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Chapter

Anomaly Detection in IoT: Recent 
Advances, AI and ML Perspectives 
and Applications
Menachem Domb, Sujata Joshi and Arulmozhi Khn 

Abstract

IoT comprises sensors and other small devices interconnected locally and via the 
Internet. Typical IoT devices collect data from the environment through sensors, ana-
lyze it and act back on the physical world through actuators. We can find them inte-
grated into home appliances, Healthcare, Control systems, and wearables. This chapter 
presents a variety of applications where IoT devices are used for anomaly detection 
and correction. We review recent advancements in Machine/Deep Learning Models 
and Techniques for Anomaly Detection in IoT networks. We describe significant in-
depth applications in various domains, Anomaly Detection for IoT Time-Series Data, 
Cybersecurity, Healthcare, Smart city, and more. The number of connected devices is 
increasing daily; by 2025, there will be approximately 85 billion IoT devices, spreading 
everywhere in Manufacturing (40%), Medical (30%), Retail, and Security (20%). 
This significant shift toward the Internet of Things (IoT) has created opportunities 
for future IoT applications. The chapter examines the security issues of IoT standards, 
protocols, and practical operations and identifies the hazards associated with the 
existing IoT model. It analyzes new security protocols and solutions to moderate these 
challenges. This chapter’s outcome can benefit the research community by encapsulat-
ing the Information related to IoT and proposing innovative solutions.

Keywords: anomaly detection, internet of things [IoT], cybersecurity, data security, 
threats, risks, smart devices, time-series data, AI, machine learning, deep learning, 
healthcare, smart city, IoT environments, internet of things, anomaly detection, IoT 
intrusion detection, machine learning, deep learning, transfer learning, network 
security, convolutional neural network

1. Introduction

The wide variety of IoT devices lacking any standard creates connectivity issues 
and increases the security vulnerability of IoT local networks and the entire Internet. 
Machine Learning techniques are already used in ECG, X-ray, pattern recognition, 
cancer detection, brain signal modeling, and IoT services on electrical impedance 
planes to discover defects. Extending ML and DL technologies to detect anomalies 
where it is already operating is a natural and effective transition. Anomalies are events 
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or patterns that deviate significantly from predictable behavior. Detection methods 
are expected to identify anomaly occurrences and their probable cause promptly. 
To comply with this chapter topic, we focus on these applications incorporating 
Machine Learning and Deep learning methods. Chatterjee & Ahmed [1] provide a 
comprehensive survey on Anomaly Detection in IoT and propose four measurements 
for evaluating IoT Anomaly Detection methods: how they approach the problem, how 
they are applied, the type of method, and the algorithm latency. Anomaly detection 
using deep learning is described by Chalapathy and Chawla [2], and Yassine et al. [3] 
provide a review of the methodologies, situations, and computation platforms used 
for anomaly detection in the energy industry. Talagala et al. [4] propose a distribu-
tional unsupervised for anomaly detection in high-dimensional data. Yin et al. [5] 
extract unique temporal features from a given temporal data file using a combination 
of CNN and LSTM and continue in [5] to detect anomalies involving CNN, LSTM, 
and Deep neural network (DNN).

They [1] also define 18 application types of anomaly detection processes. The 
following are examples of various application types. Sobhani et al. [6] demonstrate 
that the accuracy of final load projections is improved when eliminating observa-
tions from the original input using local load information. T. Asakura et al. [7] detect 
damage to industrial rotating equipment by calculating the feature vectors of the 
anomaly vibration data extracted from sensors’ vibration signal features to construct 
a monitoring system for machinery equipment. [8] proposed anomalies detection 
in Manufacturing using density peak weighted fuzzy C-means (WFCM). [9] detect 
unexpected event changes in sensor signals using an adaptive data-driven monitor-
ing method. Zekry et al. [10] use a convolutional LSTM model for anomaly detection 
in the context of connected vehicles. Wang et al. [11] log anomalies in IoT systems 
using a natural language processing approach, extracting the relevance between 
words and vectoring them. The method trains supervised models to detect anoma-
lies reducing computational time. Xu et al. [12] used I-LSTM and Deep learning in 
smart-city data for multi-classification anomaly detection to improve smart homes’ 
service quality. Tripathi et al. [13] proposed reliable and transparent city connectiv-
ity using IoT, MEC, and Blockchain consensus. Ullah et al. [14] presented a timely 
identification of abnormal incidents in surveillance networks, incorporating LSTM 
with CNN, where CNN features are collected from successive frames. LSTM is used 
to distinguish between normal and abnormal values. The in-depth features and 
multi-layer BD-LSTM provide high-level training and validation data to real-world 
IoT surveillance networks. The DeL-IoT framework [15] detects IoT abnormali-
ties by observing flow-level traffic instances that pass through switches. The IoT 
anomaly identification and prediction framework uses a Deep Learning technique 
to identify anomalies. Mirsky et al. [16] proposed a Blockchain-based distributed 
anomaly detection algorithm using the Markov chain (MC) to simulate sequences 
efficiently. Y. An et al. [17] proposed anomaly detection capable of relieving net-
work congestion and CPUs from the computing pressures of centralized servers, 
unlocking the potential of edge intelligence in IoT. Shen et al. [18] propose a privacy-
preserving SVM training strategy using encrypted IoT data. Data providers encrypt 
their data locally using their private keys and then record the encrypted data on the 
Blockchain.

