
Towards Middleware for Fault-tolerance in

Distributed Real-time and Embedded Systems

Jaiganesh Balasubramanian1, Aniruddha Gokhale1, Douglas C. Schmidt1, and
Nanbor Wang2

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37203, USA

2 Tech-X Corporation, Boulder, CO, USA.

Abstract. Distributed real-time and embedded (DRE) systems often
require support for multiple simultaneous quality of service (QoS) prop-
erties, such as real-timeliness and fault tolerance, that operate within
resource constrained environments. These resource constraints motivate
the need for a lightweight middleware infrastructure, while the need for
simultaneous QoS properties require the middleware to provide fault
tolerance capabilities that respect time-critical needs of DRE systems.
Conventional middleware solutions, such as Fault-tolerant CORBA (FT-
CORBA) and Continuous Availability API for J2EE, have limited utility
for DRE systems because they are heavyweight (e.g., the complexity of
their feature-rich fault tolerance capabilities consumes excessive runtime
resources), yet incomplete (e.g., they lack mechanisms that enable fault
tolerance while maintaining real-time predictability).

This paper provides three contributions to the development and stan-
dardization of lightweight real-time and fault-tolerant middleware for
DRE systems. First, we discuss the challenges in realizing real-time fault-
tolerant solutions for DRE systems using contemporary middleware.
Second, we describe recent progress towards standardizing a CORBA
lightweight fault-tolerance specification for DRE systems. Third, we present
the architecture of FLARe, which is a prototype based on the OMG
real-time fault-tolerant CORBA middleware standardization efforts that
is lightweight (e.g., leverages only those server- and client-side mech-
anisms required for real-time systems) and predictable (e.g., provides
fault-tolerant mechanisms that respect time-critical performance needs
of DRE systems).

1 Introduction

Emerging trends and challenges. Distributed object computing (DOC) mid-
dleware, such as CORBA and Real-time CORBA (RT-CORBA), is used to sup-
port the development and deployment of many distributed real-time and em-
bedded (DRE) systems, such as shipboard computing systems and intelligence,
surveillance, and reconnaissance systems. Such systems often operate in resource-
constrained environments and consist of soft real-time applications whose avail-



ability and timeliness requirements must be satisfied simultaneously. For exam-
ple, target tracking systems should provide timely response for analyzing sensor
readings even when hardware and software failures occur.

Prior research on providing quality of service (QoS) using DOC middleware
has addressed the timeliness [20] and availability [16, 19] requirements of DRE
systems. Moreover, several standards have defined interfaces and provide ser-
vices and strategies to enhance the timeliness and fault-tolerance capabilities of
DRE systems. For example, RT-CORBA [14] and Distributed Real-time Java [7]
provide capabilities to ensure predictable end-to-end behavior for remote object
method invocations. Similarly, Fault-Tolerant CORBA (FT-CORBA) [13] and
Continuous Availability API for J2EE [23] provide services and strategies to
enhance the dependability of DRE applications.

Despite promising prior work on providing timeliness and fault-tolerance ca-
pabilities for DRE systems, key problems remain unsolved. Existing approaches
provide solutions that address only one QoS dimension (e.g., timeliness) at a
time. As such, these approaches do not simultaneously satisfy multiple QoS re-
quirements, such as timeliness and availability. For example, fault-tolerance so-
lutions are often not designed to honor timeliness while recovering from failures,
whereas real-time solutions often do not recover from failures while ensuring
predictable end-to-end behavior for remote object method invocations.

Moreover, ad hoc solutions—where availability and timeliness capabilities are
obtained by simply adopting a combination of one or more solutions (e.g., FT-
CORBA and RT-CORBA) described above—are brittle and hard to maintain
and upgrade. Likewise, many DRE systems run in dynamic operating environ-
ments where workloads and resource availabilities fluctuate, which affect avail-
ability and timeliness requirements of applications. DRE systems therefore need
middleware that (1) integrates real-time and fault-tolerance by design, rather
than in an ad hoc manner, (2) is lightweight so that it is suitable for resource-
constrained deployments, and (3) is adaptive so that availability and timeliness
properties can be tuned dynamically at runtime to maintain soft real-time and
fault-tolerant performance.
Solution approach → Lightweight Real-time Fault-tolerant Middle-
ware. To address these unresolved challenges with prior work, this paper de-
scribes FLARe (Fault-tolerant Lightweight Adaptive Real-time (FLARe)), which
is a CORBA-based middleware characterized by the following contributions:
• Lightweight middleware architecture, that integrates fault-tolerance and real-
time solutions by design, instead of via an ad hoc combination of the complete
FT-CORBA and RT-CORBA specifications. FLARe supports the provisioning
of fault-tolerance functionality based on application time requirements, e.g., to
make failure recovery faster and more predictable for critical (as opposed to
non-critical) applications.
• Resource-aware adaptive fault-tolerance, where the middleware supports flex-
ible fault-tolerant system configurations (rather than inflexible configuration
prevalent in conventional FT solutions) whose behavior depends on resource
availability and utilization levels. When resource availability fluctuates due to



