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Abstract

Despite extensive testing in the development phase, residual defects can be a great threat
to dependability in the operational phase. Lately there have been some studies that proved
the utility of generic invariants, often dubbed fault screeners as error detectors within a
spectrum-based fault localization (SFL) approach aimed to diagnose program defects in
the operational phase. The generic nature of this generic screeners allows them to be
automatically instrumented without any programmer-effort, while training is straightfor-
ward given the test cases available in the development phase. Experiments based on the
Siemens program set demonstrate diagnostic performance that is similar to the traditional,
development-time application of SFL based on the program pass/fail information known
before-hand.

In this document we present a study that researches the possibility of further improving
the performance of this automatic error detection technique by reducing the number of
generic invariants used to screen a program. Here we describe the adopted metrics in order
to evaluate the diagnosis quality of each screened program point. In the same baseline, we
investigate about the variables that have the highest diagnosis effectiveness, the so-called
collar variables, and how the current false negative rate of the techniques used hindered
their discovery in our benchmark set up.
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Resumo

Por mais intensiva que seja a etapa de testes durante a fase de desenvolvimento, a ex-
istência de defeitos residuais (bugs) representa sempre uma grande ameaça à fiabilidade
do sistema aquando da fase operacional. Recentemente têm sido levados a cabo alguns
estudos que provaram a utilidade dos generic invariants, frequentemente apelidados de
fault screeners, como detectores de erros associados a um método localização automática
de falhas baseado no espectro do programa. Método este que tem como objectivo diag-
nosticar defeitos do programa na fase operacional. A natureza genérica destes generic
screeners permite que a sua instrumentação seja feita automaticamente sem qualquer es-
forço por parte do programador, o seu treino durante a fase de implementação também
representa um processo bastante simples, sendo apenas necessário o acesso uma bateria
de casos de teste adequada. Experiências baseadas no conjunto de programas disponibi-
lizados pelo Siemens-Set demonstram que a performance de diagnóstico obtida é similar
à da abordagem tradicional, cuja execução é feita durante a fase operacional e depende de
informação prévia de passagem ou falha do programa.

Neste documento apresentamos um estudo que investiga a possibilidade de aumentar a
eficiência deste método de detecção automática de erros, reduzindo o número de generic
invariants utilizados para monitorar o programa. Aqui descrevemos as métricas adop-
tadas por forma a avaliar a qualidade de diagnóstico de cada um dos pontos do programa
monitorados. Seguindo o mesmo raciocínio, investigamos quais são as variáveis que têm
a maior eficácia de diagnóstico, as chamadas collar-variables, e como a taxa de falsos
negativos relativa às técnicas utilizadas se tornou um entrave à descoberta das mesmas.
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Chapter 1

Introduction

This chapter introduces the main aspects that form the context, motivation and goals of
this master thesis. Here we also describe the outline used in this document.

1.1 Context

This thesis research is inserted in Software Engineering theme, more properly, the Soft-
ware Testing and Quality area. This work is a contribution to the field of Automatic
Error Detection Techniques Based on Program Invariants. The full process of research-
ing, results analysis and report writing have been carried out in the Embedded Software
Department of the Faculty Electrical Engineering, Mathematics and Computer Science
on Delft University of Technology in Delft, the Netherlands.

1.2 Motivation and Goals

Software has replaced hardware as the base of embedded systems during the last years.
Tasks that used to be done by integrated circuits are now done by complex software. And
more complexity implies a higher error rate.

The electronic market is always putting manufacturers under pressure. Releasing a
product before the competition is mandatory if they don’t want to be left behind. That
situation usually affects the quality of the product, since a shorter product lifespan usually
means a shorter development time.

With a shorter software development period, a high presence of bugs is more than
likely, because testing phases last less time than it requires. That is why traditional tech-
niques are becoming increasingly more obsoletes, since they are not prepared to deal with
this shorter testing periods.
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Software updating is not easy. Operating systems usually require some sort of network
connection in order to get its updates, which is fairly easy nowadays. But for an MP3
player or a TV, software updating might be impossible, since they are usually isolated
systems. Or even because the firmware they use would be stored in a ROM. If these kind
of products, which currently rely increasingly on software, are more sensitive to bugs, and
fixing them after the product is been release is almost impossible, we are forced to find
new solutions to keep the availability of this kind of systems.

If only the own system could be able to detect its own bugs and launch recovery
routines, its availability could be kept, instead of letting software fall into a failure.

Recently there have been undergoing research [AZvG08, AZvG] with the goal of
achieving just that. That line of investigation has uncovered, so far, a way to detect system
errors (bugs) during the operational phase. This have been attained by imbuing error
detectors in all of the system’s variables and train those detectors to accept ”correct”
values (values that do not generate system failures). Thus enabling the system to detect
potential harmful input values during its execution. However, the fact that this approach
applies the mentioned error detectors to all the system’s variables puts a quite significant
overhead in the system. Moreover, its clear that some variables have no diagnosis value
at all. Thus one needs to selectively instrument only the most important variables.

With this research we proposed to find if it is possible to increase the performance of
the existing error detection techniques, by reducing the overhead introduced in the system
by them. In other words, we try to find a way to diminish the amount of points of the
program that need to be screened in order to increase the system performance when in
error detection mode. This should be done without losing diagnosis quality.

1.3 Thesis Layout

This thesis is organized as follows. Besides the introduction, it comprises 6 more chapters:

Chapter 2 In this chapter we introduce the thesis’ key concepts.

Chapter 3 This chapter is dedicated to the presentation of prior work in areas relevant to
our research. Our investigation is partially based on some of their contributions.

Chapter 4 In chapter 4, we further detail the purpose of this research as well as the
research question we have proposed to answer. Here we also describe the approach
used to investigate these questions.

Chapter 5 Here we explain our experimental set up, the development decisions adopted
and the actual implementation details of the approach described in chapter 4.

Chapter 6 In this chapter we report on the experiments’ results and interpret them in
their relevance to answer our research questions.

2
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Chapter 7 In chapter 6, we present the final conclusions of the research, along the main
contributions of this project and future lines of work.

3
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Chapter 2

Preliminaries

In this chapter we describe the key concepts that have been used in our research.

2.1 Faults, errors and failures

A failure is an event that occurs when delivered service deviates from correct service. An
error is a system state that may cause a failure. A fault is the cause of an error in the
system. Since we focus on computer programs, faults are bugs in the program code, and
failures occur when the output for a given input deviates from the specified output for that
input.

2.2 Siemens Set

In our study, we used a set of test programs known as the Siemens set [HFGO94]. The
Siemens set is composed of seven programs. Every single program has a correct version
and a set of faulty versions of the same program. Each faulty version contains exactly one
fault. Each program also has a set of inputs that ensures full code coverage. Table 2.1
provides more information about the programs in the package. Although the Siemens set
was not assembled with the purpose of testing fault diagnosis techniques, it is typically
used by the research community as the set of programs to test their techniques. In total
the Siemens set provides 132 programs. However, as no failures are observed in two of
these programs, namely version 9 of schedule2 and version 32 of replace, are discarded.
Besides, we also discard versions 4 and 6 of print tokens because the faults in this versions
are in global variables and the profiling tool used in our experiments does not log the
execution of these statements. In summary, we discarded 4 versions out of 132 provided
by the suite, using 128 versions in our experiments.

5
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Programs Faulty Versions LoC Test Cases Description
print_tokens 7 539 4130 Lexical Analyzer
print_tokens2 10 489 4115 Lexical Analyzer

replace 32 507 5542 Pattern Recognition
schedule 9 397 2650 Priority Scheduler
schedule2 10 299 2710 Priority Scheduler

tcas 41 174 1608 Altitude Separation
tot_info 23 398 1052 Information Measure

Table 2.1: Siemens Set benchmark

2.3 Fault Localization

[Abr09] The process of pinpointing the fault(s) that led to symptoms (failures/errors) is
called fault localization, and has been an active area of research for the past decades.
Based on a set of observations, automatic approaches to software fault localization yield
a list of likely fault locations, which is subsequently used either by the developer to focus
the software debugging process, or as an input to automatic recovery mechanisms [PBB+02,
S0̈9]. Depending on the amount of knowledge that is required about the system’s internal
component structure and behavior, the most predominant approaches can be classified as
(1) statistical approaches or (2) reasoning approaches. The former approach uses an ab-
straction of program traces, dynamically collected at runtime, to produce a list of likely
candidates to be at fault, whereas the latter combines a static model of the expected be-
havior with a set of observations to compute the diagnostic report. Statistical approaches
yield a diagnostic report with the M components ordered in terms of statistical evidence
of being faulty. Reasoning approaches yield a diagnostic report that comprise diagnostic
candidates. Diagnosis candidate (possibly multiple-fault) that explain the observations,
ordered in terms of probability. In this thesis we will focus solely on statistics-based
approaches.

