
WIDE SENSE ONE-DEPENDENT PROCESSES WITH EMBEDDED
HARRIS CHAINS AND THEIR APPLICATIONS IN INVENTORY

MANAGEMENT
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Abstract. In this paper we consider stochastic processes with an embedded Harris chain.

The embedded Harris chain describes the dependence structure of the stochastic process.

That is, all the relevant information of the past is contained in the state of the embedded

Harris chain. For these processes we proved a powerful reward theorem. Further, we show

how we can control these type of processes and give a formulation similar to semi-Markov

decision processes. Finally we discuss a number of applications in inventory management.

1. Introduction

Although very general, the analysis of single item inventory system, as it was done in Bázsa

and den Iseger [4], can be extended substantially. The first point to tackle would be incor-

porating nonstationary policies. The second is to consider more general demand processes,

or even more general systems. For example, demand could depend on an exogenous factor

(cf. [20], [18]) or the dependence could be of endogenous nature (cf. [14], [11]). In fact, such

a system leads to a solution method for networks, since there the primal difficulty is to deal

with the various inter-dependence of the components of the networks. In the present paper we

only give examples of single-item single-echelon systems, with more complicated dependence

structures. Bázsa and den Iseger [5]depicts a two echelon decentralized system, which can

be solved with the theory developed in this paper, for more general demand processes than

before (cf. [3]).However, the power of the applicability of the model really shows in even more

complexer networks (e.g. queuing networks), which is the topic of future research.
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Under the simultaneous influence of the works of Song and Zipkin (cf. [20]) and Glynn and

Sigman (cf. [11]), we aimed first to develop a more powerful reward theorem for synchronous

processes with an embedded Markov chain. Song and Zipkin (cf. [20]) considered inventory

models, in which the demand process is described by a Markov modulated Poisson process,

that is, the arrival process of customers is driven by an exogenous state-of-the-world variable:

when the world is in state i, demand follows a Poisson process with rate λi. Glynn and

Sigman (cf. [11]), on the other hand, develop a reward theorem for synchronous processes: a

process with identically distributed but dependent cycles.

However, the applicability of synchronous processes in inventory management, for instance,

is quite restricted. In order to illustrate this, let us consider a basic inventory control model.

Let IP denote the inventory position process, IN the net inventory process, and D the

demand process (for the precise definitions see for instance [4]). Now, it is rather easy and

not excessively restrictive to make the necessary assumptions and show that IP and D are

synchronous processes. However, the ’synchronousness’ property in general does not preserve

under measurable functions of more than one variable, hence it is very difficult to prove that

the netstock process IN, needed for the actual reward theorem, is also synchronous.

Our approach is to consider general stochastic processes for which all the relevant infor-

mation about the past can be described by a Harris chain. This means that there exists

an embedded Harris chain (its points being a subset of the arrival points of the stochastic

process). In this setup, the stochastic process inherits some very advantageous properties

from the embedded Harris chain: it can be shown that it has a general regenerative prop-

erty, which is less restrictive than the wide-sense regeneration property (cf. [2]). Now, this

general regeneration does preserve under measurable functions of more than one variable.

Hence in the above simple inventory example we can make use of the flow conservation law

IN(t + L) = IP(t) −D(t, t + L], yielding the crucial (general) regenerative property needed

for a powerful reward theorem. Moreover, the average cost expression we deduced is in terms

of the simple ’arrival cycles’, instead of the regeneration cycles. In general the regenera-

tion cycles for classical regenerative processes do not coincide with the simple arrival cycles,

consequently being considerably more difficult to determine. As it turns out, many rele-

vant operations research problems can be modeled with this technique. We show how we

can control these type of processes and give a formulation similar to semi-Markov decision
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processes. With this technique a nonstationary optimal policy can be obtained, for instance

when demand is nonstationary.

This paper is organized in the following way. In section 2 we discuss the concept of syn-

chronous processes, Harris chains and Harris processes. We discuss in section 3 almost surely

convergence and a reward theorem for synchronous processes. In section 5 we introduce the

main topic of this paper, general stochastic processes, with an embedded Harris chain. We

give a powerful reward theorem for these processes. In section 6 we discuss how we can con-

trol these type of processes and give a formulation similar to semi-Markov decision processes,

while Section 7 provides examples of relevant models from inventory theory, which can be

solved with the new technique. The Appendix (sections A up to B.4) provide the background

and essential properties needed for the limit theorems.

2. Two specific stochastic processes

In order to be able to appreciate the difference between the earlier work and the present

approach we pursue to briefly introduce synchronous processes and Harris chains. In the

remaining part of this paper we assume that every stochastic process is shift measurable (cf.

B.1).

2.1. Synchronous processes. Consider now a stochastic process X, defined on (Ω,F , IP ),

with Polish state space (E, E), and a Polish path space (H,H) of right continuous maps from

[0, +∞) to E with left limits. Let us define now a so called cemetery state ∆ external to E,

and E is now endowed with the one-point compactification topology (cf. [11]).

Definition 2.1. 1 The stochastic process X is said to be a synchronous process with respect

to the random sequence 0 ≤ t0 < t1 < . . ., if {Xn : n ≥ 1} forms a stationary sequence in

(H,H), where

(2.1) Xn(t) :=





X(tn−1 + t), if 0 ≤ t < Tn,

∆ if t ≥ Tn.

Let IP 0 denote the probability measure under which X is non-delayed, that is, IP 0{X ∈
B} = IP{φt0 ◦X ∈ B} (or t0 = 0). We refer to tn as the synch-times for X.

1The definitions and basic properties of (related to) synchronous processes were taken from the article of

Glynn and Sigman (cf. [11])
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Definition 2.2. The process X is called positive recurrent if IE(T1) < ∞, null recurrent

otherwise. Moreover, X is called ergodic if it is positive recurrent and the invariant σ-field,

I, defined by relation (B.1) of {Tn,Xn} is trivial. Furthermore, λ := 1/IE(T1) is called the

rate of the synch-times, while λ̂ := 1/IE(T1|I) is called the conditional rate.

Although synchronous processes start over probabilistically at the synch-times, the future

is not necessarily independent of the past, in contrast with regenerative processes. Therefore,

the synch-times do not form a renewal process. Due to this dependence, one needs to establish

extra conditions in order to be able to construct limit theorems, similar to those known for

classical regenerative processes (cf.e.g. [16]).

2.2. Harris chains and Harris processes. A discrete or continuous time stochastic process

X, with state space (E, E) and general path space (H,H) is a Markov process (cf. [21]) if

the future depends on the past only through the present. The Markov process is time–

homogeneous if the conditional distribution of φtX given the value of Xt does not depend on

t. For time–homogeneous Markov processes, the transition kernel P t, t ∈ [0,∞) is defined by

(2.2) P t(x,A) := IP{Xs+t ∈ A|Xs = x}, x ∈ E, A ∈ E , s ∈ [0,∞).

Now we define Harris chains (discrete time) and Harris processes (continuous time) consecu-

tively (cf. [21]).

Definition 2.3. (Regeneration sets) A discrete- time Markov process X = (Xk)∞0 , with

state space (E, E) and one-step transition probabilities P , is a Harris chain if it has a regen-

eration set, that is if there is a set A ∈ E such that the hitting time of the set A,

τA := inf{n ∈ IN ∪ {0} : Xn ∈ A}

is finite with probability one for all initial distributions, and there is an l > 0, a p ∈ (0, 1],

and a probability measure µ on (E, E) with

(2.3) IP{Xl ∈ ·|X0 = x} = P l(x, ·) ≥ p µ(·), x ∈ A.

