71 research outputs found

    TRIAD: creating synergies between memory, disk and log in log structured key-value stores

    Get PDF
    We present TRIAD, a new persistent key-value (KV) store based on Log-Structured Merge (LSM) trees. TRIAD improves LSM KV throughput by reducing the write amplification arising in the maintenance of the LSM tree structure. Although occurring in the background, write amplification consumes significant CPU and I/O resources. By reducing write amplification, TRIAD allows these resources to be used instead to improve user-facing throughput. TRIAD uses a holistic combination of three techniques. At the LSM memory component level, TRIAD leverages skew in data popularity to avoid frequent I/O operations on the most popular keys. At the storage level, TRIAD amortizes management costs by deferring and batching multiple I/O operations. At the commit log level, TRIAD avoids duplicate writes to storage. We implement TRIAD as an extension of Facebook's RocksDB and evaluate it with production and synthetic workloads. With these workloads, TRIAD yields up to 193% improvement in throughput. It reduces write amplification by a factor of up to 4x, and decreases the amount of I/O by an order of magnitude

    Transactional and analytical data management on persistent memory

    Get PDF
    Die zunehmende Anzahl von Smart-Geräten und Sensoren, aber auch die sozialen Medien lassen das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen. Gleichzeitig müssen viele Anwendungen Daten persistent speichern oder sogar strenge Transaktionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit ihren einzigartigen Eigenschaften scheint ein natürlicher Anwärter zu sein, um diesen Anforderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, günstiger und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar. Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den Anforderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundlegenden Arbeitsweise von und mit PMem, konzentrieren wir uns primär auf drei Aspekte der Datenverwaltung. Zunächst zerlegen wir mehrere persistente Daten- und Indexstrukturen in ihre zugrundeliegenden Entwurfsprimitive, um Abwägungen für verschiedene Zugriffsmuster aufzuzeigen. So können wir ihre besten Anwendungsfälle und Schwachstellen, aber auch allgemeine Erkenntnisse über das Entwerfen von PMem-basierten Datenstrukturen ermitteln. Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen und eine effiziente Abfrageausführung auf beliebigen Attributen ermöglichen. Während der erste Ansatz eine verknüpfte Liste von mehrdimensionalen gruppierten Blöcken verwendet, handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zustandsverwaltung verbessert werden können. Dabei schlagen wir ein neuartiges Transactional Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenläufigkeitsprotokollen vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage für die Entwicklung noch ausgereifterer PMem-fähiger Systeme bilden. Gleichzeitig zeigen sie, wie Datenverwaltungsaufgaben PMem ausnutzen können, indem sie neue Anwendungsgebiete erschließen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die Codekomplexität vereinfachen sowie die ökonomischen und ökologischen Kosten reduzieren.The increasing number of smart devices and sensors, but also social media are causing the volume of data and thus the demanded processing speed to grow steadily. At the same time, many applications need to store data persistently or even comply with strict transactional guarantees. The novel storage technology Persistent Memory (PMem), with its unique properties, seems to be a natural candidate to meet these requirements efficiently. Compared to DRAM, it is more scalable, less expensive, and durable. In contrast to disks, it is significantly faster and directly addressable. Therefore, this dissertation investigates the deliberate employment of PMem to fit the needs of modern applications. After presenting the fundamental work of and with PMem, we focus primarily on three aspects of data management. First, we disassemble several persistent data and index structures into their underlying design primitives to reveal the trade-offs for various access patterns. It allows us to identify their best use cases and vulnerabilities but also to gain general insights into the design of PMem-based data structures. Second, we propose two storage layouts that target analytical workloads and enable an efficient query execution on arbitrary attributes. While the first approach employs a linked list of multi-dimensional clustered blocks that potentially span several storage layers, the second approach is a multi-dimensional index that caches nodes in DRAM. Third, we show how to improve stream and event processing systems involving transactional state management using the preceding data structures and insights. In this context, we propose a novel Transactional Stream Processing (TSP) model with appropriate consistency and concurrency protocols adapted to PMem. Together, the discussed aspects are intended to provide a foundation for developing even more sophisticated PMemenabled systems. At the same time, they show how data management tasks can take advantage of PMem by opening up new application domains, improving performance, scalability, and recovery guarantees, simplifying code complexity, plus reducing economic and environmental costs