failures, FLARe allocates the most suitable resources amongst the available re-
sources for critical applications to increase the probability of meeting deadlines
after failure recovery.

FLARe’s design is based on the Object Management Group (OMG)’s stan-
dardization efforts to define a Lightweight Fault-tolerance for Distributed Real-
time Systems (Lw-FT-RT-CORBA) [15] specification for CORBA-based DRE
systems. In addition to summarizing these efforts, this paper focuses on the
novel techniques that FLARe uses to provide fast, predictable, and resource-
aware failure recovery for DRE systems. FLARe is developed atop the TAO
(www.dre.vanderbilt.edu/TAO) RT-CORBA object request broker (ORB).

2 Objectives of the Lw-FT-RT-CORBA Effort

The goal of Lw-FT-RT-CORBA is to provide middleware mechanisms that si-
multaneously support availability and timeliness QoS for DRE systems. This
section first describes the system and fault model of DRE systems that Lw-
FT-RT-CORBA is intended to support. We then describe the key challenges of
simultaneously providing availability and fault-tolerance capabilities for DRE
systems and explain why the FT-CORBA [13] standard is inadequate for DRE
systems. Finally, we summarize how FLARe achieves the objectives of Lw-FT-
RT-CORBA to resolve these challenges effectively.

2.1 System and Fault Model

This paper focuses on request/response-based DRE systems, where clients in-
voke remote operations on servers and where client timeliness and availability
requirements must be satisfied. Many real-time services (e.g., sensor data acqui-
sition and processing) are inherently stateless. For example, in target tracking
systems the coordinate calculator that receives images from an image forwarding
base station and calculates coordinates of surveillance images can be designed to
process each image independently to avoid maintaining state between each in-
vocation. Such systems need to provide real-time performance to clients, even in
the presence of failures and load fluctuations. The goal of Lw-FT-RT-CORBA is
to support soft real-time and fault-tolerant QoS properties for these applications.
Replication style. active and passive replication are two approaches for
building fault-tolerant distributed systems [16]. In active replication, client re-
quests are multicast and executed at all replicas to maintain strong consistency
and provide fast failure recovery. active replication, however, can incur exces-
sive overhead for DRE systems composed of (1) stateless applications, such as the
coordinate calculator systems which do not maintain state from prior sampling
period’s request processing as the processing in the current sampling period is
independent from previous sampling periods, and (2) soft real-time applications
that can tolerate occasional deadline misses. Prior research [4,18] has shown that
passive replication and its variants are more effective for DRE systems because
of its low execution overhead, and hence our focus is on how Lw-FT-RT-CORBA



can effectively support real-time and fault-tolerant requirements of applications
using passive replication.
System and fault model. The clients and servers (e.g., the image forwarding
base station and coordinate calculator services in the target tracking exam-
ple) are implemented as RT-CORBA objects. The processors and the processes
hosted by the processors are designed using a fail-stop model, where (1) each pro-
cessor or a process halts in response to a failure rather than produce erroneous
results and (2) a processor’s or process’ halted state can be detected by a failure
detector. These types of faults may occur due to aging or acute damage. Con-
sidering unpredictable behavior of processes or processors is beyond the scope
of this paper. We assume that networks provide bounded communication laten-
cies and do not fail. This assumption is reasonable for many DRE systems, such
as avionics mission computing and shipboard computing environments, where
nodes are connected by highly redundant high-speed networks.

