2,503 research outputs found

    Analysis of Markov-modulated infinite-server queues in the central-limit regime

    Get PDF
    This paper focuses on an infinite-server queue modulated by an independently evolving finite-state Markovian background process, with transition rate matrix Q(qij)i,j=1dQ\equiv(q_{ij})_{i,j=1}^d. Both arrival rates and service rates are depending on the state of the background process. The main contribution concerns the derivation of central limit theorems for the number of customers in the system at time t0t\ge 0, in the asymptotic regime in which the arrival rates λi\lambda_i are scaled by a factor NN, and the transition rates qijq_{ij} by a factor NαN^\alpha, with αR+\alpha \in \mathbb R^+. The specific value of α\alpha has a crucial impact on the result: (i) for α>1\alpha>1 the system essentially behaves as an M/M/\infty queue, and in the central limit theorem the centered process has to be normalized by N\sqrt{N}; (ii) for α<1\alpha<1, the centered process has to be normalized by N1α/2N^{{1-}\alpha/2}, with the deviation matrix appearing in the expression for the variance

    The single server semi-markov queue

    Get PDF
    A general model for the single server semi-Markov queue is studied. Its solution is reduced to a matrix factorization problem. Given this factorization, results are obtained for the distributions of actual and virtual waiting times, queue lengths both at arrival epochs and in continuous time, the number of customers during a busy period, its length and the length of a busy cycle. Two examples are discussed for which explicit factorizations have been obtained

    Wide sense one-dependent processes with embedded Harris chains and their applications in inventory management

    Get PDF
    In this paper we consider stochastic processes with an embedded Harris chain. The embedded Harris chain describes the dependence structure of the stochastic process. That is, all the relevant information of the past is contained in the state of the embedded Harris chain. For these processes we proved a powerful reward theorem. Futher, we show how we can control these type of processes and give a formulation similar to semi-Markov decision processes. Finally we discuss a number of applications in inventory management.

    Quasi-stationary distributions

    Get PDF
    This paper contains a survey of results related to quasi-stationary distributions, which arise in the setting of stochastic dynamical systems that eventually evanesce, and which may be useful in describing the long-term behaviour of such systems before evanescence. We are concerned mainly with continuous-time Markov chains over a finite or countably infinite state space, since these processes most often arise in applications, but will make reference to results for other processes where appropriate. Next to giving an historical account of the subject, we review the most important results on the existence and identification of quasi-stationary distributions for general Markov chains, and give special attention to birth-death processes and related models. Results on the question of whether a quasi-stationary distribution, given its existence, is indeed a good descriptor of the long-term behaviour of a system before evanescence, are reviewed as well. The paper is concluded with a summary of recent developments in numerical and approximation methods

    Large closed queueing networks in semi-Markov environment and its application

    Full text link
    The paper studies closed queueing networks containing a server station and kk client stations. The server station is an infinite server queueing system, and client stations are single-server queueing systems with autonomous service, i.e. every client station serves customers (units) only at random instants generated by a strictly stationary and ergodic sequence of random variables. The total number of units in the network is NN. The expected times between departures in client stations are (Nμj)1(N\mu_j)^{-1}. After a service completion in the server station, a unit is transmitted to the jjth client station with probability pjp_{j} (j=1,2,...,k)(j=1,2,...,k), and being processed in the jjth client station, the unit returns to the server station. The network is assumed to be in a semi-Markov environment. A semi-Markov environment is defined by a finite or countable infinite Markov chain and by sequences of independent and identically distributed random variables. Then the routing probabilities pjp_{j} (j=1,2,...,k)(j=1,2,...,k) and transmission rates (which are expressed via parameters of the network) depend on a Markov state of the environment. The paper studies the queue-length processes in client stations of this network and is aimed to the analysis of performance measures associated with this network. The questions risen in this paper have immediate relation to quality control of complex telecommunication networks, and the obtained results are expected to lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat

    Stationary States of the Generalized Jackson Networks

    Full text link
    We consider Jackson Networks on general countable graphs and with arbitrary service times. We find natural sufficient conditions for existence and uniqueness of stationary distributions. They generalise these obtained earlier by Kelbert, Kontsevich and Rybko.Comment: 18 pages, minor change
    corecore