The rest of the chapter comprises as follows: The next section outlines security 
issues unique to the IoT environment. Section 3 presents a generic two-stage Anomaly 
Detection approach. In the first stage, a process builds the envelope around the 
weighted average, and the comparison is done in the second stage. In Section 4, 
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Anomaly Detection using Random Forest Machine Learning is presented, and it 
concludes in Section 5.

2. IoT security issues

We see a considerable rise in the use of IoT applications in our day-to-day lives. 
The IoT enhances web-based applications by enabling connections via the Internet 
between people and their equipment/devices in a real-world or virtual environment. 
IoT improves Web-enabled applications by allowing links between “everyone” and 
“everything” in a real-world and virtual environment [19]. Utilizing IoT applications 
and services is now easier than ever because of the exponential expansion of smart 
devices. As the asset value of the data kept, processed, and conveyed increases along 
with scale, so do the attacks against them. These predictions show that there will be a 
rise in the number and level of threats and attacks against IoT devices, necessitating 
more robust security measures. This section aims to investigate recent IoT cybersecu-
rity solutions.

Artificial intelligence, Machine/Deep Learning, and networking have become the 
current area of IoT-related research. Adopting ultra-lightweight protocols for security 
and core functionality is a significant development in the IoT.

IoT security is constantly evolving, with new risks always being found. The 
focus of IoT security discussions is ACL techniques, interim encryption techniques, 
hardware-specific security solutions, and SQL-related attack measures. Identifying 
IoT-related cybersecurity risks, providing classifications, and looking for prevailing 
solutions to address them. The following questions are addressed:

1. What architecture can be used considering various criteria?

2. What are the IoT standards and protocols currently in use?

3. What are the IoT cyber security threats?

2.1 Literature review

The recent industrial trends include embedded networking in the wireless seg-
ment, where IoT is the major player. The demand for smart applications and systems 
grew, leading to the rise of IoT in commercial segments [20]. Due to the immense 
increase in the retail segments, the usage of smart applications has spiked up, 
increasing their dependability, which further leads to high risks. IoT devices have 
emerged as the spot for intrusion activities because of the lightweight protocols and 
standards that are currently present on these devices [21, 22], and the entities that 
make up these devices have easier access to servers [23] because the security is not 
fully resolved. The problem with the traditional model is the lack of low-powered 
device algorithms and the incompatibility of security tools due to differences in policy 
and implementation methods [24]. A variety of hardware-based techniques and 
unique solutions have been suggested in recent research to address traditional security 
challenges.

Xin Zhang and Fengtong Wen [25] proposed an authentication for IoT, where two 
algorithmic models have been built to ensure valid authentication. The scope of the 
security solution offered in this work is constrained to protect only lightweight sensor 
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devices from the standard network layer and physical layer-based attacks. M. Dahman 
Alshehri and Farookh K. Hussain [26] proposed a cluster-based fuzzy architecture 
and a secured communications model for IoT nodes. This study effectively provides 
a detection technique against the network’s malicious nodes but does not cater to 
the threats posed by the audit attack surface. This study does not adequately address 
the performance analysis of operational communication and computing costs. Chen 
et al. [27] offered a unique Low scale Denial of-Service attack detection approach that 
incorporates trust evaluation with Hilbert-Huang Transformation in Zigbee WSN 
to address the security risks considering a large number of devices with low energy 
which is susceptible to attacks. This work’s signal and anomaly detection technique 
helps reduce the attack level. It has an extensible design because it supports cloud 
and edge computing, but higher storage overheads persist as a problem. In traditional 
network security, IDS is entrusted with identifying and keeping track of threat 
behaviors. Hence, such models do not expressly target the IoT environment.

2.2 Security architecture and communication

This section discusses the IoT security architecture. Use-cases for IoT range from 
single node devices to cross platform deployments of technology and real-time cloud 
systems [28]. IoT operations consist of three main tasks: transmitting, retrieving, 
and data processing. Application Layer: Embedded interface modules enable devices 
to communicate with the underlying architecture. The device Management Plane 
identifies the data’s source and destination to maintain the device’s input–output 
operations. For instance, the Aggregator aggregates the given device data assets into a 
fixed set. A communication Layer is an intermediary layer with network components 
that establish various communication protocols and standards. This layer comprises 
stacks of current protocols and criteria for controlling traffic throughout the system. 
Standard protocols enable proper communication among IoT devices. Such systems 
need a defined set of simple rules to initialize and share data information. Figure 1 
depicts the multi-layer architecture of IoT.

The IoT’s communication protocols include:

1. Z-wave – The protocol facilitates device communication in a closed network. 
It implies that the Z-wave regulating code is not publicly accessible. It prohib-
its anyone from changing the code and suggests that each Z-wave device has a 
unique ID granting access to all remote controls. This architecture ensures effec-
tive interoperability and security, the Z-wave protocol’s core.

2. BLE –Bluetooth low energy is a widely used protocol. Due to its propensity to 
consume less energy, it works well with low-energy devices. Based on Generic 
Attributes, this protocol uses Services and Characteristics to carry out its op-
erations.

