60,440 research outputs found

    Carrier-envelope phase sensitive inversion in two-level systems

    Full text link
    We theoretically study the carrier-envelope phase dependent inversion generated in a two-level system by excitation with a few-cycle pulse. Based on the invariance of the inversion under time reversal of the exciting field, parameters are introduced to characterize the phase sensitivity of the induced inversion. Linear and nonlinear phase effects are numerically studied for rectangular and sinc-shaped pulses. Furthermore, analytical results are obtained in the limits of weak fields as well as strong dephasing, and by nearly degenerate perturbation theory for sinusoidal excitation. The results show that the phase sensitive inversion in the ideal two-level system is a promising route for constructing carrier-envelope phase detectors

    Applications of inverse simulation to a nonlinear model of an underwater vehicle

    Get PDF
    Inverse simulation provides an important alternative to conventional simulation and to more formal mathematical techniques of model inversion. The application of inverse simulation methods to a nonlinear dynamic model of an unmanned underwater vehicle with actuator limits is found to give rise to a number of challenging problems. It is shown that this particular problem requires, in common with other applications that include hard nonlinearities in the model or discontinuities in the required trajectory, can best be approached using a search-based optimization algorithm for inverse simulation in place of the more conventional Newton- Raphson approach. Results show that meaningful inverse simulation results can be obtained but that multi-solution responses exist. Although the inverse solutions are not unique they are shown to generate the required trajectories when tested using conventional forward simulation methods

    Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians

    Full text link
    The algebraic-geometric approach is extended to study solutions of N-component systems associated with the energy dependent Schrodinger operators having potentials with poles in the spectral parameter, in connection with Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems under study include the shallow water equation and Dym type equation. The classes of solutions are described in terms of theta-functions and their singular limits by using new parameterizations. A qualitative description of real valued solutions is provided

    Feedback methods for inverse simulation of dynamic models for engineering systems applications

    Get PDF
    Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models

    The application of parameter sensitivity analysis methods to inverse simulation models

    Get PDF
    Knowledge of the sensitivity of inverse solutions to variation of parameters of a model can be very useful in making engineering design decisions. This paper describes how parameter sensitivity analysis can be carried out for inverse simulations generated through approximate transfer function inversion methods and also by the use of feedback principles. Emphasis is placed on the use of sensitivity models and the paper includes examples and a case study involving a model of an underwater vehicle. It is shown that the use of sensitivity models can provide physical understanding of inverse simulation solutions that is not directly available using parameter sensitivity analysis methods that involve parameter perturbations and response differencing

    Ab-initio multimode linewidth theory for arbitrary inhomogeneous laser cavities

    Get PDF
    We present a multimode laser-linewidth theory for arbitrary cavity structures and geometries that contains nearly all previously known effects and also finds new nonlinear and multimode corrections, e.g. a bad-cavity correction to the Henry α\alpha factor and a multimode Schawlow--Townes relation (each linewidth is proportional to a sum of inverse powers of all lasing modes). Our theory produces a quantitatively accurate formula for the linewidth, with no free parameters, including the full spatial degrees of freedom of the system. Starting with the Maxwell--Bloch equations, we handle quantum and thermal noise by introducing random currents whose correlations are given by the fluctuation--dissipation theorem. We derive coupled-mode equations for the lasing-mode amplitudes and obtain a formula for the linewidths in terms of simple integrals over the steady-state lasing modes.Comment: 24 pages, 7 figure
    • …
    corecore