1,704 research outputs found

    Energy Efficiency and Asymptotic Performance Evaluation of Beamforming Structures in Doubly Massive MIMO mmWave Systems

    Full text link
    Future cellular systems based on the use of millimeter waves will heavily rely on the use of antenna arrays both at the transmitter and at the receiver. For complexity reasons and energy consumption issues, fully digital precoding and postcoding structures may turn out to be unfeasible, and thus suboptimal structures, making use of simplified hardware and a limited number of RF chains, have been investigated. This paper considers and makes a comparative assessment, both from a spectral efficiency and energy efficiency point of view, of several suboptimal precoding and postcoding beamforming structures for a cellular multiuser MIMO (MU-MIMO) system with large number of antennas. Analytical formulas for the asymptotic achievable spectral efficiency and for the global energy efficiency of several beamforming structures are derived in the large number of antennas regime. Using the most recently available data for the energy consumption of phase shifters and switches, we show that fully-digital beamformers may actually achieve a larger energy efficiency than lower-complexity solutions, as well as that low-complexity beam-steering purely analog beamforming may in some cases represent a good performance-complexity trade-off solution.Comment: Submitted to IEEE Transactions on Green Communications and Networkin

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Distributed Massive MIMO in Cellular Networks: Impact of Imperfect Hardware and Number of Oscillators

    Full text link
    Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.Comment: First published in the Proceedings of the 23rd European Signal Processing Conference (EUSIPCO-2015) in 2015, published by EURASIP. 5 pages, 3, figure

    Energy Efficiency and Sum Rate Tradeoffs for Massive MIMO Systems with Underlaid Device-to-Device Communications

    Get PDF
    In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.Comment: 30 pages, 10 figures, Submitte
    corecore