3. MQ Telemetry Transport (MQTT) is a protocol for small Internet of Things (IoT) 
devices that allow data transmission and some reception between the sensor nodes.

4. Advanced Message Queueing Protocol (AMQP): includes efficiency, portabil-
ity, multichannel support, and security, a TCP-dependent binary protocol that 
ensures authentication using SASL or1TLS.
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5. Limited Application Protocol (CoAP) is a protocol for constrained-based envi-
ronments. Significant traits of this protocol include its REST API-based founda-
tion, design for system applications, effective congestion control, cross-protocol 
interoperability, and many others.

6. The Data Distribution Service protocol is an Internet of Things protocol for M2M 
communications. Like the MQTT and CoAP protocols, data can be exchanged 
using the publish-subscribe approach; the significant distinction is that this 
architecture does not require a broker, unlike the latter two. DDS employs multi-
casting to provide apps with high QoS.

7. 6LoWPAN is the 6th version of the Low-power Wireless Personal Area Network. 
It is a standard protocol for implementing IPv6 on wireless networks comprising 
low-power wireless modules.

8. DTLS: Datagram Transport Layer Security is a security protocol for the Inter-
net of Things and is intended to safeguard data transmission between apps that 
use datagrams. It offers the same level of security and is majorly focused on the 
Transport layer security protocol.

Heterogeneous physical components such as switches, actuators, gateways, sensor 
nodes, and other embedded devices make up this unstable environment. A signifi-
cant impact on networking principles is made by the intelligent device’s engineering 
process, which is the backbone of the whole concept. Gadgets with self-configuring 
capabilities of the M2M communication paradigm are IoT innovations. Through algo-
rithms and auxiliary technology, this configuration gives nodes the intelligence they 

Figure 1. 
IoT multi-layer architecture.
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need to make decisions for themselves under any circumstance [29, 30]. It is helpful 
during rescue operations and other emergencies where configuring the network for 
a specific area is complex, and there is no support for damaged nodes. However, as 
machines are not failsafe, it becomes susceptible if it depends too heavily on them. 
Particularly in the present, adversaries use weak authentication, unpatched firmware, 
and online credential vulnerabilities [31].

Following are some of the IoT security issues:

1. Heterogeneous devices: the paradigm most sensitive to access requests, detect-
ing third-party indulgence, and limited scalability compliance with security 
management. Several security issues with IoT today relate to traditional network 
architecture, including IoT devices that interact with the physical environ-
ment differently than conventional network devices did in the past. IoT devices’ 
heterogeneous nature ramifies other components as they operate. NIST stressed 
that IoT-specific privacy regulations [32] and cyber controls must consider the 
consequences that impact physical systems [33], ultimately affecting the physical 
world.

2. Regulations & Policies: No global IoT security standard applies to all IoT indus-
try segments. Although some regulations are in the process (such as the EU’s 
General Data Protection Regulation and the US IoT Cybersecurity Improve-
ment Act), they are relatively fragmented and do not address issues with IoT. 
IoT devices are used globally by many servers, whether they are in a business/
in a person’s workspace. Such devices can be monitored/managed using a dif-
ferent rule engine, and the security policy varies depending on the system’s 
devices. Therefore, regularization requires updating every device, which is 
time-consuming and challenging for any company. Problems include an un-
uniform pace of updating, new switches leaving some devices behind that are 
not updated, or inadequately configured nodes since it takes time to maintain 
track of millions of nodes.

3. Additional Plugins and Security: Since providing security measures for IoT was 
never modeled, further security controls are added to the IoT’s security architec-
ture. Unlike the traditional networking paradigm, the effectiveness of security 
characteristics relies on the IoT architecture’s ability to function with additional 
resources. The efficiency of the IoT’s security is also influenced by client behav-
iors, such as how they choose among the various security solutions.

4. Lack of compliance: The lack of compliance among manufacturers is always a 
cause for concern. A device should generally satisfy the following requirements: 
Operational Compliance, Security Compliance, and Manufacturing Compliance.

5. An IoT network may be in danger if operational compliance is not maintained. 
A city’s power distribution login system could be part of the network. The 
network on which they operate is at risk due to legacy operating systems which 
delayed security patches and other issues. Few makers of IoT devices utilize 
open-source code. When these IoT devices join a network, the entire system’s 
integrity may be compromised. A lack of security compliance only makes IoT 
security issues more difficult. Many IoT device producers need to create patch-
able IoT products.
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6. Exposure Threats: IoT endpoints, such as sensors and IP cameras which are in 
public spaces, are the threat points that are easiest for the enemy to access. As a 
result, the user’s integrity and authentication are threatened by physical-based 
and proximity threats [34]. Our changes to the protocol method to safeguard 
devices from adversaries are the biggest security difficulties in this area.

2.3 Classification of IoT attacks

Several commercial businesses have made significant financial investments to 
secure their IoT-based networks in recent years. IoT attacks are split into two modules:

2.3.1 Protocol-based attacks

Protocol-based attacks utilize known published protocols to serve their benefits, 
affecting the communication channel. It is divided into two types:

1. Communications protocols attacks: (a) Attacks on communication protocols—
several types of exploitation occur when nodes transition, such as sniffer attacks, 
flooding attacks, and key preshredding attacks. (b) Network protocol attacks where 
connection establishment is exploited include Wormhole attacks, selective forward 
attacks, and sniffing attacks.