2.2 Resource-aware Fault Recovery Challenges for Lw-RT-FT
CORBA

In the context of the system and fault model described in Section 2.1, the follow-
ing are key unresolved failure recovery challenges for using passive replication
effectively in CORBA-based DRE systems.
• Challenge 1: Providing efficient and predictable system/failure man-
agement. As described in Section 1 and Section 2.1, DRE systems operate in
dynamic operating environments, where new applications are deployed in re-
sponse to changing workloads and failures. This dynamic deployment causes
(1) increased resource utilization in certain processors and (2) load imbalance
amongst the processors in the system. Middleware that is designed to provide
failure recovery and management in a timely manner needs mechanisms that
can react to changing load conditions and failures. Such dynamic environment
changes must be communicated to the fault-tolerant middleware quickly and pre-
dictably so that failure management decisions, such as failover target selection,
can be adapted and updated at runtime.
• Challenge 2: Providing adaptive failover target selection. When a
CORBA application fails due to a processor/process failure, the respective client-
side ORB receives a CORBA comm failure exception [13]. Fault-tolerant ORBs
therefore need to mask clients from those exceptions and transparently redirect
clients to appropriately chosen backups. After a failover, the CPU utilization of
the processors hosting the failover targets increase and the response times of the
clients depend on the utilization levels of those processors.

If the failover targets are chosen statically—and without the knowledge of
current system resource availability—client failovers could cause system resource
overload, where different processor failures cause all the clients to failover to the
same processor. A well-known approach for maintaining deadlines of application
tasks in a processor is to ensure that its utilization remains below its schedulable
utilization bound [10]. If resource overloads occur, however, this could cause
increased utilization that exceeds the schedulable bound in those processors,



thereby causing applications to miss deadlines. Failover targets must therefore
be chosen based on system’s resource availability, as well as replica’s resource
requirements, so that application timeliness requirements are not compromised.
• Challenge 3: Providing transparent and predictable failure recov-
ery. One way to provide appropriate failure recovery is to decide on a failover
target after receiving the CORBA comm failure exception. This approach in-
creases the time clients need to failover to an appropriate backup, however, and
thus affects application deadlines. Failover target information must therefore be
available at the client-side fault-tolerant middleware ahead of the failure time,
so that the clients can failover to appropriate backups quickly and predictably.

2.3 Limitations of FT-CORBA for DRE Systems

To support passive replication, the FT-CORBA [13] specification collects CORBA
objects into replication groups. Replica addresses are grouped by a standard
mechanism called an interoperable object group reference (IOGR), which com-
prises a sequence of CORBA interoperable object references (IORs), each of
which points to a server replica IOR. FT-CORBA clients invoke operations using
IOGRs as if they were making invocations using IORs.

If a server object fails in the IOGR model the client-side ORB catches the
exception, and cycles through the IORs in the IOGR to handle the request
at a different replica. This approach ensures faster client failover and provides
clients with a transparent abstraction as though the service was provided by a
single server. If no IORs in the IOGR list are valid (e.g., if no replicas are live)
an exception is propagated to the client application so it can start a recovery
process to find a new set of server object addresses.

Although the IOGR provides a standardized, transparent mechanism for
client-side failover if a server replica fails, the overall architecture has the follow-
ing shortcomings:

• No seamless integration with RT-CORBA. Not all RT-CORBA
ORBs support the FT-CORBA IOGR feature. Even if it is supported, there
are no guidelines on how the FT-CORBA services will work with RT-CORBA
features, such as thread pool with lanes and banded connections. Without these
features higher priority applications cannot be provided with fault-tolerance ca-
pabilities in a timely manner due to lack of support for for prioritizing failure
detections and notifications.

• Fixed and load-unaware replica selection. FT-CORBA’s mechanism
of selecting the next IOR from a sequence provides fast failover. The default
FT-CORBA replica selection policy, however, does not consider each server’s
resource utilization, which may affect client response times after failover. For
example, due to dynamic task arrivals and changing system utilization levels,
a replica that was a suitable failover target at deployment time may be a poor
choice at runtime.



These shortcoming of FT-CORBA for DRE systems described above moti-
vate the need for—and approach taken by—the Lw-FT-RT-CORBA standard-
ization effort.