Remark 2.4. If E is finite or countable, and X is irreducible and recurrent then X is a

Harris chain.
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Now, in order to extend regeneration to continuous time we need the strong Markov prop-

erty: a shift measurable Markov process X = (Xs)s∈[0,∞) with semigroup of transition prob-

abilities P s, 0 ≤ s < ∞ is a strong Markov process (cf. [21]) if the Markov property holds at

all stopping times τ , that is,

φτX depends on (Xs)s∈[0,τ ] only through Xτ and

IP{φτX ∈ ·|Xτ = x} = IP{X ∈ ·|X0 = x}, x ∈ E.

Now the definition of a continuous time Harris process stays the same as for Harris chains, in

the sense that it is defined to be a strong Markov process which has a regeneration set with

property (2.3). However the definition of a regeneration set for the continuous time case is

different (cf. [21]):

Definition 2.5. A set A ∈ E is a regeneration set for the strong Markov process X, if the

hitting time τA is measurable and finite with probability one for all initial distributions, such

that XτA ∈ A, and if there is an l > 0, a p ∈ (0, 1], and a probability measure µ on (E, E)

such that (2.3) holds.

Intuitively, (2.3) means, that whenever X enters A it lag–l regenerates l time units later

with probability p. Thorisson (cf. [21]) proves that with a so called conditional splitting one

can construct an increasing sequence S = (Sn)∞0 such that (X,S) is lag–l regenerative, and

the distribution of its zero-delayed version (under IP 0) (X0,S0) does not depend on the initial

distribution of X.

There is also an other, equivalent definition for Harris processes, used often in the literature

(see for example Sigman(1992)):

Definition 2.6. (ϕ-recurrence) A Markov process X, with Polish state space (E, E), satis-

fying the strong Markov property, is called Harris recurrent if there exists a non-trivial σ-finite

measure ϕ on (E, E), such that for any B ∈ E, with ϕ(B) > 0, the total time spent by X in

the set B is infinite with probability one for all initial distributions, that is,

IPz

(∫ ∞

0
1B ◦X(t)dt = ∞

)
= 1 for all z starting states.

In the discrete case it can be shown (cf. [15]) that ϕ–recurrence for some ϕ, and the existence

of regeneration sets are equivalent properties. However, in continuous time this relation has
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not been proven yet. We conclude this section with some of the properties of Harris processes

which are important for our limit theorems.

(i) A Harris chain is aperiodic if the inter-regeneration times are aperiodic; and this holds

independently of the choice of the regeneration set and of l and p at (2.3).

(ii) Glynn showed (cf. [10]) that if X has a stationary distribution , then X is a Harris

process if and only if for all initial distributions and all A ∈ H,

IP{φUtX ∈ A} → IP{X∗ ∈ A}, as t →∞,

where X∗ is a stationary version of X and U is uniform on [0, 1].

(iii) Sigman (cf. [18]) proves that Harris processes are one-dependent regenerative, possess-

ing a unique invariant σ–finite measure µ. Conversely, if a Markov process is positive

recurrent one-dependent regenerative, then it is a positive recurrent Harris process.

Now we are ready to proceed with the limit results.

3. Limit theorems

3.1. Birkhoff’s Ergodic Theorem. In order to state the already known limit results we

make use of Birkhoff’s ergodic theorem, which can be found in the book of Billigsley (cf. [7]).

The following concepts are strongly related to the one of invariant σ–fileds, dealt with in

subsection B.3. A mapping T : Ω → Ω, with (Ω,F , P ) the underlying probability space, is

called a measure-preserving transformation if it is measurable F/F and P (T−1A) = P (A) for

all A in F (in the definition of the invariant σ–field in Section B.3, the measure-preserving

transformation considered is the shift–map φ1 = T in discrete time). The set A ∈ F is

invariant under T if T−1A = A, and it is nontrivial invariant if 0 < P (A) < 1. Likewise for

stochastic processes, the transformation T is called ergodic if there are no nontrivial invariant

sets in F . A measurable function is invariant if f(Tw) = f(w) for all w ∈ Ω; A is invariant

if and only if 1A is.

Theorem 3.1. (Birkhoff’s ergodic theorem) Let T be a measure-preserving transformation

on the triplet (Ω,F , IP ), and g a measurable and integrable function. Then

(3.1) lim
n↑∞

1
n

n∑

k=1

g(T k−1w) = IE(g|I) a.s.,

where I is the invariant σ-field related to g. If T is ergodic then IE(g|I) = IE(g) a.s.
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This theorem leads us to the first limit result. Consider a synchronous process X, a

measurable cost function f , and denote the cost of a cycle, related to the process X, as

(3.2) Jn = Jn(f) :=
∫ tn

tn−1

f(φt ◦X)dt.

Corollary 3.2. Consider g := J1(f), if IE(Tn|I) > 0, and if X is positive recurrent such

that IE(J1(|f |)) < ∞ and
∫ t0
0 f(φs ◦Xds < ∞ a.s. then

(3.3) lim
t↑∞

1
t

∫ t

0
f(φs ◦X)ds =

IE(J1|IJ)
IE(T1|I)

a.s.

If in addition {Tn} is ergodic, then

(3.4) lim
t↑∞

1
t

∫ t

0
f(φs ◦X)ds =

IE(J1|IJ)
IE(T1)

.

See also Theorem A1 of Glynn and Sigman (cf. [11]). Using the notation

(3.5) π(f) := IE

(
IE(J1|IJ)
IE(T1|I)

)
,

π defines a measure on (H,H), which is called the stationary probability measure for X: under

π, the shift φ = (φs) is measure preserving on (H,H). In particular, if X has distribution

π, then X is time stationary (cf. [11]). Observe that if {Tn} is ergodic then, by Corollary

3.2, π(f) = λIE(J1). The question is now: under what kind of conditions can one obtain

convergence in L1 for the limit (3.3)?

4. The results of Glynn and Sigman for synchronous processes

Define now the functional

(4.1) µt(f) :=
1
t

∫ t

0
IEf(φs ◦X)ds.

A necessary and sufficient condition for L1 convergence, µt(f) → π(f), has been given in

subsection A.2. The results established there yield that

(4.2) µt(f) → π(f) ⇐⇒ {1
t

∫ t

0
f(φs ◦X)ds : t ≥ 0} U.I.

In particular, the Cesaro averaged distributions converge weakly. Glynn and Sigman (cf. [11])

established additional conditions under which µt(f) converges uniformly (over a class of func-

tions) to π(f). Their main result reads as follows:
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Proposition 4.1. If X is a positive recurrent synchronous process, g ∈ L1
+(π) is such that

(1/t)IE
∫ t∧t0
0 g(φs ◦X)ds → 0 (where t0 stands for the delay) and

(4.3)
{

1
t

∫ t

0
g(φs ◦X)ds : t ≥ 0

}
is uniformly integrable

under the non-delay distribution, then

(4.4) sup
|f |≤g

|µt(f)− π(f)| → 0.