2.3.2 Transmitted data attacks

Threats on initial packets and messages moving across communication nodes. 
Some of its most severely affected security exploitations are data leakage, malicious 
node VM formation, hash collision, and denial of service. Active and passive attacks 
compromise the system’s security—the effectiveness of the network is less affected 
by passive attack protection systems, which are restricted to monitoring techniques. 
Modern, responsive security techniques are needed to counter active attacks to reduce 
risk and affect network performance.

a. Distributed Denial of Service attack — DDoS [35] impacts a network security 
parameter’s availability. Botnets enable DDoS threats on sensor nodes. Affected 
packets from various sources get access via these points, travel down network 
data routes, and end up clogging the entire link architecture, making servers 
unusable.

b. Sniffing attack [36] falls under data collection, a threat vector in which vital 
system data is collected and used for attacks. With the use of sophisticated tools, 
information assets are examined. Most devices available on the market need to be 
sufficiently clever to counteract and are mainly targeted by them.

c. Replay Attack – A replay attack consists of the following steps: “eavesdropping 
on the communication link between IoT devices or the gateway; intercepting 
the acknowledgments or connection-establishing components; and deceitfully 
delaying or rerouting the message.”

d. Masquerade attack [37] – This attack impersonates a valid access identifica-
tion procedure to get access to target node information. Devices that have 
poor authorization procedures are highly vulnerable. Such attacks use stolen 
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passwords and user credentials by exploiting program gaps or developing worka-
rounds for the current authentication procedure.

e. Port Scanning - Synchronize requests, target ports, sources, firewalls, packets, 
open nodes [38], and listening nodes. Synchronize scans are a frequently used 
technique that creates a partial connection to the target node on the target port 
by sending a synchronized packet to test the host system’s initial response.

2.4 IoT security solutions

In contrast to traditional security, which is tool-centric, the most recent cyberse-
curity solutions focus on software-oriented techniques [39, 40]. The security charac-
teristics that current systems address are authentication, trust, and integrity. Even in 
its current state, the Internet of Things (IoT) cannot support powerful devices and is 
not adaptable enough to keep up. Table 1 summarizes the IoT protocols, emphasizing 
their characteristics and security concerns. According to the findings, protocol-based 

S.No Protocol used Features Cyber Security issues

1 Z-wave • Z-Wave is a low-power RF technology that 

can control up to 230 devices at once and 

builds a wireless mesh network by deliver-

ing signals in the sub-1GHz frequency.

An attacker within Z-Wave 

radio range could control 

weak devices, deny service, 

force devices to fail, deplete 

batteries, intercept, observe, 

and replay traffic.

• Minimal interference, reliable connectiv-

ity, high security through encryption, 

and fewer disconnections will be the 

main advantages of using this IoT Data 

Protocol.

2 BLE • Offers a similar range to traditional 

Bluetooth.

Susceptible to cyberattacks 

and interception when 

sending and receiving data.

• Has a mesh networking structure.

• Designed for low-energy gadgets.

3 MQTT • Power usage is comparatively low. Internet-based MQTT servers 

that have been exposed, and 

malicious third-party MQTT 

message subscriptions.

• Malicious sinkhole and wormhole attacks 

against nodes and Distributed Denial of 

Service (DDoS) assaults.

• Provides a simple protocol for TCP data 

exchange between machines.

4 AMQP • Deliveries of messages with reliability, 

messages delivered quickly, and acknowl-

edgments in messages.

Security of message broker is 

affected.

• Most corporate messaging uses AMQP.
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S.No Protocol used Features Cyber Security issues

5 CoAP • Designed for the limited network device 

environment.

In a DDoS attack, a third party 

simultaneously sends forged 

IP packets during CoAP 

reflection and amplification.

• Specialized application for the homoge-

neous community of restricted devices.

• Consists of a variety of end node devices, 

constrained small networks over the 

Internet connection.

6 DDS • Has a communication protocol that varies 

from machine to machine.

Because of the expandability 

feature, poorly implemented 

and managed devices might 

result in Man in the Middle or 

DDoS attacks.

• High performance

7 NFC • Make sure the two-way connection is safe; 

Usage of smartphones as the end nodes.

Malicious wormhole attack 

based on nodes.

8 SigFox • With low-power consumption, it makes 

the most of both the cellular and WiFi 

networks.

Poor payload encryption.

• Supports star network topology and dense 

node networks.

• Has restricted endpoint access control and 

cloud access.

9 EnOcean • Self-powered wireless sensor network that 

is user-driven and gathers data.

Optional blocking, preshared 

security keys, and undefinable 

re-synchronization of 

rolling codes are frequently 

overlooked.

• Key features include less idle current.

10. DTLS • A retransmission timer is used by DTLS to 

address the packet loss problem. The client 

retransmits the data if the timer expires 

before it receives the server’s confirmation 

message.

DDos Attacks.

• By assigning a unique sequence number to 

each message, the reordering problem is 

resolved. This aids in assessing whether or 

not the subsequent message to be received 

is in sequence. If it is out of order, it is 

placed in a queue and dealt with when the 

appropriate number in the sequence is 

reached.