2.4 Salient Features of Lw-FT-RT-CORBA

To overcome the limitations of FT-CORBA for DRE systems, Lw-FT-RT-CORBA
requires the integration of real-time and fault-tolerance capabilities into a DRE
system by design. Lw-FT-RT-CORBA combines the following capabilities: (1)
FT-enabled middleware, which provides fault-tolerance capabilities that does not
require any real-time features, e.g., a client-side interceptor can catch failure ex-
ceptions irrespective of the priority of the server process that has failed, (2) FT-
enabled real-time middleware, which provides fault-tolerance capabilities that
requires real-time features, e.g., a failure detector needs to differentiate between
the reporting of the failure of a higher priority object from that of a lower priority
object so that fault recovery can be prioritized, and (3) middleware-independent
fault-tolerance mechanisms, which support adaptive fault-tolerance, e.g., fault-
tolerant decision making, such as failover target selection, can be made using
algorithms that are independent of the supported middleware.

The Lw-FT-RT-CORBA approach is different than the FT-CORBA ap-
proach, which provisions all fault-tolerance capabilities using FT-enabled mid-
dleware. For example, in FT-CORBA fault recovery is provided by (1) a fault
detector, which is a CORBA component that detects CORBA object failures,
(2) a fault notifier, which is a CORBA component that notifies CORBA object
failures, and (3) a client-side interceptor, which is a CORBA component that
detects client-side failure exceptions to redirect clients to the next profile in the
server IOGRs. As described in Section 2.3, however, these capabilities do not
function properly due to the non-adaptive, resource-unaware recovery mecha-
nisms in FT-CORBA. To address these limitations, Lw-FT-RT-CORBA uses a
micro-kernel approach that provisions fault-tolerance functionality via the com-
bination of capabilities described above that collaborate to provide real-time
fault-tolerance capabilities for DRE systems.

3 The Design of FLARe

This section describes the design of FLARe and shows how it addresses the
resource-aware fault recovery challenges described in Section 2.2. FLARe is de-
signed to address the requirements of Lw-FT-RT-CORBA i.e., provide both
availability and timeliness capabilities for DRE systems. Figure 1 shows the key
components of FLARe’s architecture, which includes protocols, mechanisms, and
services for supporting fault-tolerance capabilities using passive replication for
DRE systems.

The novel aspects of FLARe’s design include the combination of (1) client-
side FT-enabled middleware components, which transparently provide client redi-
rection and request reinvocation, (2) server-side FT-enabled real-time middle-



ware components, which monitor replica and process failures along with sys-
tem parameters, such as CPU utilization, and help provide resource-aware and
priority-aware tunable fault-tolerance, and (3) infrastructure-specific middleware-
independent mechanisms, which use interfaces for replica registration and spec-
ifying application QoS requirements to support fine-grained tuning of fault-
tolerance policies to ensure timely performance of DRE applications.

The interactions between the FLARe components combine real-time and
fault-tolerance features, and hence provide an open platform for evaluating key
issues in real-time fault-tolerance capabilities for DRE systems. Moreover, while
describing the interactions between these different components, we also elaborate
on the design choices we made and patterns used to implement various entities
of FLARe’s architecture. FLARe’s pattern-based design enhances its flexibility
and portability, without impeding the primary objectives of fault tolerance and
real-time.

Fig. 1: FLARe Middleware Architecture

3.1 Providing Efficient and Predictable System/Failure
Management

DRE systems often operate in dynamic operating environments, where proces-
sor utillizations fluctuate due to dynamic application deployments and failures.
Changes in the system (e.g., increase in CPU load) must therefore be conveyed
to the fault-tolerant middleware quickly so appropriate actions can be taken.
Problem. In FT-CORBA, liveness checking is typically accomplished via an
is alive message from a fault detector component to all the CORBA objects
it monitors. However, as described in [15], the failures and recovery occur at



the granularity level of a process and its address space. Liveness checking of
individual objects for failure detection can therefore introduce unwanted and
substantial overhead that adversely impacts real-time requirements. Moreover,
introducing messaging for liveness check introduces additional system overhead.

Moreover, multiple objects and processes could fail simultaneously in DRE
systems. Since the objects differ by their priority, failure and recovery manage-
ment of those objects must also be prioritized. What is needed therefore is a
resource monitoring infrastructure that is (1) decentralized, so that processor-
specific local monitors can monitor the liveness of processes and their hosted
objects, and (2) scalable and predictable, so that the failure as well as utiliza-
tion reports are communicated with the fault-tolerant middleware according to
the priority of the applications monitored.
Solution → Predictable and scalable resource monitors. As shown in Fig-
ure 1, FLARe employs a pair of FT-enabled real-time middleware components
namely middleware replication manager and resource monitor to provide a de-
centralized, and predictable failure and system management for DRE systems.
The middleware replication manager is composed of several sub-components, in-
cluding a (1) failure manager, (2) system manager, (3) resource manager, and
(4) fault-tolerance manager.