In particular, if either there exists an ε > 0 such that IP 0{Tn > ε} = 1, or the cycles Xn form

a k-dependent process, then (4.3) holds for all g ∈ L+
1 (π) which satisfy IE

∫ t0
0 g(φs◦X)ds < ∞.

In accordance with relation (4.2), uniform integrability, that is, condition (4.3) is neces-

sary and sufficient; in particular k-dependence implies uniform integrability (cf. Proposition

3.1, [11])).

5. General stochastic processes with an embedded Harris chain

The following section depicts a limit theorem for shift measurable stochastic processes X,

with state space (D,D). The stochastic process is general in the sense that any kind of

dependence structure of the underlying point process (tn)∞0 (arrivals) is allowed, as long as

this dependence structure can be modeled through a Harris chain. This means, that we define

an embedded Harris chain at the points tn, such that An := A(tn) (with state space (E, E)

and path space (H,H)), such that it ’takes care’ of the dependence structure of X, that is,

X(tn) is conditionally independent of the past given An. Thus, we consider mathematical

models, where such an embedded Harris chain can be constructed. As it is illustrated later,

a large class of models in operations research can be covered by this construction. Moreover,

the limit theorem derived for these types of models has the advantage of using exclusively the

simple cycles determined by two consecutive points of the process X, Tn = tn − tn−1, which

we call ’simple arrival cycles’.

Consider for instance a marketing problem: if the total demand for a planning horizon is

known, then the magnitude of the demand up to the present gives a lot of information about

demand in the remaining of the planning horizon. Define therefore the embedded Harris chain

A as the total demand up to the present. Conditioning on An at point tn yields the desired
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independence. Certainly, we need to have the conditions implying that A is indeed a Harris

chain.

Sigman (cf. [18]) introduces the notion of marked point processes governed by a Harris

chain, however his motivation and consequently his model is different. The examples he

considers essentially consist of marked point processes with an underlying renewal sequence,

while his limit theorem is given in terms of regeneration cycles, which in general are different

from the simple arrival cycles (hence more difficult to determine).

5.0.1. Independence realized with A. Let us now give the formal conditions which yield the de-

sired properties of the Harris chain A, which realize the independence in our model. Through-

out this paper we assume the following:

Assumption 5.1. The Harris chain An = A(tn) satisfies the following conditions:

Tk depends on {Tj , j < k} only through Ak−1,(5.1)

and Ak depends on {Ti, i ≤ j < k} only through Aj ,

(5.2) Jk depends on {Tj , j < k} only through Ak−1.

and, for all k ∈ IN ,

IE(Tk|Ak−1 = s) = IE(T1|A0 = s), for almost every s ∈ E(5.3)

IE(Jn|An−1 = s) = IE(J1|A0 = s) for almost every s ∈ E.(5.4)

Conditions (5.1) and (5.2) provide precisely the desired independence: A contains all the

relevant information about the past. Hence, conditioning on A yields independence of the

cycles. Furthermore, a sort of ’time- homogeneousness’ property is assumed for the conditional

distributions of the cycles, given the realizations of A.

5.1. A limit result with an embedding technique. The aim of this section is to prove

that the limit theorem 4.1 also holds for the general stochastic process X with the embedded

Harris chain A, defined by relations (5.1) – (5.4). Knowing that every Harris chain forms a

one-dependent process, we will show that this implies together with relations (5.1) and (5.2)

that the process X (hence also J, cf. Observation B.4) forms a wide-sense one-dependent

process, which suffices to satisfy all the conditions of Proposition 4.1, thus we obtain the

desired limit results.
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Remark 5.2. In 1992 Glynn and Sigman (cf. [11]) established limit theorems for Harris

chains, however, although the limit theorems in the present paper are related to Harris chains

they are more general: they are established for general stochastic processes, of which depen-

dence structure can be modeled through Harris chains satisfying Assumption 5.1.

In Section 2.2, property (iii) established that for every Harris chain there exists a set of

points {N}, such that (A,N) is one-dependent regenerative. Define now

(5.5) Sk := tNk
,

the arrival moments (in continuous time!) of the process X corresponding to the regeneration

times of A in discrete time. Furthermore, by the definition of the process A (cf. relations

(5.1) and (5.2)) we have that if Ak−1 is independent of Aj , then Ak−1 is independent of

Tj j = 0, . . . , k − 2, which in turn implies that (Tk,Jk) (or equivalently, (Tk, φtk−1
X)) is

independent of Tj , j = 0, . . . , k− 2. Letting S denote the sequence {Sk : k ∈ IN ∪ {0}}, with

Sk defined by relation (5.5), we can summarize the findings in the following theorem:

Theorem 5.3. (X,S), or equivalently (J,S), is a wide-sense one-dependent process.

Hence, applying Proposition 3.1 of Glynn and Sigman (cf. [11]) yields that, if the expected

cost of the delay cycle is finite then in the long run expected average cost expression we can

ignore this term, considering only the process which started in the first regeneration point,

S0 (see Appendix C for the proof). Moreover, if IES1 > 0 and the expected cost of this first

cycle is also finite, then the necessary and sufficient uniform integrability condition (4.3) is

satisfied (see Proposition 4.1 and the remark afterwards), hence the long run average cost of

the system is given by

(5.6) IEJ̄1 / IES1,

where

J̄1 :=
N1∑

k=1

Jk.

Remark 5.4. Although the statement of Proposition 3.1 of Glynn and Sigman (cf. [11])

requires one-dependence, its proof only uses the conditions of wide-sense one-dependence,

which makes it possible for us to apply it for our case.
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Consider the trivial identity

IE

(
N1∑

k=1

Jk

)
= IE

(
N1∑

k=1

IE(Jk|Ak−1)

)
+ IE

(
N1∑

k=1

(Jk − IE(Jk|Ak−1))

)
.

By the construction, N1 is a stopping time with respect to Ak, that is, {N1 ≤ k} ⊆ σ(Aj :

j ≤ k); on the other hand, Jk − IE(Jk|Ak−1) is independent of σ(Aj : j ≤ k − 1) (cf. [23]),

hence N1 and {Jk − IE(Jk|Ak−1)} are independent for every k. This yields that

IE

(
N1∑

k=1

(Jk − IE(Jk|Ak−1))

)
= IE

(
N1∑

k=1

IE(Jk − IE(Jk|Ak−1))

)
= 0.

This means that we only need to deal with

(5.7) IE

(
N1∑

k=1

IE(Jk|Ak−1)

)
.

Define now the functions Yn and Zn, defined on E as

(5.8) Yn(s) := IE(Jn|An−1 = s) and Zn(s) := IE(Tn|An−1 = s)

(functions of the realizations of An−1) for all n ∈ IN . Assume that

(5.9)
∫

E
Y1(u)π∞(du) < ∞, and

∫

E
Z1(u)π∞(du) > 0,

where π∞ is the limiting distribution in the Cesaro sense (cf. Bázsa and den Iseger [4]) of the

Harris chain A, given by

(5.10) π∞ : = lim
n↑∞

1
n

n∑

k=1

πk.

Theorem 5.5. Under the conditions of Assumption 5.1 and (5.9) the expected first cycle

is finite, that is, IEJ̄1 < ∞ and IES1 > 0. Moreover, the expected long run average cost

expression (5.6) can be expressed in terms of the arrival cycles:

(5.11)
IEJ̄1

IES1
=

∫
E IE(J1|A0 = s)π∞(ds)∫
E IE(T1|A0 = s)π∞(ds)

,

for almost all initial states of A, or equivalently, of the process X, w.r.t. π∞.