• DTLS is used in applications where data 

loss is significantly less essential latency.

Table 1. 
Summary list of security protocols for IoT.
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security solutions protect against most IoT attack surfaces. [41] Using secure tech-
niques performed over the Data Link and Transport layers, protocols like COAP and 
DDS enable efficient immunity against well-known attacks like DDoS attacks and 
botnet attacks. In Sigfox and EnOcean, new methodologies prevent new threat issues 
like asynchronous code definition and poor payload encryption. The lightweight 
protocols MQTT and BLE have also emerged as a viable defense against dangers posed 
by malicious nodes and Man in Middle attacks. Divided security management is 
beneficial for more straightforward management of security measures and increases 
the efficacy of the most suggested solutions.

2.5 Summary

This section discussed IoT’s current cyber security trends by researching vari-
ous protocols, standards, and threats. The research findings on the cyber security 
risks convey that the traditional methods must be more efficient against attacks in 
heterogeneous IoT environments. Our study further reveals that most cyber security 
solutions include encryption techniques with low energy use, which also is success-
ful in securing channel attacks in IoT. IoT security increased after integrating with 
various technologies.

The complications of the IoT system have increased, and security features’ open-
ness has decreased. Even though the previously discussed issues have been attempted 
to address the evolution of communication technologies and protocols, there is always 
room for research.

3. Anomaly detection using an optimized envelope

IoT systems collect vast amounts of data to track and analyze the structure of future 
recorded data. However, this data cannot be stored as is due to limited storage but must 
be reduced to allow future data analysis based on past data that will not be compro-
mised. We propose a parameterized method of sampling the data optimally. Our 
approach has three parameters– an averaging process for constructing an average data 
cycle from past observations, an envelope method for defining an interval around the 
average data cycle, and an entropy method for comparing new data cycles to the con-
structed envelope enabling identifying anomalies and predicting future cycle behavior. 
This section concentrates on finding the optimal envelope using entropy methods.

We often have sequential data collected by sensors, and computational power and 
bandwidth resources prohibit us from collecting large-scale data. Sampling preserves 
the most critical information from the original data and reduces the complexity of the 
subsequent knowledge discovery task to a traceable version without compromising 
performance. Dictionary learning [42] helps extract patterns hidden in data. We can 
apply dictionary learning to sequential data for natural language processing, video 
analysis, and nonsequential data tasks [43]. Given the IoT data collected sequen-
tially, we can find a method that maintains a basis where we have enough elements 
to describe the sequential patterns of the data. It helps to extract a set of common 
sequential patterns from the sequential telematics data. In a smart home system, we 
may collect the most frequent activity trajectories for home members to use for mem-
ber authentication. We aim to find an optimal sampling method given a set of time-
series records, where we collect information before and after the sampling reduction 
process regarding the data’s purpose in the context of the relevant application. Many 
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known data reduction techniques enable restoring the original data set from the 
reduced one. Among these are compression and compaction routines and dictionary 
methods. Given the sequential data, we may apply Classification and Prediction. 
Classification defines whether a series of daily temperatures represent an El-Niño year 
or whether the data points to suspected intrusion.

3.1 Related work

Vlachos et al. [44] Proposed a procedure for getting the best practical estimated 
gap between two extreme measurements related to any data sequence. Sakurada and 
Yairi [45] use auto-encoders with nonlinear dimensionality reduction for the anomaly 
detection task. Reeves et al. [46] generate domain representations using scaleable layers. 
Chilimbi and Hirzel [47] implement an iterative scheme that uses temporal data to 
construct a profile. Then, they identify repeated data sequences with the same order, 
prefetches them, and let the program continue executing the prefetched instructions. 
Lane and Brodley [48] use instance-based learning (IBL) for boundary determination 
by good user behavior and heuristics. Kasiviswanathan et al. [49] detect and cluster 
user content for optimization. Mairal et al. [42] create a dictionary and adapt it to 
specific data using data vectors proposing an optimization algorithm for dictionary 
learning based on stochastic approximations. Aldroubi et al. [50] claim that a collection 
of subspaces gives the best sparse representation providing an optimized sampling in 
subspaces union. Rubinstein et al. [51] survey the various options up to the most recent 
contributions and structures. Cherian et al. [52] propose learning over-complete dic-
tionary models where the signal can have both Gaussian and (sparse) Laplacian noise. 
Dictionary teaching in this setting leads to a complex nonconvex optimization problem, 
further exacerbated by large input datasets. Duarte-Carvajalino and Sapiro [53] intro-
duce a framework for the joint design and optimization of the nonparametric dictionary 
and the sensing matrix. They demonstrate the use of random sensing matrices and 
those optimized independently of the learning of the dictionary. They complement the 
classical image datasets, maximizing the size of the sampling data to keep the balance 
between the sampling data and the information extracted from it. Our problem state-
ment focuses on extracting concepts, methods, rules, and measurements so that, at the 
end of the process, the original sampling data becomes redundant and need no longer 
be stored. However, we incorporate an ongoing learning process to keep improving and 
adjusting the extracted artifacts to natural changes in the sampled mechanism’s behavior. 
Our study concentrates on time-dependent streaming sampling data divided by fixed 
periods to repeat the analysis process for each period/cycle. We propose a condensed and 
adjustable representation of the data. Reeves et al. [46] offer an alternative to the subject.