The failure manager receives failure notifications and works with the system
manager to start new replicas if the replication degree of replica is below an
acceptable threshold. The system manager receives system runtime information
(such as CPU utilizations at different processors) and works with the resource
manager to tune fault-tolerance decisions (e.g., failover targets) dyhamically. The
fault-tolerance manager works with the client-side and server-side middleware
to notify the fault-tolerance decisions made by the resource manager.

FLARe runs a resource monitor on each processor to track the CPU utiliza-
tion and liveness of the processes hosted by the processor. On Linux platforms,
for example, the resource monitor uses the /proc/stat file to estimate the CPU
utilization in each sampling period. This file records the number of “jiffies” (a
default duration of 10ms in Linux) when the CPU is in user, nice, system, and
idle modes. At the end of each sampling period, the resource monitor reads the
counters and estimates the CPU utilization as the fraction of time when the
CPU is not idle.

To perform liveness checking of processes in a processor, FLARe uses the
Acceptor/Connector [21] pattern that decouples connection establishment and
service initialization in a distributed system from the processing performed once
the service is initialized. Since the server process and resource monitor run on the
same host, the connection uses local connection mechanisms, such as a POSIX
local socket (also known as a UNIX domain socket) or Windows named pipes.

For example, on Linux each application process opens a passive (i.e., Accep-
tor role) POSIX local socket, and registers the port number with the resource
monitor. The resource monitor connects to (i.e., Connector role) and performs a
blocking read on the socket. If an application process crashes, the socket and the



opened port will be invalidated. The resource monitor then receives an invalid
read error on the socket, which indicates the failure of the process.

Resource monitors generate periodic and event-driven notifications regarding
failures and system utilization. FLARe’s replication manager (the system and
failure manager sub-components) must handle these periodic requests from all
hosts it manages. The replication manager must therefore allocate appropriate
resources to serve these requests concurrently and these events may be treated
at different levels of priorities, depending on the criticality of the process and
processor being monitored.

Addressing the challenges outlined above requires an approach that can han-
dle incoming requests concurrently with negligible overhead stemming from con-
text switching and data copying activities. The client-side (resource monitors)
defines the priority at which the requests will be executed at the system and
failure managers. FLARe therefore uses RT-CORBA’s client propagated pri-
ority model, which allows clients to dictate the CPU priority using which the
server executes the client request.

To allow the system and failure managers to serve the requests arriving at
different priorities, FLARe uses the RT-CORBA thread pool with lanes feature,
which partitions the available number of threads across different priorities, so
that each server can simultaneously serve multiple client requests arriving at
multiple priorities. The number of threads is configured at deployment time
depending on the number of resource monitors deployed in the system. By se-
lecting real-time features, such as thread pool with lanes, and integrating them
with fault-tolerance features, such as process liveness checking, FLARe provides
prioritized failure management for applications using the combination of the
FT-enabled real-time middleware components.

3.2 Providing Adaptive Failover Target Selection

For every replica in the system, failover targets should be determined based
on updated information about the processor utilizations and failures, so that
clients do not failover to replicas that (1) are overloaded, which can cause poten-
tial deadline misses, and (2) have already failed, which can potentially increases
failure recovery time.
Problem. Fault-tolerant middleware needs to make per-replica failover target
decisions based on algorithms [2, 12]. DRE systems, however, often have a wide
variety of applications with different characteristics and priorities. Hence, a single
decision making algorithm will not suffice for the needs of all applications. What
is needed, therefore, is middleware that can support real-time fault-tolerant de-
cision making based on various algorithms specialized for the needs of different
applications.
Solution → Adaptive resource manager. As described in Section 3.1, the
middleware replication manager has a subcomponent resource manager that
works with the system manager to tune fault-tolerance configurations of the sys-
tem in response to changing system configurations. FLARe’s resource manager
makes run-time, resource-aware decisions about the fault-tolerance configura-



tions so that the clients can access the services in a fault-tolerant and timely
manner. Example fault-tolerance configurations include per-replica failover tar-
gets, per-replica physical mapping onto processors, and per-replica weaker con-
sistency optimizations. Research has been done in each of these decision-making
dimension (e.g., failover target selection) and many algorithms have been pro-
posed [1, 12, 25].