Statistics-based fault localization techniques use an abstraction of program traces, also
known as program spectra, to find a statistical relationship with observed failures. Pro-
gram spectra are collected at run-time, during the execution of the program, and many
different forms exist [HRS+00]. For example, component-hit spectra indicate whether a
component was involved in the execution of the program or not. In contrast to model-
based approaches, program spectra and pass/fail information are the only dynamic source
of information used by statistics-based techniques. Well-known examples of such ap-
proaches are the Tarantula tool by Jones, Harrold, and Stasko [JHS02], the Nearest Neigh-
bor technique by Renieris and Reiss [RR03], the Sober tool by Lui, Yan, Fei, Han, and
Midkiff [LFY+06], the work of Liu and Han [Liu06], PPDG by Baah, Podgurski, and
Harrold [BPH08], CrossTab by Wong, Wei, Qi, and Zap [WWQZ08], the Cooperative
Bug Isolation by Liblit and his colleagues [LNZ+05, Lib08, ACRL07, ZLN06], the Pin-
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point tool by Cheng and his colleagues [CKF+02], the AMPLE tool by Dallmeier, Lindig,
and Zeller [DLZ05], the work by Steimann, Eichst’adt-Engelen, and Schaaf [SEES08],
and the TimeWill Tell approach by Yilmaz, Paradkar, and Williams [YPW08].

2.4 Invariant based error detection

Generally we detect errors in a system by implementing tests (invariants) that typically
trigger some exception handling process This so-called program invariants [ECGN01]
can be program-specific (e.g., a user-programmed test to assert that two state variables in
two different components are in sync) or generic (e.g., a compiler generated value range
check). While program-specific invariants cover failures anticipated by the developer and
a low rate of false positives and negatives, it’s a costly and error-prone process because of
its manual integration. In the other hand, generic program invariants are very simple and
cost-effective but have high rates of false positives and negatives. This last type of detec-
tors requires training to adapt to the application-specific program profile. This training is
automatically performed during testing at development time.

Generic invariants are often subbed fault screeners and they have been extensively been
studied for both software and hardware applications. There are several models proposed:

• Value screeners or bitmask invariants [HL02, RCMM07]. Very simple generic in-
variants, based in the value check of a program’s variable. They have two com-
ponents, the first observed value f st and a bitmask msk representing the activated
bits (all bits start set to 1) every time the invariant is used the bits new are verified
according to the following:

violation = (new⊕ f st)∧msk

If the violation is non-zero, an error is flagged, if in error detection mode (oper-
ational phase). During training mode (development phase) the invariant is updated
according to:

msk = (new⊕ f st)∧msk

• (Dynamic) Range screeners [HL02, RCMM07]: Generic program invariants which
are used to bound a program’s variable range. Whenever a new value v is found it
is compared against the lower bound l and the upper bound u in the following way:

violation = ¬(l < v < u)

7
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If v is outside these bounds an error is flagged if in deployment phase or, if in
training phase, the range of v is extended:

l := min(l,v)
u := max(l,v)

• Bloom filters [AZvG08, RCMM07, Blo70]: Generic program invariants composed
by probabilistic data structures that verify if an element is member of a set. This
screener collects and stores a compact representation of a variable’s entire history.
All variables share the same Bloom filter, which is nothing more than a bit array of
64KB (although Racunas et. al proved that the size of the filter could be reduced
by using a backup filter to prevent saturation [RCMM07]). Each 32-bit value v and
instruction address ia are merged into a single 32-bit number g:

g = (v∗216)∨ (0xFFFF ∧ ia)

where ∨ and ∧ are bitwise operators, respectively. This number g is used as in-
put to two hash functions (h1 and h2), which index into the Bloom filter b. During
training mode, the outputs of the hash functions are used to update the Bloom filter
according to the assignment

b[h1(g)] := 1;b[h2(g)] := 1

In detection mode an error is flagged according to violation =¬(b[h1(g)]∧ [h2(g)])

2.5 Collar Variables and State Clumps

The concept of collar variables is a very simple and intriguing one. It as been discovered
and rediscovered in multiple AI researches and it can be summarized as regularities in the
behavior of a system. Such regularities could be translated, in practical terms, as a small
number of key variables that determine the behavior of the rest of the system. They have
the following features:

• Software testing should quickly saturate—most program paths will be exercised
early, with little further improvement seen as testing continues [MJ96].

• Random mutation will be more likely to affect the many non-collar variables com-
pared to the few collar variables, so the net effect of those mutations would be
small (a mutant of a program is a syntactically valid but randomly selected variation

8
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to a program, such as swapping all plus signs to a minus sign). If so, then most
random mutations of a program containing collars will not change the program’s
behavior [WWQZ08, Bud80, Acr80].

• Software states should clump so that only a small number of states will be reached
at runtime. Collars imply clumps because the number of reachable states in an
application will be quite small, containing just the number of possible settings to
the collar [Pel04].
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Chapter 3

Related Work

In this chapter we focus in the actual literature about this thesis theme. We present a small
summary of the most relevant researches done in the field. Furthermore we make brief
references to prior work whenever that is in order.

3.1 Collar Variables and State Clumps

Tim Menzies, David Owen and Julian Richardson [MOR07] have questioned themselves
about the reason why the modern software works at all. Given their example of a sim-
ple model with 300 boolean variables which, doing the math, have 2300 = 1090 different
states. Considering the astronomers estimate that the universe holds 1024 stars, that little
model has more internal states then stars in the sky, they say. With this in mind, they tried
to understand why the current, flawed and incomplete, test methods weren’t missing too
many critical errors. The answer seems to reside in recent AI research which revealed
certain regularities in the behavior of AI systems. Such regularities could be translated, in
practical terms, as a small number of key variables that determine the behavior of the rest
of the system. These small set of variables, if present in conventional (non-AI software),
could bring great benefits to the software engineering field. That is, ultimately, because
when this variable set is present, the problem of controlling software reduces to just the
problem of controlling the variables in that set. As such, a developer searching for bugs
can narrow the test battery to only include the range of the variables in that set. Conse-
quently much of we can find by using complex and costly methods it can be also found by
random ones. This is of relevance because it is a fact that a random, incomplete algorithm
can often be the simplest or the fastest method available (in some cases both!) [MR95].
These set of key variables were extensively studied by AI researchers being discovered
and rediscovered multiple times and given various names [KJ97, DB86, CB94, WG03].
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In the research area where this thesis is the common term used while referring to these set
is collar variables [MR06]. Eventually this concept was tested on conventional software
and the expected effects:

• Software testing should quickly saturate—most program paths will be exercised
early, with little further improvement seen as testing continues [MJ96].

• Random mutation will be more likely to affect the many non-collar variables com-
pared to the few collar variables, so the net effect of those mutations would be
small (a mutant of a program is a syntactically valid but randomly selected variation
to a program, such as swapping all plus signs to a minus sign). If so, then most
random mutations of a program containing collars will not change the program’s
behavior [MW95, Bud80, Acr80].

• Software states should clump so that only a small number of states will be reached
at runtime. Collars imply clumps because the number of reachable states in an
application will be quite small, containing just the number of possible settings to
the collar [Pel04].

were all verified without exception! These studies introduced the concepts of collar vari-
ables and state clumps in the software engineering field. Currently there are being devel-
oped two algorithms that explore this concepts, TAR3 and LURCH:

• TAR3 is a randomized version of the TAR2 data miner [MH03]. TAR3 inputs a set
of scored examples and outputs contrast rules that distinguish highly scored exam-
ples from the others. The rule generation algorithm seeks the smallest set of rules
that most select for the highest scoring examples. To find the collar variables, TAR3
assumes that if collars exist, they control software’s behavior. So, a random selec-
tion of the software behaviors must, by definition, sample the collars. That is, we
need not search for the collars—they’ll find us.

• LURCH is a random testing and debugging tool for finite-state models [ODC06].
LURCH works by simulating the execution of the models, choosing randomly when
more than one transition is possible. LURCH never backtracks; it simply runs until
some termination condition (such as path end, depth limit, or error detected), and
then starts over until a user-specified number of paths have been explored.