Proof: As mentioned before, the proof of the finiteness of the expected first cycle is

given in Appendix C. In order to prove that the long run average cost is indeed given by
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expression (5.11), observe that having obtained expression (5.7), we have

1
IEN1

IEJ̄1 =
1

IEN1
IE

(
N1∑

k=1

IE(Jk|Ak−1)

)
.

Conditioning on Ak−1 with distribution πk−1, the previous expression is equal to

∫

E

1
IEN1

IE

(
N1∑

k=1

IE(Jk|Ak−1 = u)

)
πk−1(du).

Using again condition (5.4) this can be evaluated as

∫

E
Y1(s)

(
1

IEN1

IEN1∑

k=1

πk−1(ds)

)
.

Since N1 constitutes a regeneration point for the Harris chain A it yields that

1
IEN1

IEN1∑

k=1

πk−1 = π∞,

where π∞ was defined by relation (5.10). In conclusion,

(5.12) IEJ̄1 = IEN1

∫

E
Y1(s)π∞(ds) < ∞

by condition (5.9). Note that IEN1 < ∞ since A is positive recurrent. Similarly as for Jk we

can use the same argumentation for Tk, obtaining

(5.13) IES1 = IEN1

∫

E
Z1(s)π∞(ds) > 0,

by condition (5.9). This immediately yields expression (5.11) for the expected long run average

cost, completing the proof.

Remark 5.6. (1) If A0 is distributed with the invariant distribution, Theorem 5.5 re-

mains true (see Proposition 4.3 of [11]).

(2) The Harris chain A from Section 5 can consist of two chains: A1 satisfying conditions

(5.1) and (5.3) and (A1,A2) satisfying conditions (5.2), (5.4). Certainly, (A1,A2)

needs to be a Harris chain as well.

Although at first sight it might look difficult to prove that A := (A1,A2) (or more generally

the collection A := (A1, . . . ,An)) is a Harris chain, as it is stated in the previous remark, the

argument is rather simple: it the consequence of result (ii) of Section 2.2. Hence, if we can

prove that A is convergent in Cesaro total variation (that is, the time stationary version of A
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exists) it implies that it is a Harris chain. In case of inventory models, as discussed in Bázsa

and den Iseger [4], it is often the case that the joint time- average distribution of (IP,N)

exists. This is the result we will use later to show for several models that the embedded Harris

chain exists.

6. An MDP formulation

Section 5, namely the construction of the Harris chain A, suggest that one can influence

the system through this Harris chain, hence dealing with models with control policies. More

specifically, one wants to control the transitions of the process from one state to another.

This section is aimed as a guideline for solving models of the type of the previous sections

with generalized Markov decision theory, that is, Markov decision processes with continuous

state space. Since the theory of Markov decision processes is vast, this section is only meant

to formulate the problem, and not to give precise conditions under which an optimal solution

exists, and there is also no exact solution procedure provided. Besides, the problem formu-

lated below is very general, one needs to solve the optimization algorithms for each specified

problem.

Knowing that every Harris chain possesses a unique invariant σ–finite measure πR∞ (cf.

property (iii) of Section 2.2) defined by relation (5.10), the problem is formulated with the

normalization

(6.1)
∫

E
πR
∞(ds) = 1.

We proved that the average cost of the system is given by

(6.2) g(R) =

∫
E IE(J1|A0 = s)πR∞(ds)∫
E IE(T1|A0 = s)πR∞(ds)

+
∫

E

∫

E
KR(s, y)PR(s, dy)πR

∞(ds),

where P is the transition kernel associated with the Harris chain A (defined by relation (2.2)),

with PR πR∞ = πR∞. There is a nonnegative cost K ≥ 0 associated with the control of the

system, which also depends on the transitions, hence on the policy R. Take for instance an

inventory system with a positive order policy (that is, no disposal allowed). Then KR(x, y) =

K1{x<y}. As usual, a policy R∗ is optimal if g(R∗) ≤ g(R), for all stationary policies R. We

ought to remark here that we indeed are looking for nonstationary control policies, however

this nonstationarity will be realized through the transitions of the embedded Harris chain A:
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the control policy depends on the state of A. The optimization problem is hence of the form:

(6.3)





minR

{ R
E IE(J1|A0=s)πR∞(ds)R
E IE(T1|A0=s)πR∞(ds)

+
∫
E

∫
E KR(s, y)PR(s, dy)πR∞(ds)

}
,

PR πR∞ = πR∞.

In the case when E is finite or countable, the problem reduces to a classical semi Markov

decision problem. Methods for solving semi Markov decision problems can be found in any

standard textbook (see for example [22], [17]); one can use policy iteration or value iteration

(in the latter case, with a data transformation technique the problem is reduced to a simple

Markov decision problem). In the continuous state space case, in the inventory applications

the state space can almost always be assumed compact, but certainly Borel. For standard

solution techniques the reader is referred to De Leve et al (cf. [8]).

Note that Federgruen and Zipkin (cf. [9]) solve a similar continuous state space Markov

decision problem for the optimization of a stationary (s, S) policy (only depending on the

inventory position process).

7. Models ’under control’: Examples

7.1. Demand forecasting with time series. One of the forecasting techniques which ac-

counts for seasonal and trend factors in the demand process is the autoregressive moving

average modeling (ARMA). It is believed that these discrete- time models are the most likely

to be found in the real world (cf. [12]). The ARMA process, unlike the first- order autoregres-

sive model or exponential smoothing model, is not a Markov process, since Dk+1 depends not

just on Dk but also on values at certain earlier times, say Dk−1 and Dk−2 (cf. [25]). It also

depends on scalar noise factors over earlier time periods, say εk and εk−1 (εk are independent

over all k, with 0 mean for all k). Thus the dynamics of the system is given by

Dk =
m∑

j=1

αjDk−j +
m∑

j=0

βjεk−j .

For the sake of simplicity, in this example we will only consider the following dynamics,

characteristic for seasonal demand processes:

Dk = α1Dk−1 + α2Dk−2 + εk + βεk−1,

The stability condition (as in [25]) is |αi| < 1, i = 1, 2. Observe that the above dynamics is

time-homogeneous since αi, i = 1, 2 and β are constants. Defining now Ak−1 := (Dk−1,Dk−2)
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(with D−1 := 0) it is a Harris chain: the Markov property is satisfied by the construction of

the demand process, while the stability condition leads to stationarity.

Now the joint process (A, IP) realizes the desired independence (5.2) and the homoge-

neousness like property (5.4), that is for all n

IE

(
f(IPn −

n+L−1∑

k=n+1

Dk)|(An, IPn) = (s, u)

)

are the same for almost every (s, u) (with s = (s1, s2)), follows from stationarity. One

alternative in order to show that (A, IP) is also a Harris chain, is to follow again statement

(ii) of Section 2.2 and the theory of Bázsa and den Iseger [4] to prove that its distribution

converges to its time stationary version in Cesaro total variation. However, following this

method, we only know for sure that the time average distribution exists if we assume that

the control policy is stationary, that is, IP has a pointwise limiting distribution. Since the

time- average distribution of A exists, the time average distribution of (A, IP) also exists

(cf. Bázsa and den Iseger [4]). Hence, the long run expected average cost is given by the

expression

IE(A,IP)c∞

(
IE

(
f(IP0 −

L−1∑

k=1

Dk|(A, IP)0)

))
.