To allow the resource manager to make decisions using a wide variety of al-
gorithms, FLARe uses the Strategy pattern [5] to factor out similarities among
algorithmic alternatives. For each decision-making dimension, the resource man-
ager can be configured at deployment time with an algorithm strategy that is
customized for application-specific availability and timeliness requirements.

The capability to plug-in many different decision-making algorithms allows
FLARe to cater to the needs of a wide variery of applications. FLARe provides
a failover target selection algorithm that determines a list of failover targets
ordered by the predicted CPU utilization of the processors if a failover occurs
(the processor with the lowest predicted CPU utilization is the first in the list).
The algorithm and the subsequent performance within the context of FLARe
is described in [2]. Moreover, as described in Section 3.1, the system manager
receives information about the processor utilizations in a prioritized manner.
Hence, the resource manager can provide predictable fault-tolerance by working
on tuning the fault-tolerance configurations of higher priority objects rather than
lower priority objects, whenever there are changes in resource availability and
utilizations.

3.3 Providing Transparent and Predictable Failure Recovery

Client-side middleware in DRE systems must transparently handle failure ex-
ceptions caught as a result of process and processor failures and redirect clients
to appropriate failover targets in a predictable and faster manner.
Problem. The per-replica failover target information computed by FLARe’s
resource manager is used by the client-side middleware to redirect clients after
receiving a failure exception. The latency and timeliness properties of appli-
cations can be negatively affected, however, by invoking a remote method on
the resource manager to obtain the failover target address after receiving a fail-
ure. What is needed therefore are mechanisms that can proactively update the
failover targets on the client side.
Solution → Client-side redirectors. FLARe provides fast failover with pre-
dictable latencies by proactively updating the failover targets on the client side.
It therefore employs a client-side redirector in each client process to handle fail-
ures transparently to each client object. The client-side redirector comprises a
client request interceptor for each client object and a redirection agent in each
client process.

Interceptors are software components that can increase the flexibility of client
and server applications by modifying their behavior with little or no change
to existing application software [21]. FLARe redirection agent uses a CORBA
client request interceptor [3] at system initialization time to handle CORBA



comm failure exceptions that are raised in response to server or service fail-
ures. CORBA in turn relies on the underlying network transport protocol’s (e.g.,
TCP) connection timeout mechanisms to detect server failures. Since TAO sup-
ports client/server communications using many different protocols, its failure
detection mechanism can be configured to use advanced fault-tolerance proto-
cols, such as SCTP [22].

After catching a failure exception the client request interceptor attempts to
redirect the clients to the appropriate failover target, rather than propagating
that exception to the client application. As mentioned in the solution to challenge
2 above, the resource manager maintains information about the failover targets
for each replica. One way to update the client request interceptor with these
failover target decisions would be to establish remote communications between
the resource manager and the client request interceptor. As discussed in [3],
however, portable interceptors are not remote objects and do not have their
own thread of control. No external service or object can thus invoke a remote
operation on the client request interceptor (which is a CORBA-based portable
interceptor) and the client request interceptor cannot periodically invoke a re-
mote operation on an external object or service.

Moreover, such a remote invocation will increase failover or failure recovery
latency. If an appropriate failover target information is available at the client
request interceptor even before the failure happens, then client redirection will
be predictable, fast, and timely, i.e., failover latency will only depend on the
time taken for the clients to receive the comm failure exception after a server
failure. FLARe’s redirection agent is a CORBA object that runs in its own
thread within the client process to allow FLARe’s resource manager to send
object failover information to the client request interceptor.

FLARe’s redirection agent communicates with FLARe’s resource manager so
it is updated with the failover information proactively, i.e., before failures occur.
Since it is conceivable that multiple clients may invoke the same server, the
resource manager uses real-time publish-subscribe communication to scalably
and efficiently disseminate the failover targets to all the concerned redirection
agents. After catching an exception, the client request interceptor contacts the
redirection agent to obtain the failover object address, and redirects the client
to that server object. By proactively selecting failover target updates, FLARe
can provide timely and predictable failover.