3.2 Application-Based Metrics for Strategic Placement of Detectors

Pattabirman and his co-workers have researched the strategic placement of error detectors
within programs in order to to preemptively detect crashes due to errors in data values used
in the program [PKI05]. For this paper they have developed a model for error propagation
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and crashes, from that model derived several metrics to guide the strategic placement of
detectors and evaluates (using fault injection) the coverage provided by ideal detectors
embedded at program locations selected using the computed metrics. It was shown that
the strategic placement of detectors can increase crash coverage by an order-of-magnitude
compared to random placement, with a low percentage of false-positives. This work is of
relevance for this thesis, as well as for the previous research on this thesis theme. That
is for it’s contributions, when applied to automatic error detectors, helps to maximize the
error coverage of systems in which such detectors are integrated while minimizing the
overhead caused with the insertion of those.

3.3 Automatic Generation of Software Behavioral Models

Dynamic analysis of software systems produces behavioral models that are useful for
analysis, verification and testing. The main techniques for extracting models of functional
behavior generate either models of constraints on data, usually in the form of boolean ex-
pressions, or models of interactions between components. This models are usually in the
form of finite state machines. Both data and interaction models are useful for analyzing
and verifying different aspects of software behavior, but none of them captures the com-
plex interplay between data values and components interactions. Thus related analysis
and testing techniques can miss important information. Lorenzoli and his team attempted
to research precisely on that. Their study has focused on the generation of models of rela-
tions between data values and component interactions [LMP08]. Moreover, they present
GK-tail, a dynamic analysis technique that produces models of the behavior of software
systems in the form of EFSMs. These models represent constraints on data values, prop-
erties of interaction patterns, as well as their interplay. The early experiences they ex-
ecute, using third-party applications gained with a prototype implementation shows the
usefulness and feasibility of the approach. The data collected during their study, using
third-party applications and design patterns, indicates that relevant behaviors of software
systems depend on the interplays between data and interaction patterns, and can be cap-
tured by EFSM models, but not by constraints on data and FSM produced separately.
When GK-tail generates models of component interactions, the data collected confirm the
hypothesis of scalability of the approach, since the complexity of GK-tail does not de-
pend on the size of the analyzed systems, but rather on the complexity of the interactions
between components. EFSM models, as all dynamic models, depend on the quality of the
test suites used to produce them.
However the results obtained with this paper are not conclusive, further testing must be
taken, namely using larger applications, in order to confirm this findings.
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3.4 Automatic Software Fault Localization using Generic Program
Invariants

In [AZvG08] it have been studied the utility of generic invariants as error detectors within
a SFL approach applied to operational phase rather than just the development phase. The
authors’ motivation laid in the fact that merely testing during the operational phase is
not enough nowadays because of the extreme complexity of the software, as such fault
diagnosis during the operational is more and more desirable. Additionally there were no
research regarding the use of program invariants to help locate the root cause of a failure,
moreover SFL techniques were never used in congruence with automatic error detection.

During the compiling stage the program is instrumented (using the optimization pass
for LLVM) to generate the statement spectra and execute the invariants. In the Training
stage the program is run for the test cases which it passes, in during this phase the in-
variants work in training mode. In the operating stage the entire program test cases are
executed, in which the invariants are executed in detection mode. Both errors and spectra
are collected in data bases which are input to the SFL component. In order to prevent
eventual corruptions of the logged data they located the program invariants and the spec-
tra in an external component (“Screener”). The program points screened are all memory
loads/stores, function arguments and return values. The programs and test cases used in
this experiment are included in the Siemens Set [HFGO94]. The program invariants used
in this experiment were the bitmask invariant and the range screener. This experiment’s
results shows that the diagnosis performance of SFL while using program invariants dur-
ing the operational phase is similar to the one obtained in the development phase. As such
it’s possible to attain fault diagnosis with accuracy comparable to the likes of those done
in the development phase at the operational phase, with no human interaction and with a
reasonable overhead (14% with the Siemens Set). Also it was proved that this overhead
can be reduced at the expense of a reasonable diagnosis performance penalty.

3.5 On the performance of fault screeners in software development
and deployment

In [AZvG] have analyzed analytically and empirically the performance of generic pro-
gram invariants, namely range and Bloom filter invariants as error detectors. Although
there is a fairly large amount of research on this subject prior to this study [RCMM07,
Blo70, HL02, EPG+07] , the results of all that research were obtained empirically, as
useful as that may be, it was important to create a analytical model to evaluate more ac-
curately the fault screeners performance. This research had focused on that.
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Their study has shown, with an empirical analysis, that near-“ideal” screeners, such as
Bloom- filters, need more training than simpler screeners, such as range invariants, how-
ever their false negatives rate is lower. The analytical model created and used in this
research has proved that the training required by near-“ideal” scales with the variable do-
main size, while simpler screeners need constant training time. Thus the model is in total
agreement with the empirical findings. Additionally they used the analytical model to
confirm the empirical findings on [AZvG08], also with positive results.

Further research must be taken in order to convert the metrics used to measure the per-
formance in the screener-SFL to the more common T-Score [JH05, RR03] in order to
allow a direct comparison with stand-alone screener performance, for the current metrics
provide some comparison term but not a very good one. Moreover, additional studies
should be taken in order to decrease the overhead created when using screeners during
the operational phase.
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Chapter 4

Research Questions and Approach

In this chapter we first present this thesis problem in a more detailed manner. After that
we expose an abstract, high-level explanation of the work method adopted.

4.1 Motivation

SFL can be used with simple fault screeners [AZvG08, AZvG]. However, instrument-
ing every single program point is too expensive. Moreover, its clear that some pro-
gram points have no diagnosis value at all [PKI05, MOR07]. Thus one needs to se-
lectively instrument only the most important variables. As such, in this thesis, we try
to find out which variables are important for a program, the, so-called, collar variables.
The benefits of accomplishing this would greatly contribute for the development of the
area, for such findings would certainly improve the performance of the invariant-SFL ap-
proach [AZvG08, AZvG]. This is because the interesting points during the error detection
process would decrease from all the variables present in the system to only a small subset
of those variables.

4.2 Problem

The main propose of this study was to answer the following academic question: "Is it
possible to reduce the amount of program points that need to be screened in a program
without losing diagnosis accuracy?". More specifically, we wanted to know if, given
the exact same experimental environment and set-up used in [AZvG08, AZvG], we can
obtain similar false positive and negative rates between the standard program instrumen-
tation (instrumenting all program points) and a reduced instrumentation, featuring only a
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small set of the most relevant program points. This question can be divided in two other
questions:

• "What criteria we will use to select this small set of program points? "

• "Is there some sort of pattern that we can detect to consistently and automatically
find which ones are the "best" variables for each program?"

4.3 Approach

In order to fulfill the thesis objectives we start by determining which metrics could be
used to measure the importance of each program point and then investigate which ones
are the most important.

The first metric to be defined has been the cost of diagnosis, this metric measures the
effort needed to find the fault given, in our case, a certain program point. Such value can
be obtained by taking a program point and consider it as the only diagnostically-relevant
fragment of the program, deeming the pass/fail results for that program point, given set of
test cases, as the global pass/fail results for the whole program and then feed this pass/fail
information, as well as the standard program spectra’s data, to a SFL tool and further
processing the obtained data. Thus, this metric enables a qualitative measurement of a
program point’s diagnosis capabilities.

The second metric defined has been the number of violations, this measures the num-
ber of times the test conditions defined by the fault screeners on a program point are
violated, meaning, the number of bugs detected for that program point. Such measure-
ments are obtained simply by counting the number of times a screener violation occurred
for a program point, given a set of ran test-cases. This very plain and straightforward met-
ric enables a quantitative measurement of a program point’s diagnosis capabilities, also it
provides some empirical knowledge on the value coverage of the ran test cases.

The third and last metric defined has been the distance to the fault, this measures
the distance (in number of statements) between the faulty statement of a program and a
program point. This metric enables us to give some context to each program point as well
as to assess if there is some correlation between a program point’s diagnosis capabilities
and its proximity to the fault.

