809 research outputs found

    Towards Middleware for Fault-tolerance in Distributed Real-time and Embedded Systems

    Get PDF
    Abstract. Distributed real-time and embedded (DRE) systems often require support for multiple simultaneous quality of service (QoS) properties, such as real-timeliness and fault tolerance, that operate within resource constrained environments. These resource constraints motivate the need for a lightweight middleware infrastructure, while the need for simultaneous QoS properties require the middleware to provide fault tolerance capabilities that respect time-critical needs of DRE systems. Conventional middleware solutions, such as Fault-tolerant CORBA (FT-CORBA) and Continuous Availability API for J2EE, have limited utility for DRE systems because they are heavyweight (e.g., the complexity of their feature-rich fault tolerance capabilities consumes excessive runtime resources), yet incomplete (e.g., they lack mechanisms that enable fault tolerance while maintaining real-time predictability). This paper provides three contributions to the development and standardization of lightweight real-time and fault-tolerant middleware for DRE systems. First, we discuss the challenges in realizing real-time faulttolerant solutions for DRE systems using contemporary middleware. Second, we describe recent progress towards standardizing a CORBA lightweight fault-tolerance specification for DRE systems. Third, we present the architecture of FLARe, which is a prototype based on the OMG real-time fault-tolerant CORBA middleware standardization efforts that is lightweight (e.g., leverages only those server-and client-side mechanisms required for real-time systems) and predictable (e.g., provides fault-tolerant mechanisms that respect time-critical performance needs of DRE systems)

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Requirements of a middleware for managing a large, heterogeneous programmable network

    Get PDF
    Programmable networking is an increasingly popular area of research in both industry and academia. Although most programmable network research projects seem to focus on the router architecture rather than on issues relating to the management of programmable networks, there are numerous research groups that have incorporated management middleware into the programmable network router software. However, none seem to be concerned with the effective management of a large heterogeneous programmable network. The requirements of such a middleware are outlined in this paper. There are a number of fundamental middleware principles that are addressed in this paper; these include management paradigms, configuration delivery, scalability and transactions. Security, fault tolerance and usability are also examined—although these are not essential parts of the middleware, they must be addressed if the programmable network management middleware is to be accepted by industry and adopted by other research projects

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures
    • …
    corecore