However, the second alternative, that is, using Definition 2.3 yields the possibility to construct

nonstationary policies. Although a proof, following Definition 2.3 can be somewhat more

tedious, the result is worth the trouble. To illustrate this, in the next section we consider a

nonhomogeneous compound Poisson process together with a nonstationary (s(λ), S(λ)) policy.

7.2. Inventory systems with Harris–modulated demand. Let us assume that demand

is a Harris–modulated time–nonhomogeneous stochastic process, that is, the rate of the pro-

cess, λ(t) is described by a Harris chain An := λ(tn) n ∈ IN ∪ {0}. Furthermore we assume

that the individual demand Yn is i.i.d., independent of A and the associated cumulative

distribution function FY is spread-out, such that the density function g in Definition A.2 has

positive support on all sets of positive measure. Assume further that A realizes conditions

(5.1) and (5.3), meaning that conditioning on A realizes the independence among the cycles,

while if the rate is constant then the cycles become identically distributed. The applied de-

cision rule is a so called Harris–modulated (s, S) policy, defined in every decision moment
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tn, n ∈ IN ∪ {0} as

(7.1) Γ(An) =





S(An) if ĨPn ≤ s(An),

IP(tn) if ĨPn > s(An),

where ĨPn := IPn−1−Yn. The action space is assumed compact, such that α := supa{s(A) :

A = a} < β := infa{S(A) : A = a}. In this setting IP depends on A only through the

decision parameters s(A) and S(A). We aim to show now that (A, IP) forms a Harris chain,

which realizes the desired independence conditions (5.2) and (5.4). That is, we want to show

that there exist a regeneration set B×C, associated with the joint process (A, IP), such that

ϕ(B, C) > 0 implies ϕ-recurrence (see Definition 2.6 and the observation thereafter):

(7.2) IP

{ ∞∑

n=1

(1B×C ◦ (An, IPn)) = ∞
}

= 1.

The reason for using this method in order to prove that (A, IP) is a Harris chain, instead

of using (ii) of Section 2.2, is that in this case neither A nor IP has a pointwise limiting

distribution, thus we would need additional information for proving that the joint limiting

distribution in the Cesaro sense of A and IP exists.

Since A is a Harris chain, there exists a regeneration set B, together with lA > 0, A > 0

and a probability measure µA satisfying (2.3), such that the hitting time τA of B is finite

with probability one. Consider the sequence {τk
A : k ∈ IN} generated by the hitting times of

the set B, such that

τk
A := inf{m ∈ IN : Am ∈ B and m > τk−1

A }, k ≥ 2, τ1
A := τA.

Since the sequence {τk
A : k ∈ IN} is a subset of the arrival times {tn : n ∈ IN}, define

ÎPk := IPτk
A
. Since Y has a spread-out distribution, it means (see Definition A.2) that there

exists an n0 ∈ IN (finite) such that Fn0∗
Y has an absolutely continuous component with a

density g. Consequently, supposing that an average order cycle T is completed in k arrivals,

we have that IP{T = k} = (F k∗
Y − F (k+1)∗)(S(A0) − s(Ak)) > 0 if k ≥ n0. Considering

C := (α, β) yields that there exist m, k ≥ n0 such that

IP{ÎPk ∈ C} ≥ inf
a

IP{S(a)−Dm ∈ C}IP{replenishment order placed at time tk−m} > 0,

since Dm = Fm∗
Y has an absolutely continuous component for m > n0, yielding Fm∗

Y (x) > 0

for all x > 0. We can conclude thus that there exist a p > 0 such that IP{ÎPk ∈ C} > p.
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Combining this with relation (7.2) yields that

IP

{ ∞∑

n=1

(1B×C ◦ (An, IPn)) = ∞
}

= IP





∞∑

k=n0

(
1C ◦ ÎPk

)
= ∞



 = 1.

Finally we can conclude that (A, IP) is a Harris chain satisfying conditions (5.1)–(5.4), yield-

ing that the long run average cost of the system is given by

gR =
1

IEAc∞(IE(T1|A0))
IE(A,IP)c∞

(
IE

(∫ t1

0
f(IP0 −DL(t)|(A, IP)0)

))
,

where IE(A,IP)c∞ denotes the expectation w.r.t. the limiting distribution in the Cesaro sense

of the distribution of (λ(tn), IPn). Solving the optimization problem (6.3) for this gR yields

a dynamic (nonstationary) optimal policy (s(λ), S(λ)).

7.2.1. Markov modulated arrivals. Markov modulated demand processes have been consid-

ered in several articles in the literature, however their approach is quite different from ours.

The closest to our approach is that of Sigman (cf. [18]), however his motivation and conse-

quently his results are different. As mentioned earlier, he proves that every Harris process

is a one-dependent process, but the limit result he deduces is in terms of the one-dependent

regeneration cycles.

Song and Zipkin (cf. [20]) consider an exogenous ’world-driven’ Poisson demand: when

the world is in state i, demand follows a Poisson distribution with rate λi. Their model

is a discrete-state dynamic program with two state variables, the world and the inventory

position.

Lovejoy (cf. [14]) considers demand processes as functions of a Markovian information

process. This information process may depend on the past of the demand process as well as

on an exogenous variable. Further it concentrates on the efficacy of myopic policies.

7.3. Inventory with returns. Consider a general single item inventory model which allows

returns, with the following characteristics. Demand up to time t, D(t), is a compound renewal

process with arrival process {tn : n ∈ IN ∪ {0}} and individual demands {Yn, n ∈ IN ∪ {0}}.
We assume that control actions, denoted by Γ, are only permitted at purchase arrivals, that is,

at times {tn : n ∈ IN}; furthermore, Γ is a stationary policy, depending only on the inventory

position process. There is also a so called returns process R, a nonhomogeneous compound

Poisson process with fixed batch return sizes µ. Denote the total amount of items on the
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market at time t as A(t) (that is, demand minus returns) and let us assume that the returns

rate is a, given A = a. Thus, fixing a sample paths of A, R is just a compound Poisson

process with a variable rate. Assuming that every item is returned is not very restrictive,

since we can use the following correction: introduce the binary variable (y/n) (yes or no),

for deciding whether the returned item is suitable for remanufacturing or not. Hence, the

returns process has the form
∑Nr(t)

k=1 (y/n)µ (we assume here that non-suitable items can be

instantaneously disposed of). Since we only need to concentrate on the times tn of purchase

arrivals, it is useful to introduce the notations IPn := IP(t+
n ) and An := A(t+

n ). By the

definition of the model it follows now that

IPn+1 = Γ(IPn)−Yn+1 + R(tn, tn+1],(7.3)

An+1 = An + Yn+1 −R(tn, tn+1].

This means that the {IPn} and {An} are Markov processes. A common assumption for

inventory models (see for instance Zipkin [24]) to assume that the embedded Markov chain

IPn is positive recurrent – since our model assumes continuous state space we assume ϕ–

recurrence (see Section 2.2), hence IPn is a Harris chain. Having assumed that the control

policy is stationary, the pointwise limiting distribution of IPn exists. This implies that

(A, IP) converges to its stationary version in Cesaro total variation, hence it is a Harris chain

(statement (ii), Section 2.2). Furthermore, the equivalent of the classical flow-conservation

law remains valid:

(7.4) IN(t + L) = IP(t)− (D(t, t + L]−R(t, t + L]).