Decided the metrics, we have developed a method to calculate them for each program
point of a program, trying to pinpoint, this way, the "best" program points, and thus
variables, of a program. The diagram depicted by figure 4.1 shows just that:
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Figure 4.1: Pinpoint Relevant Program Points Experiment

As we can see in figure 4.1, the process of obtaining our three metrics per program
point comprises several steps. First the program is broke down in program points, then
each of those program points is instrumented (i.e imbued with fault screeners) and their
fault screeners are trained with test cases that cause the system to attain only faulty-free
states, this enables the screeners to adapt to the program. Afterwards the program is ran
with a more complete set of test cases, also featuring inputs that can activate the program’s
bugs and thus lead to faulty program states. During this step the fault screeners work as
error detectors and its error report is stored n a global Screener Log. At the same time the
program’s spectrum is being generated for each program’s run, creating a global matrix
containing all of the Program Spectra for all the test cases. From the Screener Log we
can directly extract the distance to the fault of each program point, as it is an information
directly given in the log. We can also calculate the number of violations of each program
point with ease as it can be done simply by counting the number of times a program point’s
screener detects an error. Posteriorly we filter the program’s pass/fail assessment provided
by each program point’s screener for each of the test cases. We feed this information and
the Program Spectra data to an SFL tool and from there we obtain the cost of diagnosis
each program point.
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4.4 Summary

Our study pretends to answer a very clear question: "Is it possible to reduce the amount of
program points that need to be screened in a program without losing diagnosis accuracy?".
To answer this we have adopted three diagnosis metrics in order to measure the diagnosis
potential of each program point of a given program. Those metrics are: (1) distance to
the fault, (2) cost of diagnosis and (3) number of violations. In our approach we take each
program point as an oracle and make it detect program errors. By analyzing the errors’
log we can determine both the program points’ distance to the fault and its number of
violations. The error log can also be fed to a diagnosis tool which will be able to calculate
the program points’ cost of diagnosis.
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Chapter 5

Implementation

In this chapter we present, in detail, the approach we have used for our study, which is
already summarily explained in chapter 4.3. It is divided in 6 sections:

Implementation decisions Enumerates the decisions that had to be made during the im-
plementation of the experimental procedure.

Experimental setup Describes how we have prepared the ground for our experiment.

Invariant training and testing Shows how the invariant training and testing process and
its respective results have been automated for our experimental setup.

Spectra generation Describes how we have obtained the program’s spectra for all the
adopted benchmark’s test cases.

Program points’ metrics calculation algorithm Presents the developed method to cal-
culate both the number of violations and the cost of diagnosis of each program point
over its distance to the fault.

Results processors Exposes the implemented automatic plot generator and programs’
metrics calculator.

Summary A short, summarized description of the chapter

5.1 Implementation decisions

For our study experiments we have needed an automatic error detection tool capable of
inserting program invariants in different points of the code, train them to accept a set of
values and to further test them and report the results. The obvious tool to perform this role
have been Zoltar [JAG09], an award winning tool set for Automatic Fault Localization.
This is due to it is a state of the art tool in this matter and the only one capable to carry
out the task at hands. Given the set of invariants that Zoltar toolset offers we have chosen
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to instrument each variable’s load and store operations as they are the most frequent in
everyone of the adopted benchmark’s programs. In other words, the program points we
consider in our research are all the operations of load and store of each program. In
example, the following statement:

a=b;

is instrumented in two program points, one of the type store and associated to the variable
a and another of the type load and associated to the variable b. In order to monitor and
train the instrumented variables we have selected both bit mask and range screeners as
those have been the only ones implemented in Zoltar at this reports’s time of writing.

The benchmark used to feed Zoltar was the Siemens Set, although set was not assem-
bled with the purpose of testing fault diagnosis techniques, it is the one typically used by
the research community. Moreover it was already used with Zoltar in prior researches. So
by adopting it we have had both the guaranty of instant tool-benchmark compatibility and
the ability to foresee, to some extent, the behavior of the benchmark’s programs.

5.2 Experimental setup

Before our research’s experimental phase begun we have needed to set up our work envi-
ronment. First we have had to select a solid and fast system as our main workplace due
to the very large amount of information we have needed to process. As such, the adopted
system was apsthree, a server from the Software Technology Department at Delft Univer-
sity of Technology. During our research the system had a Intel Xeon 2.8GHz processor
and 32GB ram. It ran on the operating system Fedora Core 12 and provided a tc shell.

Selected the workplace we have installed the tools needed for the implementation of
our study’s approach. Besides the Zoltar toolset, we have had to install the 2.6 version
of LLVM [LA04] framework since the mentioned toolset depends on it to work properly.
The installation details of both tools are described in appendix A.1 and A.2.

The Benchmark adopted was the Siemens Set [HFGO94], which have not required
any type of installation whatsoever since it essentially consists in series of simple files.
In order to proceeded to the instrumentation of each variable involved in load or store
operations for each version of each of the seven Siemens Set’s programs we used a pre-
made makefile system, from prior researches, which is able to propagate a single set of
makefile commands throughout all benchmark’s programs and versions. We have just had
to change the actual make statement as it have been originally created to instrument the
benchmark using gcov tool. Thus we altered if to issue a Zoltar instrumentation command
instead:
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...

7 all: $(PROGRAM).s

8 gcc $(PROGRAM).s -lpthread -linstrument -o \

$(PROGRAM) -L/path/to/zoltar/lib

9

10 $(PROGRAM).s: $(PROGRAM).ibc

11 llc -f $(PROGRAM).ibc -o $(PROGRAM).s

12

13 $(PROGRAM).ibc: $(PROGRAM).bc

14 instrument -f -spstatement -invstore \

-invload -bypassmain $(PROGRAM).bc -o $(PROGRAM).ibc

15

16 $(PROGRAM).bc: $(PROGRAM).c

17 llvm-gcc -g -emit-llvm -c $(PROGRAM).c -o $(PROGRAM).bc

...

The statement in line 17 compiles the source code through LLVM which splits it in
various program points. Then, in line 14, the variables are instrumented, per statement
(-spstatement option), into invariants if they are involved in a load or store operation (-
invload and -invstore options). The statements in lines 11 and 8 finish the instrumentation
process. After this slight tune up all one needs to instrument the full Siemens Set, using
Zoltar, is to execute make in a terminal, at the benchmark’s top directory. This operation
generates a file, named datafile.dat, in each instrumented program’s version, which stores
the data concerning that version’s instrumented variables.

5.3 Invariant training and testing

In order to train and test the instrumented invariants we need to run each program version
of the benchmark with different test cases. The Siemens Set programs’ versions need
hundreds of correct test cases in order to achieve an accurate invariant training. And some
thousand of untrained test cases to test the invariants in order to obtain a satisfactory error
detection rate. Although the Siemens Set itself supplies such test cases, it is unthinkable to
run all those tests cases by hand. Therefore we developed a Python script that automatizes
the process.

The script runs one time for each version of each program of the benchmark, meaning
that its implementation is only version-wise. Thus, for each version, the script first reads
a file containing the expected results for each input, provided by the benchmark. With
that data it tags each test case as "correct" or "incorrect" as it should pass or should fail,
respectively.
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...
for i, res in enumerate(REFERENCE_RESULTS):

if REFERENCE_RESULTS[i] == ’+\n’:
CORRECT_TEST_CASES.append(INPUTS[i])

else:
INCORRECT_TEST_CASES.append(INPUTS[i])

...

Figure 5.1: Test cases tagging

The correct test cases are the ones applied to the instrumented invariants during train-
ing phase. While the remaining are ran over them during the test phase, thus enabling
the fault screeners error detection. The stderr output of each test case ran during the test
phase is capture to a file, as it contains a report of the screener violations that occur in that
run.
...
#Trains the invariants with the correct test cases
os.system(’zoltar --settrain’)
for i, inp in enumerate(TRAINED_TEST_CASES):

cmd = ’FAULT=%s %s/%s %s’ % (FAULT, PATH, PROGRAM, inp)
sut = subprocess.Popen(cmd, shell = True, cwd=TOP,

stdout= subprocess.PIPE)
sut.wait()

#Tests the invariants with all the untrained test cases
os.system(’zoltar --settest’)
for i, inp in enumerate(INCORRECT_TEST_CASES):

#runs the test case and catches its output
cmd = ’FAULT=%s %s/%s %s’ % (FAULT, PATH, PROGRAM, inp)
sut = subprocess.Popen(cmd, shell = True, cwd=TOP,

stderr= subprocess.PIPE)
sutout = sut.communicate()
open(’stderr’, ’a’).write(sutout[1])
...