4 Related Work

Our work on FLARe can be compared with related research along the following
dimensions:
Real-time fault-tolerant systems. Delta-4/XPA [18] provided real-time fault-
tolerant solutions to distributed systems by using the semi-active replication
model. MEAD [17] and its proactive recovery strategy for distributed CORBA
applications can minimize the recovery time for DRE systems. The Time-triggered
Message-triggered Objects (TMO) project [9] considers replication schemes such



as the primary-shadow TMO replication (PSTR) scheme, for which recovery
time bounds can be quantitatively established, and real-time fault tolerance
guarantees can be provided to applications. DARX [11] provides adaptive fault-
tolerance for multi-agent software platforms by dynamically changing replica-
tion styles in response to changing resource availabilities and application perfor-
mance.

FLARe builds upon and extends this prior work by focusing on a combination
of server-side, client-side, and infrastructure-specific middleware components.
These together address an important challenge of using passive replication in
fault-tolerant real-time systems: maintaining soft real-time performance after
failure recovery.
Scheduling algorithms. Fundamental ideas and challenges in combining real-
time and fault tolerance are described in [24], where imprecise computations
are used to provide degraded QoS to applications operating in the presence of
failures. [6] proposes adaptive fault tolerance mechanisms to choose a suitable
redundancy strategy for dynamically arriving aperiodic tasks based on system
resource availability. The Realize middleware [8] provides dynamic scheduling
techniques that observes the execution times, slack, and resource requirements
of applications to dynamically schedule tasks that are recovering from failure,
and make sure that non-faulty tasks do not get affected by the recovering tasks.

FLARe differs from these approaches in providing fault tolerance capabilities
to soft real-time applications. Rather than ensuring hard deadlines are met in the
presence of failures, FLARe focuses on minimizing the impact of failure recovery
on client response times and system resource utilization, and also provides timely
client failover to appropriate failover targets.

5 Concluding Remarks

The FLARe middleware described in this paper provides both timeliness and
availability to distributed real-time and embedded (DRE) systems. FLARe fo-
cuses on passive replication to meet the needs of resource-constrained envi-
ronments. FLARe identifies and provisions those fault-tolerance functionalities,
which if not designed properly could also affect the timeliness properties of the
applications. To design and implement those functionalities, FLARe overcomes
limitations of current middleware approaches, by providing a proactive, adap-
tive, and resource-aware fault-tolerance solution for clients.

The lessons we learned developing and applying FLARe thus far include:
• Common CORBA features, such as portable interceptors, and POSIX fea-

tures, such as local sockets, can be leveraged to provide fault tolerance capabili-
ties to soft real-time systems without modifying the implementation of standard-
compliant RT-CORBA ORBs. Moreover, well-known architectural and design
patterns can be carefully chosen to design key components of a fault-tolerant
middleware, so that the fault-tolerance functionalities can be provided in an
effective and timely manner.

• FLARe currently does not support stateful applications, so its resource
manager uses a failover target selection algorithm that selects failover targets



without considering the consistency levels of the replicas. Supporting stateful
applications in DRE systems not only requires timely failover, but also support-
ing different client consistency requirements, such as weak or strong consistency
models. This is part of our future work.

• FLARe is designed for environments where the networks provide bounded
communication latencies and have no single point of failure. Certain DRE sys-
tems, however, run in environments where networks fail, which can cause re-
source contention in the remaining links. Our future work is therefore focusing on
integrating FLARe with network QoS mechanisms, such as DiffServ and Band-
width Brokers so that critical communications can use network QoS mechanisms
to meet critical QoS requirements.

FLARe is open-source software that can be downloaded from www.dre.

vanderbilt.edu/∼jai/FLARe.

References

1. Ismail Assayad, Alain Girault, and Hamoudi Kalla. A bi-criteria scheduling heuris-
tic for distributed embedded systems under reliability and real-time constraints.
In DSN ’04, page 347, Florence, Italy, 2004.

2. Jaiganesh Balasubramanian, Sumant Tambe, Aniruddha Gokhale, Chenyang Lu,
Christopher Gill, and Douglas C. Schmidt. FLARe: a Fault-tolerant Lightweight
Adaptive Real-time Middleware for Distributed Real-time and Embedded Systems.
Technical Report ISIS-07-812, Institute for Software Integrated Systems, Vander-
bilt University, Nashville, TN, May 2007.