Since (A, IP) is a Harris chain, we aim to show that it satisfies the conditions of Assumption

5.1. Since {tn} is a renewal process, conditions (5.1) and (5.3) follow. Since R is a compound

Poisson process an D is a compound renewal process, conditions (5.2) and (5.4) are satisfied

too. Hence, applying Theorem 5.5, it follows that the long run average cost of the system is

given by the expression

1
IET1

IE(A,IP)c∞

(∫ t1

0
f(IP0 −DL(t) + RL(t))dt

∣∣∣∣ (A, IP)0)
)

,

where IE(A,IP)c∞ stands for the expectation with respect to the joint time average distribution

of the Harris chain (A, IP).
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The so called multi–echelon models prove to be even more difficult to solve exactly than the

single echelon models considered so far. Such a model is a two- level decentralized distribution

system, consisting of one depot and several retailers. This application is worked out in Bázsa

and den Iseger [5]. There are many more OR models, not only inventory models, which can

be included under the framework of general stochastic processes with an embedded Harris

chain. In the following subsection we give such an example.

7.4. Generalized Semi – Markov Processes (GSMP’s). A Generalized Semi – Markov

process has less restrictive assumptions than a continuous time Markov Chain. The following

intuitive summarizing definition is taken from the lecture notes of Haas (2000). That is, a

GSMP {X(t) : t ≥ 0} makes stochastic state transitions when one or more events associated

with the occupied state occur: events associated with a state compete to trigger the next state

transition; each event has its own distribution for determining the next state; new events can

be scheduled at each state transition; for each new event a clock is set with a reading that

indicates the time until the next transition (when the clock runs down to 0 the event occurs);

old events don’t trigger state transitions but are associated with the next state, their clocks

continue to run down; cancelled events don’t trigger a state transition and are not associated

with the next state, their clock readings are discarded; clocks can run down at state dependent

speed. The mathematical definition of a GSMP has the following elements: the set of states

S is countable, there is a finite set of events E := {e1, . . . , eM}, and E(s) is the set of events

scheduled to occur in state s ∈ S. Furthermore, p(s′; s, E∗) is the probability that the new

state is s′ given that the events in E∗ simultaneously occur in s. If E∗ = {e∗} for some

e∗ ∈ E(s), then write p(s′; s, e∗). r(s, e) denotes the nonnegative finite speed at which clock

for e runs down in state s, and F (·; s′, e′, s, E∗) the distribution function used to set the

clock for the new event e, when the simultaneous occurrence of the events in E∗ triggers a

state transition from s to s′. µ is the initial distribution function for the clock and state

readings. It is assumed however, that µ is such that the initial state s is chosen according

to a distribution ν, and for each event e ∈ E(s) the clock is set independently according to

F0(·; e, s). Hence, formally, X = {(Sn,Cn) : n ≥ 0}, where Sn is the state after the nth

transition and Cn = (Cn,1, . . . ,Cn,M ) is a clock-reading vector after the nth transition. The

solution method for such a GSMP model is generally simulation.
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A simple example for such a GSMP is the GI/G/1 queue. Assuming that the interarrival

distribution Fa and the service time distribution Fs are continuous, such that an arrival and

a service completion never occur simultaneously, we can model the queue as a GSMP in the

following manner. Let X(t) the number of jobs in service or waiting in queue at time t. Then

S = {0, 1, 2, . . .}, E = {e1, e2}, where e1 is the event arrival, and e2 is the event completion

of service. E(s) = {e1} is s = 0 and E(s) = {e1, e2} if s > 0. Furthermore p(s + 1; s, e1) = 1

and p(s−1; s, e2) = 1. F (x; s′, e′, s, e) = Fa(x) if e′ = e1 and Fs(x) if e′ = e2, while r(s, e) = 1

for all s and e. Finally, ν(1) = 1, F0(·; e1, s) = Fa(·) and F0(·; e2, s) = Fs(·).
With the modeling technique of general stochastic process with an embedded Harris chain

one can also model GSMP’s in the following way. Extend the state space with the states

Sn, and the Harris chain with the clock-reading vectors A × {C1,C2, . . .}. We need to

assume here that the clocks are set independently, which yields that this is then indeed a

Harris chain. Suppose that e′ = en. Then Tk = Cn(k), the nth clock at time tk. Then

Cj(k + 1) = Cj(k) − Tk, j 6= n, and Cn(k + 1) is distributed with F (·; s′, e′, s, en). The

transition probabilities for the Harris chain are given by IP{Ak+1,Ak; e′ = en}. The event

e′ = en is known at time tk, e′ = en if and only if Cn = min{C1,C2, . . .}. In fact, given the

clocks at time tk, Tk is deterministic, i.e. Tk = min{C1(k),C2(k), . . .}.

8. Discussion

The essential difference between semi-Markov processes and the ’Harris-modulated stochas-

tic processes’ described in Section 5 is, that while in the case of semi-Markov processes the

jump can depend on the state of the process when the jump occurs, for Harris–modulated

stochastic processes the allowed dependence can be more complex. For instance, the expected

interarrival time can depend on the next state (where the process jumps to) instead of de-

pending solely on the state where the process has been before the jump. This means that the

class of models which can be analyzed is considerably extended. Moreover, the established

limit theorem (cf. Section 5.1, that is, the average cost expression (5.11), is given in terms of

the simple arrival cycles. Within this framework, the analysis of many important models be-

comes straightforward (only identifying the embedded Harris chain), which otherwise would

cost a laborious work of many pages; for other models, the analysis has only been performed

under simplifying assumptions.
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It is very interesting to observe how things fall into their places. In Bázsa and den Iseger

[4] performance measures, among others an average cost expression was deduced under the

assumption that the limiting distribution in the Cesaro sense of the joint process (IP,N)

exists. The condition of our limit theorem 5.5 and the average cost expression (5.11) was the

existence of a Harris chain satisfying the initial assumptions 5.1. Now, do these results really

relate to each other? Statement (ii) of Section 2.2 yields the answer: in order to prove that

the Markov process constructed according to the conditions of Assumption 5.1 is a Harris

chain, one can use the necessary and sufficient condition that ’the process is converging in

Cesaro total variation to its stationary version’. This means exactly that if and only if the

limiting distribution in the Cesaro sense exists. Although it might not be necessary, we like

to stress that this is a necessary and sufficient condition, that is, Theorem 5.5 holds if and

only if the Cesaro sense limiting distribution exists. Furthermore, for the case of inventory

models, the Harris chain realizing the independence condition is always the joint process of

IP and an embedded chain A of the arrival process of customers. Since the chain A is driving

the arrival process, it can be intuitively seen as a better candidate for N, inheriting many of

its properties. Besides, when N has independent increments, N itself can play the role of the

embedded Harris chain, leading thus to the condition (cf. Bázsa and den Iseger [4]) of the

existence of the Cesaro limiting distribution of (IP,N).