Figure 5.2: Training and testing invariants

5.4 Spectra generation

There was a script prior to our study that already extracted the spectra data of each test
case ran for every versions of every program in the benchmark to individual files. We
just have had to convert the format of the output file, which have been in .numpy, to .txt.
Similarly to the script that trains and tests the invariants (see section 5.3) this one iterates
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over all test cases (inputs) and stores their output for further analysis. After getting the
output inserts applies the gcov tool to generate the spectra of the program run.
...
for i, inp in enumerate(INPUTS):

cmd = ’%s/%s %s’ % (PATH, PROGRAM, inp)
refcmd = ’%s/source/%s %s’ % (TOP, PROGRAM, inp)

tries = 4
while tries > 0:

try:
past = time.time()
sut = subprocess.Popen(cmd, shell=True, cwd=TOP,
stdout=subprocess.PIPE)
ret = sut.wait()
now = time.time()

sutout = sut.communicate()

ora = subprocess.Popen(refcmd, shell=True, cwd=TOP,
stdout=subprocess.PIPE)

ret2 = ora.wait()

oraout = ora.communicate()

error[i] = sutout != oraout

subprocess.call(’gcov %s’ % PROGRAM, shell=True,
stdout=file(’/dev/null’))

fill_spectrum(’%s.c.gcov’ % PROGRAM, spectrum, i)
costs[i] = (now - past) * 1000.0

...

Figure 5.3: Generating program’s spectra
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5.5 Program points’ metrics calculation algorithm

In this section we describe how we have obtained the values of distance to the fault,
number of violations and cost of diagnosis for each instrumented program point in the
benchmark.

5.5.1 distance to the fault calculation

This metric calculation have not been an immediate one. First we have tried a traditional
procedure and tried to generate a Program Dependence Graph (PDG) directly from LLVM
and compute the shortest path from the fault to each program point. However this is not
supported for our source code fragmentation into program points by statement but rather,
just for the standard division by the so-called basic blocks. As such we have attempted
to use the opt tool and succeed. Still, the generated PDG format has not had an directly
usable format and has been too data-intensive to edit. Moreover, the generated PDG
data considered the distance to the fault of the program points contained in loops the
same throughout the loops’ iterations.Thus we have had to came up with a more creative
solution. This have consisted in slightly tune up the actual Zoltar code in order to make
it calculate and return the distance value at every fault screener violation reported. The
adjustment made have been to basically include the distance parameter in the screener
violation report issued by Zoltar. This parameter is calculated by comparing the position
of the fault with the current statement position, during program’s test case run, if the
current statement is on or after the fault’s location the distance starts to be incremented
at each ran statement. At each screener violation the current value of distance is printed.
In order to implement this algorithm we have started by adding a new attribute called
distance to the structure that stores the invariant information and initialize it with -1 value:

void _initInstrumentationInfo(unsigned int timestamp) {
...
_instrumentationInfo = (_InstrumentationInfo*)

calloc(1, sizeof(_InstrumentationInfo));
...

_instrumentationInfo->training = 1;
_instrumentationInfo->run = 0;
_instrumentationInfo->distance= -1;
...
}

Figure 5.4: Adding distance to the instrumentation structure
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After this we have calibrated the spectra updating function to get the current version’s
fault location, which is passed to Zoltar through a environment variable as a test case
is ran, and to compare, at each spectra update, the actual statement count with the fault
location. If that number is lower than the fault it would mean that the program still have
not reached the faulty statement, thus maintaining the distance value at is default, -1.
However if the current statement count is equal or higher than the fault it would mean that
the present program point is located either on the fault or near it. In this case the distance
value is updated to the actual statement count and suffers further updates at each spectra
updating.

/* spectrum update function */
void _updateSpectrum(unsigned int spectrumIndex,

unsigned int componentIndex) {

char *fault_s = getenv("FAULT");
unsigned int fault = atoi(fault_s);

...
SPECTRUMDATA(spectrumIndex)[componentIndex]++;

if (_instrumentationInfo->distance >= 0)
_instrumentationInfo->distance = _instrumentationInfo->distance + 1;

if(componentIndex == fault)
_instrumentationInfo->distance = 0;

...
}

Figure 5.5: distance calculations

Then we have modified the fault screener violations reporting functions to include the
current distance count by the time of each detected violation. Thus making that informa-
tion available at the stderr output obtained when running incorrect test cases during fault
screeners test phase. (see section 5.3)
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void _handleInvariantBitmaskError(_Invariant *inv) {
fprintf(stderr, "handle invariant bitmask error:\n");
fprintf(stderr, " val = %08x\n", inv->range.u.val);
fprintf(stderr, " first = %08x\n", inv->bitmask.first);
fprintf(stderr, " mask = %08x\n", inv->bitmask.mask);
fprintf(stderr, " first^val = %08x\n\n", (inv->bitmask.first ^

(unsigned int) inv->range.u.val));

...
inv->nErrors++;
fprintf(stderr, " errors = %d\n\n", inv->nErrors);
fprintf(stderr, " distance = %d\n\n",

_instrumentationInfo->distance);
...
}

Figure 5.6: Adding distance information to the violation report

5.5.2 cost of diagnosis calculation

The cost of diagnosis of a program point is our study’s core metric for the results evalua-
tion. Also it had been the hardest to calculate. In order to compute this metric we use each
program point has an oracle and produce a ranked list of likely faulty locations within that
program point. After this data is obtained, the cost of diagnosis calculation is trivial. In
order to generate the mentioned list we first read all the instrumented invariants data from
the file context.dat, created during their training and testing phase, and store it into class
objects of the type Program_Point. Each Program_Point contains information regarding
its correspondent variable name, invariant index given by LLVM during instrumentation,
invariant type (load or store), number of screener violations detected, cost of diagnosis,
line of code number and distance to the fault:
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class Program_Point:
var = ’’ #variable name
index = -1 #index given to the program point by

#LLVM during instrumentation
inv_type = -1 #type of invariant (0 -store 1- load)
vio_type = ’’ #type of violation (bm - bitmask r - range)
violations = 0 #Number of times the invariant in this program point

#were violated
C_d = 0.0 #Cost of the diagnosis
line = ’’ #line of code where it is
distance = -1 #distance from the fault

...
##### Gets all program points in the program #####
for i, line in enumerate(CONTEXT):

if len(line.split(’ ’)) == 7:
if int(word(line, 0)) == 1 and word(line, 6) !=’-’ and

word(line, 6).find(’_addr’) == -1:
pp = Program_Point()
pp.index = int(word(line, 2))
pp.inv_type= int(word(line, 1))

pp.line = int(word(line, 5))
pp.var = word(line, 6)
PROGRAM_POINTS.append(pp)

Figure 5.7: Program points data structures and storage

Afterwards the script parses the stderr output file generated during the invariants test-
ing. It registers, from this parsing, which program points’ fault screeners have been vio-
lated and how many times.
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...
for i, line in enumerate(STDERR):

#checks if a new input is found
if line.find(’Writing datafile in’) != -1 or i == len(STDERR) -1:

#add the previous input to inputs list and resets the input
if i > 0:

INPUTS.append(input_)
input_ = Input()
input_.pp_list = []
pp = Program_Point()

#gets the pp’s invariant type
if line.find(’invariant type index’) != -1:

#stores the previous program point
if pp.index != -1:

if not input_.containsPP(pp):
input_.pp_list.append(pp)

pp = Program_Point()

pp.inv_type = int(last_word(line))
#gets the pp’s index
if line.find(’invariant index’) != -1:

pp.index = int(last_word(line))
#gets the pp’s distance to the fault
if line.find(’distance’) != -1:

pp.distance = int(last_word(line))
pos = pinpoint(pp,PROGRAM_POINTS)
if pp.distance != -1 and pos != -1:

PROGRAM_POINTS[pos].distance = pp.distance

##### Counts the number of violations of each program point #####
for i, pp_ in enumerate(PROGRAM_POINTS):

for j, inp in enumerate(INPUTS):
for k, _pp_ in enumerate(inp.pp_list):

if pp_.isEqual(_pp_):
pp_.violations = pp_.violations + 1

...

Figure 5.8: Parsing stderr output
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Finally, with the extracted information, the script is ready to generate an input file
and feed it to ochiai, a fault diagnosis tool (part of Zoltar toolset [JAG09]) which is the
responsible to produce mentioned list of likely fault locations. The referred input file
consists in a matrix containing, per line, the program’s spectra for each of that version’s
test cases. To this matrix’s lines are appended +’s or -’s wether the program point was
detected to have screener violations for that program run or not.

for i, pp_ in enumerate(PROGRAM_POINTS):
isRankable = False
matrix = []
for j, inp in enumerate(INPUTS):

if len(inp.pp_list) == 0:
matrix.append(SPECTRA[j].strip(’\n’) + ’ \t+\n’)

else:
#The program point is on the list of violated program points
#in one input it can be ranked
if inp.containsPP(pp_):

matrix.append(SPECTRA[j].strip(’\n’) + ’ \t-\n’)
isRankable = True

else:
matrix.append(SPECTRA[j].strip(’\n’) + ’ \t+\n’)

...