3.2 Introducing the envelope approach

Assuming periodic data sampling and extraction of logical artifacts at the period 
level, we analyze the data collected over several periods. We divide the period into 
time units. For example, we divide it into daily time units for a year. We average the 
samples collected during each time unit and extract one value representing it. We 
repeat this process for the period and get a graph illustrating the average values for an 
intermediate and typical period. We then calculate the envelope around this average. 
The generated envelope represents the standard range of values such that unanalyzed 
periods are compared to this envelope. This period is normal if its graph value is 
entirely within the envelope. If it is totally out of the envelope, it is an exception. 
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If just sections of the graph are within the envelope, we use an entropy measure to 
calculate the “distance” of the given period from the standard envelope. Assuming an 
existing entropy threshold, we can decide whether the period is typical. We apply the 
same concept at the unit level and determine whether a specific time unit in a period 
is within the standard. This particular check is relevant to anomaly detection of IoT 
behavior. Figure 2 depicts the main blocks of the envelope construction process.

The process has three key elements: an average measure per time unit, the bound-
aries around the middle chart, and an entropy value representing the distance of an 
actual chart from the envelope. We propose an optimal intensity of each component 
to generate a balanced and reliable anomaly detection method. We start by analyzing 
typical data collected from several time-dependent cycles, determining the aver-
age value per time unit, and drawing the boundaries around the average to get the 
envelope, as described in detail in Figure 3.

Figure 4 describes the anomaly detection process by summing–up the number 
of cases in the examined chart that exceeds the envelope boundaries and in what 
direction.

This envelope method is generic and may be used for any application for anomaly 
detection, such as IoT sensors. In high variations, it can detect damaged or attacked 
sensors or support automatic instant corrections where abnormal behavior is seen. We 
may run a backtracking process for ongoing calibration of system parameters. This 
idea may be used to construct a multi-dimension envelope to comply with depen-
dency among several columns within the same record.

3.3 Experiment

We accepted detailed Meteorological data about El-Niño (EN) and NonEl-Niño 
years (NEN) from 1980 to 1998. We took data from the El-Niño years 1982, 1983, 
1987, 1988, 1991, and 1992 for the positive envelopes. All other years in the range were 
Non-El-Niño years. We tested three methods for generating envelopes: (1) minimum 
over all cycles and maximum over all cycles, (2) average cycle ± standard deviation, 
and (3) confidence interval (CI). Figure 5 visually confirms that 1995 is a regular year 
concerning its temperature spread. The Red and Blue charts represent the envelope’s 

Figure 2. 
The process of constructing the optimal envelope.
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upper and lower borders, respectively, while the Green chart represents the tem-
perature in 1995. We realize that most temperatures are within the envelope upper/
lower boundaries, generating a relatively low Entropy, 0.3631, beneath the selected 
threshold, concluding that 1995 is indeed a NEN year. However, referring to the 1992 
and 1988 years, we got 0.4266 and 0.3857 Entropy values above the threshold; hence 
they are classified as EN years. However, we did not get a precise classification when 
we applied the ± standard deviation and the confidence interval (CI) methods.

3.4 Summary

Classification methods have recently gained attention due to rising IoT security 
issues and threats. In this section, we proposed an envelope construction to clas-
sify streams of time-dependent events within a defined data cycle. We discussed 
three envelope construction options: min–max, standard deviation, and confidence 
interval (CI). We described an Entropy calculation and a Threshold determination 
to classify whether a given steam data cycle is abnormal. We used Meteorological 
data streams to demonstrate our proposal technology’s correct classification of daily 
temperature streams for a year cycle. Several extensions to our proposal include 
discovering early trends of behavior changes, determining the number of data cycles 
required for constructing the optimal envelope, exploring the possibility of dividing 
one cycle into segments associating different envelopes to each segment, and defining 
rules for anomaly discovery.

Figure 3. 
The process of Constructing the Optimal Envelope.
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4. Anomaly detection using random forest machine learning

The total transmitted data over the various sensors is growing accordingly. Sensors 
typically are low in storage, memory, and processing power resources. Data secu-
rity and privacy are part of this ever-increasing domain’s significant concerns and 

Figure 5. 
Min–max envelope for 1995 NEN.

Figure 4. 
Classifying an unclassified Cycle.
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drawbacks. A penetration discovery tool is recommended to predict possible attacks. 
Machine Training data leads to the definition of good and bad patterns for generat-
ing a Lightweight and activation framework comprised of Machine learning rule 
discovery, threat modeling, and timely reaction to rule violations. The model discov-
ers exceptions and immediately updates the system. Random Forest (RF) is used for 
anomaly detection and rules generation. We converge IoT groups’ resource sharing 
to build an efficient IoT security framework. IoT networks collect and exchange 
vast data raising major security issues. To cope with it, we propose a decentralized, 
layered, distributed, and parallel processing model embedded in the.

The IoT network utilizes the remaining resources to execute the RF method to 
detect abnormalities. The model supports continued use and is decentralized over time.