A sufficient condition for the existence of a Cesaro limiting distribution of the joint process

(IP,N) is that either of them possesses a pointwise limiting distribution while the other a

Cesaro limiting distribution (cf. Bázsa and den Iseger [4]). However, this is NOT a neces-

sary condition, therefore we also make use of alternative definitions and properties of Harris

chains. For instance, when considering nonhomogeneous demand, we want to consider a non-

stationary control policy. This implies that neither A not IP will possess a pointwise limiting

distribution, however it can be shown that for the joint Markov process (A, IP) a regenera-

tion set exists, implying that (A, IP) is a Harris chain. Although this implies that the joint

process (A, IP) possesses a Cesaro limiting distribution, it would be difficult to prove its

existence without further information (specification of the problem).
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Appendix A. Measure theoretic background

Let us start with a measure theoretic review of terminology, which we will use throughout

the following sections. The definitions are taken from the book of Thorisson (cf. [21]). A

random element in a measurable space (E, E), defined on a probability space (Ω,F , IP ), is a

measurable mapping Y from (Ω,F , IP ) to (E, E), that is,

{Y ∈ A} ∈ F , for all A ∈ E ,

where

{Y ∈ A} := {ω ∈ Ω : Y(ω) ∈ A} =: Y−1A.

Definition A.1. It is also said that Y is supported by (Ω,F , IP ), and Y is an F/E measurable

mapping from Ω to E.

The distribution of a random element Y (under IP ) is the probability measure on (E, E)

induced by IPY−1. Since IP{Y ∈ A} = IPY−1A for all A ∈ E , we use the notation IP{Y ∈ ·}.
A random element Y is canonical if Y is the identity mapping, that is, if

(Ω,F) = (E, E) and Y(ω) = ω, ω ∈ Ω. Then IP{Y ∈ ·} = IP.

A random element Ŷ in (E, E), defined on the probability space (Ω̂, F̂ , ÎP ) is a copy or

representation of Y if

ÎP{Ŷ ∈ ·} = IP{Y ∈ ·}, that is, Ŷ d= Y.

A random element Y always has a canonical representation, the canonical random element

on (E, E , IP{Y ∈ ·}).
A random variable Y is a random element in (IR,B), where IR is the set of real numbers and

B denotes its Borel subsets (i.e. B is the σ-algebra generated by the open sets). The following

definition is from the book of Thorisson (cf. [21]).

Definition A.2. The random variable Y1 is spread out if there exists a finite n ∈ IN and a

function g ∈ B+ such that
∫
IR g(x)dx > 0 and, with Y2, . . . ,Yn i.i.d. copies of Y1,

IP{Y1 + . . . + Yn ∈ B} = Fn∗
Y (B) ≥

∫

B
g(x)dx, B ∈ B.
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This means (cf. [1]), that FY is spread out if Fn∗
Y (for some n ∈ IN) has an absolutely

continuous component G (0 6= G ≤ FY ) which is absolutely continuous, i.e. G has a density

g with respect to the Lebesgue measure.

Observation A.3. Since the derivative of the convolution function G∗FY is given by g∗FY , it

follows that for every integer m ≥ n, Fm∗
Y has an absolute continuous component, G∗F (m−n)∗

Y .

A.1. Modes of convergence. Let {Yn : n ∈ IN} be a sequence of random variables, and Y

a rn=andom variable, all defined on (Ω,F , IP ). Let us summarize the types of convergence

used in the following sections (cf. [23]):

• almost surely: Yn → Y a.s. if IP{Yn → Y} = 1 as n →∞;

• in probability: Yn
d→ Y if for every ε > 0 IP{|Yn −Y| > ε} → 0 as n →∞;

• Lp convergence: if Yn,Y ∈ Lp, n ∈ IN and IE(|Yn −Y|p) → 0 as n →∞;

• total variation: Yn
tv→ Y if sup

A∈E
|IP{Yn ∈ A} − IP{Y ∈ A}| → 0 as n →∞;

Almost sure convergence and Lp–convergence (for p ≥ 1) imply convergence in probability.

A.2. Uniform integrability. As we will show later, a necessary and sufficient condition for

our limit theorem is uniform integrability. This follows directly from the fact that uniform

integrability is a necessary and sufficient condition for L1–convergence (cf. [23]).

Definition A.4. A family of random variables Yn, n ∈ IN ∪ {0} (or, Ys, s ∈ [0,∞)) is

uniformly integrable if

sup
n≥0

IE
(
Yn1{Yn>x}

) → 0, x →∞.

The following result can be found in the book of Williams (cf. [23]).

Theorem A.5. If (Yn) is a sequence in L1 and Y ∈ L1, then IE(|Yn − Y|) −→ 0 if and

only if the following two conditions are satisfied:

(i) Yn −→ Y in probability,

(ii) the sequence {Yn} is U.I.

Scheffé’s Lemma (cf. [23]) proves to be very useful, since the result which is more often

needed than IE(|Yn −Y|) −→ 0 is IE(Yn) −→ IE(Y).
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Lemma A.6. Suppose that Yn,Y ∈ L1 such that Yn → Y a.e. Then

IE(|Yn −Y|) → 0 if and only if IE(Yn) → IE(Y).

Since almost surely convergence implies convergence in probability (see the previous sub-

section), and having Yn,Y ∈ L1 with Yn → Y a.s., it follows that IE(|Yn −Y|) → 0 if and

only if IE(Yn) → IE(Y) if and only if the sequence (Yn) is U.I.

A.3. σ–finite measure. For the sake of completeness we introduce the notion of a σ–finite

measure, which, although will not be used directly, will be present in some of the statements.

A measure µ on a field F in Ω is σ–finite (cf. [6]) if Ω = A1
⋃

A2
⋃

. . . for some finite or

countable sequence of F–sets, satisfying µ(Ak) < ∞. A σ–finite measure can be finite or

infinite; a finite measure is by definition σ–finite. An important result is that if µ is a σ–finite

measure on the field F , then F cannot contain an uncountable, disjoint collection of sets of

positive µ–measure.

Appendix B. General stochastic processes

A stochastic process with index set II and state space (E, E) is a family X := (Xs)s∈II ,

where the Xs are random elements defined on a common probability space (Ω,F , IP ) and all

taking values in (E, E). Now, rather then regarding X as a family of random elements in

(E, E), we can equivalently regard X as a random mapping (cf. [21]), that is, a single random

element in (EII , EII), defined by

X(ω) = {Xs(ω) : s ∈ II}, ω ∈ Ω.

The paths of X are the realizations X(ω), ω ∈ Ω of the random mapping X. Most of the

time there are restrictions put on the path, for our case, that they are right continuous with

left limits. More generally, one can say that they lie in a subset H of EII (cf. [21]). In this

case it is more natural to say that X is a random element in (H,H), instead of (E, E), where

H is the σ-algebra on H, generated by the projection mapping taking x ∈ H to xt ∈ E, for

all t ∈ II. H is also called the trace of H on EII (cf. [21]), because

H = EII
⋂

H := {A
⋂

H : A ∈ EII}.
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In conclusion, Xt is a measurable mapping from (Ω,F) to (E, E) if and only if X is a mea-

surable mapping from (Ω,F) to (H,H), and (H,H) is called the path space of X.

B.1. Shift measurability. Observing a continuous time stochastic process at a random

time means the following. Let T be a random time in [0, +∞); by XT we mean the E valued

mapping defined on Ω as XT(ω) := XT(ω)(ω), for all ω ∈ Ω. This mapping need not be F/E
measurable! (cf. [21], see also Definition A.1). To take care of this measurability problem,

one needs to impose a canonical joint measurability condition (cf. [21]):

Definition B.1. The process X is canonically jointly measurable if the mapping taking (x, t) ∈
H × [0,∞) to xt ∈ E is H⊗ B[0,∞)/E measurable.