Figure 5.9: Assembling a spectra|pass/fail matrix

After the matrix is assembled the script runs ochiai and stores the resulting ranking
file.

With the compiled information for each program point its respective cost of diagnosis
can be calculated with ease. The calculation is made by using one of two formulas:

1. If the fault location is ranked in the ranking file the script applies the formula:

Cd =
n

M−1

2. If the fault location not ranked in the ranking file the script applies the formula:

Cd =
Mr +

M−Mr
2

M−1

Mr: Number of likely fault locations ranked M: Number of spectrum components n:
Position of the fault in the ranking file

The first formula is applied when the actual faulty statement of the program is listed
within the ochiai-generated file, ranking the most likely locations for a fault to occur. In
this case, to calculate the cost of diagnosis (C_d) we just divide the position of the fault
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for i, pp_ in enumerate(PROGRAM_POINTS):
...

#ranks the program point if possible
if isRankable:

rank = calculate_rank(M)
open(’%s_%s.rank’ %(pp_.inv_type, pp_.index), ’w’).write(rank)

...

#uses ochiai to rank the matrix and returns the result
def calculate_rank(M):

matrix_file= open(’matrix’, ’w’)
matrix_file.writelines(matrix)
matrix_file.close()
cmd = ’/path/to//MFL/bayes -m 4 -o %s matrix’ % M
sut = subprocess.Popen(cmd, shell = True, stdout= subprocess.PIPE)
sutout = sut.communicate()
return sutout[0]

Figure 5.10: Calculating likely fault locations

in the file by the total number of spectrum components of the program. This will always
generate a C_d value below 0.5, meaning that less than 50% of the code needs to be
inspected in order to find the fault.

The second formula is applied when the faulty statement of the program is not listed
within the ochiai-generated file, ranking the most likely locations for a fault to occur. In
this case the calculation is made by taking the C_d the program point would have if the
fault was in last place in the file (value of M_r) and further adding to it the average number
of spectrum components needed to inspect after it. So this formula will always generate
C_d values above 0.5, meaning that more than 50% of the code needs to be inspected in
order to find the fault.
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...
##### Calculates the C_d of each program point #####
for i, rank_file in enumerate(RANKING_FILES):

pp = PROGRAM_POINTS[pinpoint_pp(PROGRAM_POINTS, rank_file)]
rank = open(rank_file.strip(’\n’), ’r’).readlines()
pp.C_d = round(calculateC_d(rank, M, FAULT), 2)

...
#Calculates the C_d value based on a ranking, the number of
#components M and the fault
def calculateC_d(rank_lines, M, fault):

fault_is_ranked = False
for i, line in enumerate(rank_lines):

#if the fault is ranked calculates the program point’s C_d directly
if int(line.split(’ ’)[0])-1 == fault:

return 0.5 - float(i)/float(M-1)
#if the fault is not ranked calculates the program point’s C_d using
#an obscure formula

Mr = len(rank)
return 0.5 - float((Mr + (M -Mr)/2))/float((M-1))

Figure 5.11: cost of diagnosis calculation

5.5.3 Number of violations

The calculation of the number of violations per program point is trivial. We have just
counted the number of detected errors per program point when we have parsed the stderr
file obtained from the invariant testing step of the approach (see section 5.3)

5.6 Results processors

We implemented two automated results processors. A script that takes the metrics data of
a program’s versions and averages it and a automatic plot generator, that reads data files
and plots two different kinds of charts: (1) Program points’ cost of diagnosis over the
distance to the fault and (2) Program points number of violations over the distance to the
fault. Both of the plot generators support either data per program and per version. The
tool used to plot the data is gnuplot
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#script lines
gplot = []
if MODE == 0:

gplot.append(’set title \"%s_%s\"\n’ % (PROGRAM, VERSION))
else:

gplot.append(’set title \"%s\"\n’ % (PROGRAM))
gplot.append(’set xlabel \"distance to the fault\"\n’)
gplot.append(’set ylabel \"0.5-C_d\"\n’)
gplot.append(’set parametric\n’)

if MODE == 0:
gplot.append(’set trange [-2:12000]\n’)
gplot.append(’set xrange [-2:12000]\n’)
gplot.append(’set yrange [-1:1]\n’)
gplot.append(’set term gif\n’)
gplot.append(’set output \’%s/%s_%s_cd.gif\’\n’ % (PATH, PROGRAM, VERSION))
gplot.append(’plot %s %s, t, %s %s’ % (DATA, L1, ORACLE_C_d, L2))

else:
gplot.append(’set trange [-2:1800]\n’)
gplot.append(’set xrange [-2:1800]\n’)
gplot.append(’set yrange [-1:1]\n’)
gplot.append(’set term gif\n’)
gplot.append(’set output \’%s/%s_cd.gif\’\n’ % (AVG_PATH, PROGRAM))
gplot.append(’plot %s %s, t, %s %s ’ % (AVG_DATA, L1, ORACLE_C_d, L2))

#writes and executes the script
open(’gplot.p’, ’w’).writelines(gplot)
os.system(’gnuplot > load \’gplot.p\’’)

Figure 5.12: gnuplot charts’ automatic generation
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pp= Program_Point(inv_type, index, var, distance, violations, C_d, line_)
location = whereIs(pp, program_points)
if location != -1:

program_points[location].distance_acc =
program_points[location].distance_acc + pp.distance

program_points[location].distance_counter =
program_points[location].distance_counter + 1

program_points[location].violations_acc =
program_points[location].violations_acc + pp.violations

program_points[location].violations_counter =
program_points[location].violations_counter + 1

program_points[location].C_d_acc =
program_points[location].C_d_acc + pp.C_d

program_points[location].C_d_counter =
program_points[location].C_d_counter + 1

else:
program_points.append(pp)

for i, pp in enumerate(program_points):
if pp.violations_counter!= 0:

pp.avgViolations =
round(float(pp.violations_acc)/float(pp.violations_counter), 2)

if pp.distance_counter != 0:
pp.avgDistance =
round(float(pp.distance_acc)/float(pp.distance_counter), 2)

if pp.C_d_counter!= 0:
pp.avgC_d =
round(float(pp.C_d_acc)/float(pp.C_d_counter), 2)

if pp.avgC_d > 0.4: program_points.remove(pp)

Figure 5.13: Automatic average calculation per program

5.7 Summary

The approach adopted in our study comprises 4 main steps: (1) Invariant instrumenta-
tion, (2) Invariant training and testing, (3) Program spectra generation and (4) Metrics
calculation.

The invariant instrumentation consists in compile the benchmark’s programs’ ver-
sions’ source code with LLVM and splitting it, by statement, into various program points.
This program points are instrumented with Zoltar, thus creating load and store invariants.
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The invariants are monitored and trained by two types of fault screeneres: (1) Range and
(2) Bit Mask.

The invariants testing and training can be automated by first dividing the program’s
test cases into correct and incorrect test cases. This can be achieved by following the
expected pass/fail reference results for all test cases. Then we run each correct test case
during the invariants training phase in order to teach them which values they should ac-
cept. Afterwards we run the remaining test cases during the invariants testing phase and
store the resulting stderr output.

The program spectra generation is obtained by applying the gcov tool to the program’s
test cases.

In order to calculate the distance to the fault we have tweaked Zoltar to count and
return the number of spectra updates that occur after the fault. To calculate the number of
violations of each program point we need to parse the stderr output file obtained during
the invariant testing phase and count the number of times that each program point has
been reported has containing screener violations. To calculate the cost of diagnosis of
each program point we need to merge the program’s spectra and the program point’s
execution results (pass or fail) for each test case and to feed the resulting matrix to ochiai
diagnosis tool in order to get a ranked file with possible locations for the fault. Given this
ranking, the metric’s calculation becomes trivial.

For easier results analysis we have developed a script that averages the metrics of each
program point per program, in order to have a more generic view of the results. We also
implemented an automatic plot generator that can create charts presenting either the cost
of diagnosis or the number of violations over the distance .

