 0.74 5 9 0.56 19 19 1.0 12 15 0.80

Fig5.(b) 31 43 0.72 38 54 0.70 14 20 0.70 21 26 0.81 17 20 0.85

D(a) 14 26 0.54 16 27 0.60 10 13 0.77 11 15 0.73 8 8 1.0

D(b) 4 8 0.50 11 16 0.69 2 6 0.33 5 9 0.56 3 6 0.50

D(c) 16 23 0.70 19 29 0.66 13 17 0.76 16 21 0.76 8 10 0.80

Fig.6(a)c 35 55 0.64 41 56 0.73 24 44 0.55 31 49 0.63 21 31 0.68

aThe neighbour contribution limit is fixed at 0.5, i.e.,wm = 0.5
bThe neighbour distance weight is fixed at 0.5, i.e.,wt = 0.5
cImages with 0 and 18 degree rotation are used

VI. CONCLUSION

In this paper, we explore a method that can improve the stability of wide baseline image matching. A fundamental idea

behind the proposed approach relies on the assumption that the configuration of corresponding local neighbourhoods in two

images from two viewpoints does not significantly change even when the two views are widely separated.

Motivated by recent research claims that affine invariant planar regions provide a strong matching clue in wide baselineimage

matching, the proposed method initially estimates a local affine frame from every IR and uses this information to normalise

each IR in order to minimise affine distortion. After normalisation, the neighbours of an IR are estimated and used as a minimal

matching unit in the proposed method. As a similarity measure of a local cluster, two matching distances (i.e., equally weighted

clique descriptor distance and adaptively weighted cliquedescriptor distance) have been proposed and experimental results

demonstrate that both distances are robust to outliers and any false neighbours in a cluster. This robustness is mainly due to

the HD measure adopted in the proposed method to combine multiple descriptors of a clique set, and a detailed performance

analysis of the HD measure with respect to noise level (i.e.,false neighbours in a clique set) has been presented in [17].Also,

the proposed method normally outperforms the SIFT descriptor matcher and its minimum performance is bounded by the SIFT

result as the neighbour contributions are adaptively weighted not to exceed the seed contribution.

However, it is worth noting that the performance of the proposed EWC is sensitive towt and automatic selection of the

weight parameter has not been fully investigated in this paper but left as a future work. In addition, the current work hasyet to

investigate multi-resolution IR’s, and determining neighbourhood in a locally normalised space often produces unstable results

so that a more robust affine invariant frame should be explored in future research.
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