1,121 research outputs found

    An Adaptive Lightweight Security Framework Suited for IoT

    Get PDF
    Standard security systems are widely implemented in the industry. These systems consume considerable computational resources. Devices in the Internet of Things [IoT] are very limited with processing capacity, memory and storage. Therefore, existing security systems are not applicable for IoT. To cope with it, we propose downsizing of existing security processes. In this chapter, we describe three areas, where we reduce the required storage space and processing power. The first is the classification process required for ongoing anomaly detection, whereby values accepted or generated by a sensor are classified as valid or abnormal. We collect historic data and analyze it using machine learning techniques to draw a contour, where all streaming values are expected to fall within the contour space. Hence, the detailed collected data from the sensors are no longer required for real-time anomaly detection. The second area involves the implementation of the Random Forest algorithm to apply distributed and parallel processing for anomaly discovery. The third area is downsizing cryptography calculations, to fit IoT limitations without compromising security. For each area, we present experimental results supporting our approach and implementation

    Agent-Based System for Mobile Service Adaptation Using Online Machine Learning and Mobile Cloud Computing Paradigm

    Get PDF
    An important aspect of modern computer systems is their ability to adapt. This is particularly important in the context of the use of mobile devices, which have limited resources and are able to work longer and more efficiently through adaptation. One possibility for the adaptation of mobile service execution is the use of the Mobile Cloud Computing (MCC) paradigm, which allows such services to run in computational clouds and only return the result to the mobile device. At the same time, the importance of machine learning used to optimize various computer systems is increasing. The novel concept proposed by the authors extends the MCC paradigm to add the ability to run services on a PC (e.g. at home). The solution proposed utilizes agent-based concepts in order to create a system that operates in a heterogeneous environment. Machine learning algorithms are used to optimize the performance of mobile services online on mobile devices. This guarantees scalability and privacy. As a result, the solution makes it possible to reduce service execution time and power consumption by mobile devices. In order to evaluate the proposed concept, an agent-based system for mobile service adaptation was implemented and experiments were performed. The solution developed demonstrates that extending the MCC paradigm with the simultaneous use of machine learning and agent-based concepts allows for the effective adaptation and optimization of mobile services

    n-Tier Modelling of Robust Key management for Secure Data Aggregation in Wireless Sensor Network

    Get PDF
    Security problems in Wireless Sensor Network (WSN) have been researched from more than a decade. There are various security approaches being evolving towards resisting various forms of attack using different methodologies. After reviewing the existing security approaches, it can be concluded that such security approaches are highly attack-specific and doesnt address various associated issues in WSN. It is essential for security approach to be computationally lightweight. Therefore, this paper presents a novel analytical modelling that is based on n-tier approach with a target to generate an optimized secret key that could ensure higher degree of security during the process of data aggregation in WSN. The study outcome shows that proposed system is computationally lightweight with good performance on reduced delay and reduced energy consumption. It also exhibits enhanced response time and good data delivery performance to balance the need of security and data forwarding performance in WSN

    Anomaly Detection in IoT: Recent Advances, AI and ML Perspectives and Applications

    Get PDF
    IoT comprises sensors and other small devices interconnected locally and via the Internet. Typical IoT devices collect data from the environment through sensors, analyze it and act back on the physical world through actuators. We can find them integrated into home appliances, Healthcare, Control systems, and wearables. This chapter presents a variety of applications where IoT devices are used for anomaly detection and correction. We review recent advancements in Machine/Deep Learning Models and Techniques for Anomaly Detection in IoT networks. We describe significant in-depth applications in various domains, Anomaly Detection for IoT Time-Series Data, Cybersecurity, Healthcare, Smart city, and more. The number of connected devices is increasing daily; by 2025, there will be approximately 85 billion IoT devices, spreading everywhere in Manufacturing (40%), Medical (30%), Retail, and Security (20%). This significant shift toward the Internet of Things (IoT) has created opportunities for future IoT applications. The chapter examines the security issues of IoT standards, protocols, and practical operations and identifies the hazards associated with the existing IoT model. It analyzes new security protocols and solutions to moderate these challenges. This chapter’s outcome can benefit the research community by encapsulating the Information related to IoT and proposing innovative solutions

    Mass Removal of Botnet Attacks Using Heterogeneous Ensemble Stacking PROSIMA classifier in IoT

    Get PDF
    In an Internet of Things (IoT) environment, any object, which is equipped with sensor node and other electronic devices can involve in the communication over wireless network. Hence, this environment is highly vulnerable to Botnet attack. Botnet attack degrades the system performance in a manner difficult to get identified by the IoT network users. The Botnet attack is incredibly difficult to observe and take away in restricted time. there are challenges prevailed in the detection of Botnet attack due to number of reasons such as its unique structurally repetitive nature, performing non uniform and dissimilar activities and  invisible nature followed by deleting the record of history. Even though existing mechanisms have taken action against the Botnet attack proactively, it has been observed failing to capture the frequent abnormal activities of Botnet attackers .When number of devices in the IoT environment increases, the existing mechanisms have missed more number of Botnet due to its functional complexity. So this type of attack is very complex in nature and difficult to identify. In order to detect Botnet attack, Heterogeneous Ensemble Stacking PROSIMA classifier is proposed. This takes advantage of cluster sampling in place of conventional random sampling for higher accuracy of prediction. The proposed classifier is tested on an experimental test setup with 20 nodes. The proposed approach enables mass removal of Botnet attack detection with higher accuracy that helps in the IoT environment to maintain the reliability of the entire network
    • …
    corecore