36



Chapter 6

Experimental Results

In this chapter we present and discuss the results obtained during our research. It will be
divided in three section: (1) metrics definition, (2) results analysis and (3) a summary of
the findings described in this chapter.

In the metrics definition section we define each metric that we have used to evaluate
the results obtained in our study.

In the results analysis section present and discuss the obtained results program-wise.
First we present first two charts, showing the both the cost of diagnosis and number of
violations of each program point over the distance to the fault. Then we present a table that
further details the data presented in the charts and helps to identify the principal program
points and respective variables of each program. After that we study that variable’s error
detection capabilities’ consistency throughout the program’s version. Then, if needed for
further clarity, we present relevant code sections of the program’s source code and explain
the behavior of each variable based on the results obtained.

6.1 Evaluation Metrics

In this section we define the evaluation metrics used to assess the results obtained during
our research.

0.5-C_d For representation proposes instead of a direct representation of the cost of di-
agnosis value (C_d) we decided to adopt a 0.5-C_d metric so the values range from
-0.5 to 0.5 instead from 0 to 1. This way the neutral C_d values of 0.5, that do
not add any useful information, are converted to 0, preventing them to hinder the
observation of the other, more important, values as it would happen if we used the
standard C_d value. Also, this way the C_d values below 0.5, the most interesting
ones, are the positive values on the chart so the bar for a program point’s C_d is as
high as its C_d is low (i.e: C_ds of 0 will be represented with a value of 0.5). The
same is true for C_d values above 0.5.
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Distance The metric often referred in this chapter as distance stands for the distance of
a program point to the fault present in the correspondent program’s version. This
distance represents the number of the program’s statements ran by the time the com-
piler reaches the statement over which the program point is instrumented. As such
this value should be always an integer bigger or equal then zero. The only exception
is when the program point which distance we want to measure is before the fault, in
this cases the distance value will always be -1.

Number of violations The metric often referred in this chapter by violations or number
of violations measures the number of times that a program point’s screeners detect a
value, in the variable they scan, that they have not being trained to accept (screener
violation).

Although the distance and number of violations values are obviously integers, this val-
ues often appear as floats in the current chapter. This happens due to most of the metrics’
data presented in this chapter is averaged from among all of each program’s versions. Al-
though it would be possible to round this averaged values to the closest integer, we would
lose information if we did that. For example, program point’s distance value between -1
and 0 means that in the majority of that program point’s locations throughout versions is
behind the fault but there is some versions in which the program point is after it. This
kind of information can be useful for results analysis.

6.2 Results

In this section we analyze the most interesting variables amongst the Siemens Set’ pro-
grams. The first program analysis is over replace program and it is the one described
with deepest detail as it is the most data-intensive program of the programs set, excluding
tot_info, and covers all the different behaviors found during this programs’ set analysis.
The remaining are described in a more summarized manner as the analysis method is
roughly the same. This do not includes the tot_info’s analysis as its massive amount of
screener violations require a slightly different analysis.

6.2.1 replace

The figure 6.1 presents the averaged values of the metrics obtained for each program point
of replace throughout all of its versions. The chart depicted by figure 6.1a shows the
number of violations detected by the program’s screeners, located through all the code.
This information is distributed according to the distance to the program’s fault where
that violations occur. The chart depicted by figure 6.1b presents the cost of diagnosis of
each screened program point, meaning, the effort needed to find the failure based on that
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program point’s information. This data is also distributed according to the distance that
each program point is from the fault.

By analyzing picture 6.1 we can see that the number of program points with actual
diagnosis value is reduced. Also, the mentioned program points C_d value is only median,
as none of them comes close to the reference C_d value, represented in chart 6.1b as the
horizontal green line. Another observation that can be made is that there is, in chart 6.1a,
an apparent aggregation of program invariant violations near the fault, while as we go
farther away from it their numbers decrease abruptly. Interestingly enough this do not
seem to lower their program point’s 0.5-C_d values as expected.

(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.1: replace’s averaged metrics

The data presented in the table 6.1 shows the obtained distance, number of violations
and 0.5-C_d values of the program’s variables reported as containing screener violations,
as well as the number of the variable’s violated program points. The maximum (Max),
minimum (Min) and average (Avg) values displayed are based on the average values,
through all replace’s versions, obtained for each of the variable’s screened program points.
Some variables in the table have the same name, in this cases they are indexed by a number
within (). So, as we can see, only 12 of the entire program’s variables have been reported,
by its screeners, as containing errors. In theory, this means that just that 12 of replace’s
variables need to be monitored in order to have an accurate error detection. However,
both table 6.1 and figure 6.1 show that the variables’ cost of diagnosis for this program
are, at most, mediocre as its value ranges from 0.04 to 0.25. Thus its maximum value
only represents 50% of the value obtained by using the reference program (oracle). The
same reasoning is valid for the number of violations, as it remains very low, indicating
a deficient test coverage and a consequent lost of diagnosis accuracy. The violations’
location tend to be near the fault, although in 3 out of the 12 analyzed variables the
violations are detected before the fault and in the variable i(3) there is a violation very far
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away from it.

Distance Violations 0.5 - C_d Program PointsMax Min Avg Max Min Avg Max Min Avg
escjunk -1 -1 -1 1.42 0.92 1.17 0.18 0.18 0.18 2
retval(1) -1 -1 -1 0.2 0.18 0.19 0.1 0.09 0.95 2
makeres -1 -1 -1 0.22 0.18 0.2 0.11 0.09 0.1 2

i(1) -0.92 -1 -1 5.45 5.17 5.31 0.12 0.04 0.08 2
result -0.91 -1 -0.95 0.18 0.18 0.18 0.09 0.09 0.09 2
i(2) 24.14 -0.91 7.685 9.42 8.57 8.76 0.08 0.05 0.07 4
m 17.3 7.25 12.28 10 8.33 9.17 0.05 0.04 0.05 2

size 17 11.43 14.22 0.17 0.14 0.16 0.08 0.07 0.08 2
retval(2) 17 12.45 14.73 0.18 0.14 0.16 0.09 0.07 0.08 2

lastm 14.25 14.25 14.25 8.33 8.33 8.33 0.04 0.04 0.04 1
k 175.25 115.5 154.96 0.75 0.5 0.67 0.12 0.10 0.11 3

i(3) 1084.33 213.5 550.70 0.5 0.22 0.32 0.25 0.11 0.15 9
Table 6.1: Averaged metrics per replace’s variable

The table 6.2 shows in which versions the variables’ screeners are detecting violations.
Although 26 out of the 32 versions of replace were instrumented for our study, only 12
of them actually present screener violations. The remaining are disregarded for this table
analysis. The underlying cause for the apparently low values of 0.5-C_d and number
of violations obtained can be explained by the data in this table. Table 6.2 shows that,
contrarily from what was expected, the variables’ violations are not consistent throughout
the program’s versions. From the 12 variables of the program that we have identified
has having some diagnosis potential, as much as 9 only have violation reports for two or
less of the versions. Thus explaining why the averaged metrics’ values in figure 6.1 and
table 6.1 are so low. So in spite of the individual cost of diagnosis value of a variable
usually be very near the oracle’s value for a single version, that value is not maintained
through the program’s versions. By analyzing the table by version, we can see that some
variables are correlated, as they only have violation reports for versions 14 and 28. This
indicates that they are generating screener violations solely because one of them have
its value corrupted by this versions’ particular faults’ nature, triggering a chain effect that
have also tainted the remaining. Thus this variables have absolutely no diagnosis potential
whatsoever. The variables that present only violations for single version follow the same
reasoning so they can also be disregarded. So this leaves us with only 2 possible collar
variables for replace program: escjunk and i(3).
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escjunk makeres retval (1) i (1) result lastm retval (2) size m i (2) k i (3)
Version 3 x x
Version 4 x x
Version 5 x x
Version 13 x x x x
Version 14 x x x x x x x
Version 15 x
Version 18 x
Version 22 x
Version 26 x x x x x x
Version 28 x
Version 30 x
Version 31 x

Table 6.2: variable violations throughout replace’s versions

The escjunk variable is located before the fault and has a average 0.5-C_d value of 0.18
(see table 6.1) although in its cost of diagnosis per version is comparable to the oracle’s.
Its screeners are able to detect errors in its value for 6 of the 26 instrumented program’s
versions. Figure 6.2 shows the code snippet where the variable is inserted. There are two
program points that have screeners monitoring the variable: (1) a store statement in line
108 which depends of the esc function and its arguments and (2) a load statement in line
109 which depends on the statement on line 108. As neither dodash function nor esc are
directly affected by any version’s fault, the values of escjunk are entirely controlled by
src and i variables. Thus discarding the possibility of escjunk being a collar variable.
The reason for this variable to have violations before the fault is because its value is com-
pletely fault-independent.