The system identifies repeated patterns, while the Machine Learning algorithms 
discover the geometric, arithmetic, and additive. The patterns are translated into rules 
to be executed in violation cases. Anan adaptive extension is used to detect changes in 
generating data and adapt the decision mod to manage suspected situations sel.

The aim is to have a framework with training data collection analyzing it to detect 
patterns, proportions, etc., and converting it to rules. Combining the collected rules 
and RF trees is deployed in the IoT devices and network. The rules are executed when 
data is received from or transmitted to an IoT device. The corresponding action is 
triggered to cope with the situation if the result is positive or negative.

4.1 Literature review

Eghbal et al. [54] Propose analyzing numerical data and generating fuzzy rules. 
The algorithm uses some rule-and-data-dependent parameters and a function that 
modifies the rule evaluation measures to assess the candidate rules effectively. [55] 
uses Sugeno integrals. They are qualitative criteria aggregations where it is possible to 
assign weights to criteria groups. It shows how to extract if-then rules expressing the 
selection of good situations based on local regulations and evaluations to detect bad 
conditions. [56] Dealing with converting data into the appropriate layout requires 
a significant investment in manual reformatting. The paper introduces a synthesis 
engine to extract structured relational data. It uses examples to synthesize a program 
utilizing an extraction language that extends regular expressions with geometric 
constructs. [57] proposes a fast and compact decision rules algorithm. It works online 
to learn rule sets. It presents a technique to detect local drifts relying on the rule set 
modularity. Each rule monitors the evolution of performance metrics to detect con-
cept drift. It provides valuable information about the dynamics of the process generat-
ing data, faster adaptation to changes, and generates more compact rule sets [58, 59]. 
It uses averaging techniques to propose a method in which a previous algorithm for 
association rules mining specifies the minimum support automatically. It uses fuzzy 
logic to distribute data in different clusters and then tries to introduce to the user the 
most appropriate threshold automatically. [60] Suggests a two-stage hybrid model for 
data classification and rule extraction. The first stage uses a Fuzzy ARTMAP classifier 
with Q-learning and Genetic Algorithm for rule extraction from QFAM. Given a new 
data sample, the model can provide a prediction about the target class of the data sam-
ple and give a fuzzy if-then rule to explain the forecast. Q-values are applied to reduce 
the number of prototypes generated by QFAM. [61] Proposes a granular-rules extrac-
tion method to simplify a data set into a granular-rule set with unique granular rules. 
[62] It describes a QAR (Quick Access Recorder) anomaly detection algorithm. The 
method retains the time characteristics data and strengthens the relationship between 
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the condition and decision attributes. [63] Describes an approach of data mining with 
Excel using the XLMiner add-on. It presents an example of mining association rules 
to illustrate this approach’s steps. [64] Introduces an algorithm for choosing which 
instances to request next in a setting where the learner can access a pool of unlabelled 
samples and request some labels. [65] It focuses on understanding the stochastic 
process’s role and how it defines a distribution over functions. It presents the simple 
equations for incorporating training data and examines how to learn the hyper-
parameters using the marginal likelihood. [66] Proposes an active learning algorithm 
that balances such exploration with refining the decision boundary by dynamically 
adjusting the investigation probability at each step. [67] Offers a multiclass learning 
model that optimizes informative training compounds to support learning progress. 
Random Forest (RF) is used to predict quantitative compound activities. The global 
prediction is made by aggregating the predictions of the ensemble. Y. Brostaux [68] 
Investigates the impact of noise in training data on the RF learning curve.

The reviewed literature focuses on improvements to known rule discovery mecha-
nisms to transform them to become lightweight and able to be executed in a limited 
resource setting. In most cases, the proposed solution remains general purpose but 
can run with fewer required resources. Our proposal exploits the unique IoT attri-
butes utilizing it to build a combined comprehensive framework for IoT security.

4.2 Rules generation and deployment process

The process consists of seven stages. Stage 1 composes training data from the IoT net-
work; Stage 2 uses discovery techniques to extract essential measurements and patterns. 
Stage 3 consists of generating for each measure and pattern a rule. Stage 4 evaluates the 
effectiveness of each law against a set of training data. Stage 5 checks the generated rule 
set’s completeness and integrity. Stage 6 simulates the same training data expecting all 
the designated rules to be executed. Stage 7 deploys the developed regulations set. The 
system is ready to accept the IoT traffic data in real-time and automatically check it 
against the rules set. Figure 6 depicts The seven stages Anomaly Detection Process.

4.3 Extracting simple rules from training data

Sensor record layout includes record ID, timestamp, and values per attribute. 
Simple rules, such as if-then, max, min, etc., are extracted directly from the record 
and its associated workflows.

