1,334 research outputs found

    Automatic error detection using program invariants for fault localization

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    INVESTIGATING THE SPATIAL BEHAVIOR AND HABITAT USE OF THE MATSCHIE’S TREE-KANGAROO (DENDROLAGUS MATSCHIEI) USING GPS COLLARS AND UNMANNED AIRCRAFT SYSTEMS (UAS)

    Get PDF
    Understanding the movement patterns and habitat needs of the endangered Matschie’s tree-kangaroo (Dendrolagus matschiei) is important for their conservation and management. Endemic to the montane cloud forests of the Huon Peninsula in northeastern Papua New Guinea, these elusive arboreal marsupials are tremendously challenging to study using traditional observational methods. This study is an assessment of novel techniques to overcome the significant challenges to in-situ data collection in remote and rugged tropical cloud forests. Animal locations are remotely tracked using purpose built altitude and motion logging GPS collars and habitat structure data is measured using photogrammetry from small Unmanned Aircraft Systems (UAS) aerial imagery. Leveraging the autocorrelation of regular GPS location sampling, this study applied a Time-Local Convex Hull (T-LoCoH) analysis to investigate particular locations that may be important to D. matschiei as well as potential barriers to movement that would be inside of the home range as identified in previous studies. A novel technique of ground surface interpolation from canopy gaps is presented to overcome the challenges of photogrammetric reconstruction of terrain surfaces under closed canopy forests. From this a variety of forest structure variables were calculated to understand the 3D complexity of these heterogeneous cloud forests. This investigation found that custom GPS collars can provide high fix success rates in dense multilayer forests found at the research site. The regular sampling intervals resulted in areas of utilization that were notably smaller than with traditional home range analyses, and provided insight into landscape features that the animals do not use. D. matschiei were found to preferentially use trees that were taller than average and were found in closer than average proximity to canopy emergent trees. The reconstruction of 3D habitat data from UAS aerial photogrammetry resulted in forest structure maps that have significant potential to overcome the necessity of manual habitat data collection that hinders large scale habitat research, for this and many other species

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies

    ConservationBots: Autonomous Aerial Robot for Fast Robust Wildlife Tracking in Complex Terrains

    Full text link
    Today, the most widespread, widely applicable technology for gathering data relies on experienced scientists armed with handheld radio telemetry equipment to locate low-power radio transmitters attached to wildlife from the ground. Although aerial robots can transform labor-intensive conservation tasks, the realization of autonomous systems for tackling task complexities under real-world conditions remains a challenge. We developed ConservationBots-small aerial robots for tracking multiple, dynamic, radio-tagged wildlife. The aerial robot achieves robust localization performance and fast task completion times -- significant for energy-limited aerial systems while avoiding close encounters with potential, counter-productive disturbances to wildlife. Our approach overcomes the technical and practical problems posed by combining a lightweight sensor with new concepts: i) planning to determine both trajectory and measurement actions guided by an information-theoretic objective, which allows the robot to strategically select near-instantaneous range-only measurements to achieve faster localization, and time-consuming sensor rotation actions to acquire bearing measurements and achieve robust tracking performance; ii) a bearing detector more robust to noise and iii) a tracking algorithm formulation robust to missed and false detections experienced in real-world conditions. We conducted extensive studies: simulations built upon complex signal propagation over high-resolution elevation data on diverse geographical terrains; field testing; studies with wombats (Lasiorhinus latifrons; nocturnal, vulnerable species dwelling in underground warrens) and tracking comparisons with a highly experienced biologist to validate the effectiveness of our aerial robot and demonstrate the significant advantages over the manual method.Comment: 33 pages, 21 figure

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Reducing screened program points for efficient error detection

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Design and Prototyping of a 3DOF Worm-drive Robot Arm

    Get PDF
    PEARLDOI for this publication Labels There are no labels on this output. Add labels Many designs for robot arms exist. Here we present an affordable revolute arm, capable of executing simple pick-and-place tasks. The arm employs a double parallelogram structure, which ensures its endpoint angle in the plane of the upper arm remains fixed without the need for additional actuation. Its limbs are fabricated from circular tubes made from bonded carbon fiber, to ensure low moving mass while maintaining high rigidity. All custom structural elements of the arm are produced via 3D printing. We employ worm-drive DC motor actuation to ensure that stationary configurations are maintained without the necessity of continuous motor power. Our discussion encompasses an analysis of the arm’s kinematics. A simulation of the arm’s operation was carried out in MATLAB, revealing key operational metrics. In conclusion, we achieved extrinsic endpoint position tracking by implementing its inverse kinematics and PID control using a microcontroller. We also demonstrate the arm’s functionality through simple movement tracking and object manipulation tasks

    Utilization of information and communication technologies to monitor grazing behaviour in sheep

    Get PDF
    This thesis is a contribution on the study of feeding behaviour of grazing sheep and its general goal was to evaluate the effectiveness of a tri-axial accelerometer based sensor in the discrimination of the main activities of sheep at pasture, the quantification of the number of bites and the estimation of intake per bite. Based on the literature, it has been observed that feed intake at pasture is a difficult parameter to measure with direct observation, for this reason automated systems for monitoring the activities of free-ranging animals have became increasingly important and common. Among these systems, tri-axial accelerometers showed a good precision and accuracy in the classification of behavioural activities of herbivores, but they do not yet seem able to discriminate jaw movements, which are of great importance for evaluating animal grazing strategies in different pastures and for estimating the daily herbage intake. Thus, the main objective of this research was to develop and test a tri-axial accelerometer based sensor (BEHARUM) for the study of the feeding behaviour of sheep and for the estimation of the bite rate (number of bites per min of grazing) on the basis of acceleration variables. The thesis is organized in 4 main chapters. Chapter 1. This introduction section reports a literature review on the importance of studying the feeding behaviour of ruminants and on the measuring techniques developed over the years for its detection, with specific emphasis on accelerometer based sensors, which showed a good precision and accuracy in the classification of behavioural activities of herbivores. Chapter 2. This chapter describes the results of short tests performed in grazing conditions to discriminate three behavioural activities of sheep (grazing, ruminating and resting) on the base of acceleration data collected with the BEHARUM device. The multivariate statistical analysis correctly assigned 93.0% of minutes to behavioural activities. Chapter 3. This part evaluates the effectiveness of the BEHARUM in discriminating between the main behaviours (grazing, ruminating and other activities) of sheep at pasture and to identify the epoch setting (5, 10, 30, 60, 120, 180 and 300 s) with the best performance. Results show that a discriminant analysis can accurately classify important behaviours such as grazing, ruminating and other activities in sheep at pasture, with a better performance in classifying grazing behaviour than ruminating and other activities for all epochs; the most accurate classification in terms of accuracy and Coehn’s k coefficient was achieved with the 30 s epoch length. Chapter 4. This section illustrates the results of a study that aimed to derive a model to predict sheep behavioural variables like number of bites, bite mass, intake and intake rate, on the basis of variables calculated from acceleration data recorded by the BEHARUM. The experiment was carried out using micro-swards of Italian ryegrass (Lolium multiflorum L.), alfalfa (Medicago sativa L.), oat (Avena sativa L.), chicory (Cichorium intibus L.) and a mixture (Italian ryegrass and alfalfa). The sheep were allowed to graze the micro-swards for 6 minutes and the results show that the BEHARUM can accurately estimate with high to moderate precision (r2=0.86 and RMSEP=3%) the number of bites and the herbage intake of sheep short term grazing Mediterranean forages. Finally, the dissertation ends with a summary of the main implications and findings, and a general discussion and conclusions

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977
    • …
    corecore