    Bridging the gap between algorithmic and learned index structures

    Get PDF
    Index structures such as B-trees and bloom filters are the well-established petrol engines of database systems. However, these structures do not fully exploit patterns in data distribution. To address this, researchers have suggested using machine learning models as electric engines that can entirely replace index structures. Such a paradigm shift in data system design, however, opens many unsolved design challenges. More research is needed to understand the theoretical guarantees and design efficient support for insertion and deletion. In this thesis, we adopt a different position: index algorithms are good enough, and instead of going back to the drawing board to fit data systems with learned models, we should develop lightweight hybrid engines that build on the benefits of both algorithmic and learned index structures. The indexes that we suggest provide the theoretical performance guarantees and updatability of algorithmic indexes while using position prediction models to leverage the data distributions and thereby improve the performance of the index structure. We investigate the potential for minimal modifications to algorithmic indexes such that they can leverage data distribution similar to how learned indexes work. In this regard, we propose and explore the use of helping models that boost classical index performance using techniques from machine learning. Our suggested approach inherits performance guarantees from its algorithmic baseline index, but at the same time it considers the data distribution to improve performance considerably. We study single-dimensional range indexes, spatial indexes, and stream indexing, and show that the suggested approach results in range indexes that outperform the algorithmic indexes and have comparable performance to the read-only, fully learned indexes and hence can be reliably used as a default index structure in a database engine. Besides, we consider the updatability of the indexes and suggest solutions for updating the index, notably when the data distribution drastically changes over time (e.g., for indexing data streams). In particular, we propose a specific learning-augmented index for indexing a sliding window with timestamps in a data stream. Additionally, we highlight the limitations of learned indexes for low-latency lookup on real- world data distributions. To tackle this issue, we suggest adding an algorithmic enhancement layer to a learned model to correct the prediction error with a small memory latency. This approach enables efficient modelling of the data distribution and resolves the local biases of a learned model at the cost of roughly one memory lookup.Open Acces

    Learning to Optimize LSM-trees: Towards A Reinforcement Learning based Key-Value Store for Dynamic Workloads

    Full text link
    LSM-trees are widely adopted as the storage backend of key-value stores. However, optimizing the system performance under dynamic workloads has not been sufficiently studied or evaluated in previous work. To fill the gap, we present RusKey, a key-value store with the following new features: (1) RusKey is a first attempt to orchestrate LSM-tree structures online to enable robust performance under the context of dynamic workloads; (2) RusKey is the first study to use Reinforcement Learning (RL) to guide LSM-tree transformations; (3) RusKey includes a new LSM-tree design, named FLSM-tree, for an efficient transition between different compaction policies -- the bottleneck of dynamic key-value stores. We justify the superiority of the new design with theoretical analysis; (4) RusKey requires no prior workload knowledge for system adjustment, in contrast to state-of-the-art techniques. Experiments show that RusKey exhibits strong performance robustness in diverse workloads, achieving up to 4x better end-to-end performance than the RocksDB system under various settings.Comment: 25 pages, 13 figure

    Skewness-Based Partitioning in SpatialHadoop

    Get PDF
    In recent years, several extensions of the Hadoop system have been proposed for dealing with spatial data. SpatialHadoop belongs to this group of projects and includes some MapReduce implementations of spatial operators, like range queries and spatial join. the MapReduce paradigm is based on the fundamental principle that a task can be parallelized by partitioning data into chunks and performing the same operation on them, (map phase), eventually combining the partial results at the end (reduce phase). Thus, the applied partitioning technique can tremendously affect the performance of a parallel execution, since it is the key point for obtaining balanced map tasks and exploiting the parallelism as much as possible. When uniformly distributed datasets are considered, this goal can be easily obtained by using a regular grid covering the whole reference space for partitioning the geometries of the input dataset; conversely, with skewed distributed datasets, this might not be the right choice and other techniques have to be applied. for instance, SpatialHadoop can produce a global index also by means of a Quadtree-based grid or an Rtree-based grid, which in turn are more expensive index structures to build. This paper proposes a technique based on both a box counting function and a heuristic, rooted on theoretical properties and experimental observations, for detecting the degree of skewness of an input spatial dataset and then deciding which partitioning technique to apply in order to improve as much as possible the performance of subsequent operations. Experiments on both synthetic and real datasets are presented to confirm the effectiveness of the proposed approach

    Cost-Based Optimization of Integration Flows

    Get PDF
    Integration flows are increasingly used to specify and execute data-intensive integration tasks between heterogeneous systems and applications. There are many different application areas such as real-time ETL and data synchronization between operational systems. For the reasons of an increasing amount of data, highly distributed IT infrastructures, and high requirements for data consistency and up-to-dateness of query results, many instances of integration flows are executed over time. Due to this high load and blocking synchronous source systems, the performance of the central integration platform is crucial for an IT infrastructure. To tackle these high performance requirements, we introduce the concept of cost-based optimization of imperative integration flows that relies on incremental statistics maintenance and inter-instance plan re-optimization. As a foundation, we introduce the concept of periodical re-optimization including novel cost-based optimization techniques that are tailor-made for integration flows. Furthermore, we refine the periodical re-optimization to on-demand re-optimization in order to overcome the problems of many unnecessary re-optimization steps and adaptation delays, where we miss optimization opportunities. This approach ensures low optimization overhead and fast workload adaptation
    corecore