4.4 Compound and multi-stage rules extraction

IoT rule engines assume real-time data streaming, instant reasoning, and actua-
tors using Machine Learning extraction of compound rules from the continuous data 
records. The outcome contains thresholds, measurements, and decision trees that keep 
expanding, consuming vast storage, memory, storage, and runtime when analyzing 
the decision tree for the specific rule and tracing the tree path to understand its logic. 
Complex Event Processing (CEP) engines support matching time-series data patterns 
from different sources but have downsides in IoT since the logic requires high process-
ing power and much time. We cope with these drawbacks by reducing the number 
of decision trees and improving the search navigation scope to a reasonable search 
time. IoT attributes and functionality are used to optimize tree navigation and process 
sharing. We use the bootstrap aggregation technique, counting the majority vote in the 
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case of decision trees. Many trees reduce the depth and width of each tree and eventu-
ally save pruning and analysis time. The algorithm accepts the number of trees, K, and 
the number of features, F, randomly sampled features for building a decision tree. For 
extensive and high-dimensional data, a large K is used. Estimating the performance of 
Random Forest for one core is based on the following parameters: # trees [K], # features 
[F], # rows [R], and maximum depth [D]. The estimated runtime formula is K*F2*R*2D. 
Hence, keeping just the most critical features, lowering the number of records, and 
keeping the maximum depth low will improve the overall Random Forest performance.

4.5 Experiment and summary

We use Excel functions and macros to generate compound rules such as pattern 
recognition for practical purposes. We also ran the Excel Machine Learning extension 
to create additional rules. We loaded the spreadsheet with 8 years of training data. All 
IoT devices are interconnected. In each device, we installed RF searching executable 
and deployed the generated simple rules and the RF trees in each device. We loaded 
the data by streaming it to the testing environment. Some generated rules do not 
require real-time reaction, consume processing power and memory space beyond the 
capacity of a typical sensor, and are executed at cloud processes. To have meaningful 
testing data, we intentionally added to the El-Niño file abnormal extreme values (e.g., 
over the maximum or lower than the minimum), wrong correlations, and classifica-
tion interrupts. We loaded the data by streaming it to the testing environment. The 
corresponding rules and RF trees instantly detected all anomalies. We did not notice 
any data flowing interruptions or delays.

This section demonstrates the ability to build a lightweight, simple, and handy 
framework for anomaly detection, rules extraction, and rules execution given enough 
training data. We then described accuracy and performance improvements. Based on 

Figure 6. 
The anomaly detection process.
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the accuracy and performance results, the feasibility and effectiveness of the pro-
posed framework have been empirically proven.

5. Specific examples and case studies of successful anomaly detection

This section outlines practical and successful anomaly detection examples in 
various application domains. Most modern hospitals have automated laboratories, 
such as Chemistry, where all the blood tests are executed by dedicated machinery, 
which is frequently calibrated at every time interval. The calibration is done according 
to the manufacturer’s instructions. However, some laboratory managers run ongoing 
anomaly detection demons to ensure real-time control. We got a request to develop 
an ongoing anomaly detection process that also considers actual historical testing 
results and incorporates an anomaly detection check that considers the history of the 
specific population who visited the lab in the past. We collected 3 years of lab results 
per machine. We ran our envelope construction process and provided a very com-
pressed envelope considering many parameters. As a result, any machinery problem 
is detected in near real-time, preventing any escape of exceptional results.

Another example is detecting abnormal data streaming sequencing, timing, 
and frequency from a permanent external resource using a sensor for each sampled 
attribute. The system listens to the communication line for a while when receiving 
transmissions from the designated source. The method constructs a multi-dimen-
sional envelope corresponding to each feature based on the collected features, such 
as timing, interval length, and frequency. The multi-dimensional envelope and a 
weighted compound entropy measurement provide comprehensive communications 
anomaly detection.

6.  Limitations and practical considerations related to IoT anomaly 
detection mechanism

Anomaly detection systems include a preprocessing stage for defining the normal 
value range where any value within the specified range is designated normal. In con-
trast, any other value is an exception. For a time-dependent data stream, the standard 
value range may vary depending on the repeatable cycle, such as season or different 
repeatable time ranges. Therefore, the correct determination of the repeatable cycle 
is crucial to the accuracy of the anomaly detection process. Thus, the following vital 
limitations and vulnerabilities are essential to mention:

a. Identifying the repeatable cycle length is the most critical step in IoT data analy-
sis. A wrong cycle length leads to wrong detected anomalies.

b. Detecting abnormalities at the beginning and the end of each cycle is more 
complex because the difference between a normal state and an abnormal state is 
minor; therefore, the chance of making a mistake is more significant.

c. To maintain accuracy in the standard indices, we must continuously examine 
the correctness of the envelope values and their adaptation to the cycle we have 
defined and predict natural and justified changes in the cycle and its correspond-
ing values used to check the anomalies over time.
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7. Conclusion

This chapter deals with current and future trends in Anomaly detection concepts 
and technologies for the IoT context. We started with an overview of various IoT 
applications spread over most functional domains, such as Industry machinery, 
Health, Smart home, and smart city. Most of the new developments in IoT focus 
on solutions to the severe security breach caused by interconnecting numerous 
IoT devices to the Internet. These solutions provide tools for detecting/identifying 
operations anomalies. Therefore, we allocated Section 2 to cover IoT operation and 
communications security aspects. Then we elaborated on generating an envelope for 
anomaly detection for temporal transactions, which are the nature of IoT activity and 
networks. We finally elaborate on advanced technology for anomaly detection using 
Random Forest distributed over a network of IoT devices.

IoT keeps evolving and spreading fast everywhere in all functional domains in the 
modern world. Thus, new developments and recent trends will continue growing, so 
new chapters will follow.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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