3. Taha Bennani, Laurent Blain, Ludovic Courtes, Jean-Charles Fabre, Marc-Olivier
Killijian, Eric Marsden, and Francois Taiani. Implementing Simple Replication
Protocols using CORBA Portable Interceptors and Java Serialization. In DSN’
04, pages 549–554, Florence, Italy, 2004.

4. A. M. Déplanche, P. Y. Théaudière, and Y. Trinquet. Implementing a semi-active
replication strategy in chorus/classix, a distributed real-time executive. In SRDS
’99: Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems,
page 90, Washington, DC, USA, 1999. IEEE Computer Society.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

6. O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. Adaptive fault
tolerance and graceful degradation under dynamic hard real-time scheduling. In
RTSS ’97, page 79, San Francisco, CA, USA, 1997.

7. E. Douglas Jensen. Distributed Real-time Specification for Java.
java.sun.com/aboutJava/communityprocess/jsr/jsr 050 drt.html, 2000.

8. V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic Scheduling of
Distributed Method Invocations. In 21st IEEE Real-time Systems Symposium,
Orlando, FL, November 2000. IEEE.

9. K. H. (Kane) Kim and Chittur Subbaraman. The pstr/sns scheme for real-time
fault tolerance via active object replication and network surveillance. IEEE Trans.
on Know. and Data Engg., 12(2), 2000.

10. J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In RTSS’ 89, pages 166–171,
1989.



11. Olivier Marin, Marin Bertier, and Pierre Sens. Darx: A framework for the fault-
tolerant support of agent software. In ISSRE ’03: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, page 406, Washington, DC,
USA, 2003. IEEE Computer Society.

12. Aad P. A. Van Moorsel. The ’qos query service’ for improved quality-of-service
decision making in corba. In SRDS ’99, page 274, Lausanne, Switzerland, 1999.

13. Object Management Group. Fault Tolerant CORBA, Chapter 23, CORBA v3.0.3,
OMG Document formal/04-03-10 edition, March 2004.

14. Object Management Group. Real-time CORBA Specification v1.2 (static), OMG
Document formal/05-01-04 edition, November 2005.

15. Object Management Group. Lightweight Real-Time Fault Tolerant CORBA
DRAFT RFP, OMG Document realtime/06-06-06 edition, June 2006.

16. Pascal Felber and Priya Narasimhan. Experiences, Approaches and Challenges in
building Fault-tolerant CORBA Systems. Transactions of Computers, 54(5):497–
511, May 2004.

17. Soila Pertet and Priya Narasimhan. Proactive recovery in distributed corba appli-
cations. In DSN ’04, page 357, Florence, Italy, 2004.

18. David Powell. Distributed fault tolerance: Lessons from delta-4. IEEE Micro,
14(1):36–47, 1994.

19. Francisco Prez-Sorrosal, Marta Patino-Martinez, Ricardo Jimenez-Peris, and Jaksa
Vuckovic. Highly available long running transactions and activities for j2ee appli-
cations. In ICDCS ’06: Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems, page 2, Washington, DC, USA, 2006. IEEE
Computer Society.

20. Binoy Ravindran, Edward Curley, Jonathan S. Anderson, and E. Douglas Jensen.
On best-effort real-time assurances for recovering from distributable thread failures
in distributed real-time systems. In ISORC ’07: Proceedings of the 10th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed
Computing, pages 344–353, Washington, DC, USA, 2007. IEEE Computer Society.

21. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

22. Randall Stewart and Qiaobing Xie. Stream Control Transmission Protocol (SCTP)
A Reference Guide. Addison-Wesley, Boston, 2001.

23. Sun Microsystems. Java Specification Request, JSR 117, J2EE APIs for Continu-
ous Availability, JSR 117 edition, April 2001.

24. Fuxing Wang, Krithi Ramamritham, and John A. Stankovic. Determining redun-
dancy levels for fault tolerant real-time systems. IEEE Transactions on Computers,
44(2):292–301, 1995.

25. Zhongtang Cai and Vibhore Kumar and Brian F. Cooper and Greg Eisenhauer
and Karsten Schwan and Robert E. Strom. Utility-Driven Proactive Manage-
ment of Availability in Enterprise-Scale Information Flows. In Proceedings of
ACM/Usenix/IFIP Middleware, pages 382–403, 2006.