This condition suffices for drawing the conclusion that if X′ is also a stochastic process such

that (X,T) d= (X′,T), then XT
d= X′

T. However, rather than observing a stochastic process

at a random time, we need most of the time to observe the whole process from that time

onwards. Canonical joint measurability is insufficient for this purpose, hence the definition is

extended in the following manner (cf. [21]):

Definition B.2. The path set H of a continuous time stochastic process X is internally

shift–invariant if

{φtx : x ∈ H} = H, for all t ∈ [0,∞),

where φtx = (xt+s)s∈[0,∞), for all x ∈ H. The process X is said to be shift-measurable if

its path set H is internally shift-invariant and if the mapping taking (x, t) ∈ H × [0,∞) to

φtx ∈ H is H⊗ B[0,∞)/H measurable.

Finally, a stochastic process with internally shift-invariant path space is shift measurable

if and only if it is canonically jointly measurable. The standard cases, where the paths are

right continuous with left limits and the state space (E, E) is Polish2, are all covered by shift

measurability, in fact, completeness of E is not even necessary (cf. [21]).

2A measurable space (E, E) is Polish if E is a complete separable metric space and E is generated by the

open sets.
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B.2. Back to convergence. For the shift measurable stochastic processes X and X′, plain

total variation convergence is similar to that for random elements:

‖IP{φtX ∈ ·} − IP{φtX′ ∈ ·}‖ → 0, as t →∞.

If U is a uniform random variable on [0, 1], then the Cesaro (or time-average) total variation

convergence is defined as

‖IP{φUtX ∈ ·} − IP{φUtX′ ∈ ·}‖ → 0, as t →∞.

B.3. Invariant σ–field. Ergodicity for stochastic processes is defined through the so called

invariant field or invariant σ-algebra. The invariant field (cf. [21]) consists of path sets in H
that do not depend on where the origin is placed; it is formally defined as:

(B.1) I = {A ∈ H : φ−1
t A = A, 0 ≤ t < ∞}.

This is a σ-algebra because if A is the union of the sets Ak, satisfying φ−1
t Ak = Ak, then

φ−1
t A = A; I is also closed under complementation and it contains H.

B.4. Regeneration. Let us introduce some properties for general stochastic processes, which

generalize the classical regenerative property introduced. The first concept we introduce

is called wide-sense regeneration, first defined by Smith in 1955 (cf. [19]), using the term

’equilibrium process’. At that time the term and the property remained unnoticed, and

later it was rediscovered independently by Asmussen and Thorisson. Lag–l regeneration is

somewhat more restrictive than wide-sense regeneration (cf. [2]), one-dependent regeneration

is noted in the dissertation of Glynn in 1982, and can be found in the article of Sigman

(cf. [18]). To our best knowledge wide-sense k-dependence is not known in the literature.

A shift measurable stochastic process X is wide-sense regenerative with regeneration times

S = (Sn)∞0 (cf. [21], Chapter 10, Section 4) if

(B.2) φSn(X,S) d= (X0,S0), n ∈ IN ∪ {0},

where (X0,S0) is the zero-delayed version of (X,S), and

(B.3) φSn(X,S) is independent of (S0, . . . ,Sn), n ∈ IN ∪ {0}.

Furthermore, the process X is called k-dependent (cf. [11]) with k ∈ IN and S, if for each

n ∈ IN (D,C1, . . . ,Cn) and (Cn+k+1, . . .) are independent, where D := (Xs)s∈[0,S0) is the
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delay, and Cn := (XSn−1+s)s∈[0,Ln), with Ln = Sn − Sn−1, n ∈ IN . As a combination of the

two notions, wide-sense regenerative and k-dependent processes, we define a third regeneration

related notion, which generalizes the wide-sense regeneration, as follows:

Definition B.3. The process X is said to be wide-sense k-dependent with k ∈ IN and the

sequence S if (X,S) satisfies (B.2) and

(B.4) φSn(X,S) is independent of (S0, . . . ,Sn−k), n ∈ IN.

Observation B.4. A very important difference between the wide-sense regenerative and clas-

sical regenerative properties is the following (cf. [21]): If (X,S) is classical regenerative the

path process (φsX)s∈[0,∞) with state space (H,H) is in general not classical regenerative (un-

less X is a non-random constant), but it is wide-sense regenerative with regeneration times S.

The wide-sense regenerative, as well the wide-sense k-dependent regenerative properties also

preserve under measurable functions f , defined on (H,H) into some measurable space.

Thorisson (cf. [21]) also notes here that although the Markovian property does not pre-

serve under measurable functions, for any general stochastic process X the path process

(φsX)s∈[0,∞) is always a Markov process!

Appendix C. The cost of the delay cycle

Our proof for the average cost expression, in Section 5.1 uses Proposition 3.1 of Glynn and

Sigman(cf. [11]). In order to make the use of this proposition ’legal’, we need to prove that

the expected cost of the delay cycle is finite, that is, IE
∫ S0

0 g(φs ◦X)ds < ∞. By the findings

of Section 5.1 (relation (5.7)) this is equivalent with proving that

(C.1) IE

(
N0∑

k=1

IE(Jk|Ak−1)

)
< ∞.

The idea of the proof is exactly as that of Proposition 4.2 of [11]. Let

r(z) := IEz

N0∑

k=1

IE(Jk|Ak−1),

and ε := {z : r(z) < ∞}, and we need to show (cf.Proposition 4.2, [11]) that π∞(ε) = 1.

Denoting with IE0 the expectation associated with the probability measure under which X is
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non-delayed (see Section 2.1),

π∞(ε) =
1

IEN1
IE0

(
N1∑

k=1

1{r(IE(Jk|Ak−1))<∞}

)
(C.2)

=
1

IEN1

∞∑

k=1

IP 0{r(IE(Jk|Ak−1)) < ∞,N1 > k}.

On the other hand, using the notation zk := IE(Jk|Ak−1), we have

IE0(r(IE(Jk|Ak−1)),N1 > k) = IE0

(
IE0

zk

(
N1∑

k=1

IE(Jk|Ak−1)

)
,N1 > k

)

= IE0

(
IE0

zk

( ∞∑

k=1

IE(Jk|Ak−1),N1 > k

))

= IE0

(
IE0

( ∞∑

n=k

IE(Jn|An−1),N1 > k

))

= IE0

( ∞∑

n=k

IE(Jn|An−1)

)

≤ IE0

( ∞∑

n=1

IE(Jn|An−1)

)
< ∞,

which means that IP 0{r(IE(Jk|Ak−1)) < ∞,N1 > k} = 1. In the very first equality of the

above evaluation we use the fact that under the non-delay expectation IE0, we can consider

r(z) as the expected cost of the first regeneration cycle, started in an arbitrary state, zk.

Having thus

∞∑

k=1

IP 0{r(IE(Jk|Ak−1)) < ∞,N1 > k} =
∞∑

k=1

IP 0{N1 > k} = IEN1,

it follows immediately by relation (C.2) that π∞(ε) = 1. This proves thus that the expected

cost of the delay-cycle is finite.
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