93 dodash(delim, src, i, dest, j, maxset)
...
100 {

...
103 char escjunk;
104
105 while ((src[*i] != delim) && (src[*i] != ENDSTR))
106 {
107 if (src[*i - 1] == ESCAPE) {
108 escjunk = esc(src, i);
109 junk = addstr(escjunk, dest, j, maxset);
110 }

...

Figure 6.2: escjunk location on the source code

The variable i(3) is the variable with the highest 0.5-C_d value of all replace’s vari-
ables. Its behavior is uncommon and worth to investigate, as its violations occur far away
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from the fault and there are significant distance gaps between them. This variable’s vi-
olations data is represented by all the red bars in the [213.5; 1084.33] distance interval
on figure 6.1. Statements containing an i variable in the code snippet depicted by figure
6.3 are actually the program points instrumented for i(3). In the mentioned code snippet
we can easily see that the value of i solely depends on the sub variable’s value, this rules
out the possibility of i(3) being a collar varable. Thus the mentioned behavior adopted
by i(3) can also be explained by sub variable’s value: As the distance to the fault is cal-
culated based on the number of statements that the program’s execution already ran, the
variable is only being violated when it continues to be incremented over the maximum
value accepted by its screener, which happens in average after 213 statements ran.

456 void
457 putsub(lin, s1, s2, sub)
458 ...
462 {

...
467 while ((sub[i] != ENDSTR)) {
468 if ((sub[i] == DITTO))
469 for (j = s1; j < s2; j++)
470 {
471 fputc(lin[j],stdout);
472 }
473 else
474 {
475 fputc(sub[i],stdout);
476 }
477 i = i + 1;
478 }
479 }

Figure 6.3: i(3) location on the source code

6.2.2 print_tokens, print_tokens2, schedule, schedule2 and tcas

The figures 6.4, 6.5, 6.6, 6.7 and 6.8 presents the averaged values of the metrics obtained
for each program point of print_tokens, print_tokens2 and schedule2 throughout all of
their versions. The chart depicted by the left subfigures, of the mentioned figures, shows
the number of violations detected by the program’s screeners, located through all pro-
grams’ code. This information is distributed according the distance to the program’s fault
where that violations occur. The chart depicted by the right subfigures presents the cost of
diagnosis of each screened program point, meaning, the effort needed to find the failure
based on that program point’s information. This data is also distributed according to the
distance that each program point is from the fault. By analyzing the mentioned charts we
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can see that the number of program points with actual diagnosis value is reduced. Also,
the mentioned program points 0.5-C_d value is fairly low, as none of them comes close
to the reference 0.5-C_d value, represented in the right subfigures as the horizontal green
line.

(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.4: print_tokens averaged metrics

(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.5: print_tokens2 averaged metrics
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(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.6: schedule’s averaged metrics

(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.7: schedule2’s averaged metrics
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(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.8: tcas’ averaged metrics

The data presented in the tables 6.3, 6.4, 6.5, 6.6 and 6.7 shows the obtained distance,
number of violations and 0.5-C_d values of the programs’ variables reported as containing
screener violations, as well as the number of the variable’s violated program points. So, as
we can see, the number of important variables in all the 3 mentioned programs is indeed
very low, as expected. However, figures 6.4, 6.5, 6.6, 6.7 and 6.8 and tables 6.3, 6.4,
6.5, 6.6 and 6.7 show that the variables’ cost of diagnosis for the program are, at most,
mediocre as its value never go further than 0.25, which only represents 50% of the value
obtained by using the reference program (oracle).

Distance Violations 0.5 - C_d
Program Points

Max Min Avg Max Min Avg Max Min Avg
cu_state 12 2 6.67 3 3 3 0.25 0.25 0.25 3

ind 174 67.5 120.75 8.5 4.5 6 0.23 0.22 0.23 4
token_ind 1594.5 680 1365.88 6 0.5 1.88 0.24 0.22 0.23 4

Table 6.3: Averaged metrics per print_tokens’ variable

Distance Violations 0.5 - C_d
Program Points

Max Min Avg Max Min Avg Max Min Avg
buffer -1 -1 -1 23.67 23.67 23.67 0.08 0.08 0.08 1

ch 1510 1.57 551.38 43.29 0.14 22.81 0.14 0.07 0.12 3
fname -1 -1 -1 0.57 0.14 0.33 0.21 0.07 0.12 3

fp -1 -1 -1 0.14 0.14 0.14 0.06 0.06 0.06 3
i(1) -0.25 -0.67 0.47 0.25 0.17 0.22 0.12 0.08 0.11 3
i(2) -1 -1 -1 0.25 0.17 0.23 0.13 0.08 0.13 5

Table 6.4: Averaged metrics per print_tokens2’s variable
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Distance Violations 0.5 - C_d
Program Points

Max Min Avg Max Min Avg Max Min Avg
n(1) -1 -1 -1 0.4 0.2 0.3 0.18 0.09 0.14 2
n(2) -1 -1 -1 1.2 0.4 0.8 0.28 0.09 0.19 2

src_queue 0.2 -1 -0.4 8 0.8 4.4 0.19 0.1 0.15 2
proc 78 -0.8 38.6 8 8 8 0.1 0.1 0.1 2

retval 0.25 0 0.13 10 8 9 0.12 0.1 0.11 2
count 87.4 87.4 87.4 0.6 0.6 0.6 0.19 0.19 0.19 1
ratio 1.6 1.6 1.6 0.4 0.4 0.4 0.1 0.1 0.1 1

Table 6.5: Averaged metrics per schedule’s variable

Distance Violations 0.5 - C_d
Program Points

Max Min Avg Max Min Avg Max Min Avg
next -0.33 -0.67 -0.56 0.67 0.67 0.67 0.08 0.08 0.08 3

prio_queue 0.5 0 0.25 0.5 0.33 0.42 0.11 0.07 0.09 2
next_pid 482 321 397 0.5 0.33 0.42 0.25 0.15 0.19 2

buf 54 24.5 39.25 1 0.5 0.75 0.24 0.2 0.22 2
prio 66 64.67 65.335 0.67 0.67 0.67 0.08 0.09 0.09 2

Table 6.6: Averaged metrics per schedule2’s variable

Distance Violations 0.5 - C_d
Program Points

Max Min Avg Max Min Avg Max Min Avg
retval(1) -1 -1 -1 0.2 0.2 0.2 0.02 0.02 0.02 1
retval(2) -1 -1 -1 0.1 0.1 0.1 -0.02 -0.02 -0.02 1

Up_Separation(1) -1 -1 -1 0.11 0.11 0.11 -0.02 -0.02 -0.02 1
Up_Separation(2) 2.89 2.89 2.89 0.67 0.67 0.67 0.2 0.2 0.2 1

iftmp.1 -1 -1 -1 0.11 0.11 0.11 -0.02 -0.02 -0.02 1
Positive_RA_Alt_Thresh -1 -1 -1 0.2 0.2 0.2 -0.02 -0.02 -0.02 1

Alt_Layer_Value -0.6 -0.6 -0.6 0.2 0.2 0.2 0.1 0.1 0.1 1
Other_Tracked_Alt 0.2 0.2 0.2 1.4 1.4 1.4 0.09 0.09 0.09 1

Table 6.7: Averaged metrics per tcas’ variable
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The tables 6.8, 6.9, 6.10, 6.11 and 6.15 shows in which versions the variables’ screen-
ers are detecting violations. Although we do not make use of the full set of programs’
versions in our approach there are still a good percentage of the remaining versions on
which there are not detected any violation. This versions are disregarded for the current
tables’ analysis. The underlying cause for the apparently low values of 0.5-C_d and num-
ber of violations obtained can be explained by the data in these tables. They show that,
contrarily from what was expected, the variables’ violations are not consistent throughout
the programs’ versions. None of the programs have a variable for which it’s screeners can
systematically detect violations throughout all the programs versions. Actually most of
the mentioned variables only have reported violations for two or less of their program’s
versions. And this happens in spite of the individual cost of diagnosis value of a variable
usually be very near the oracle’s value for a single version. that value is not maintained
through the program’s versions.

cu_state ind token_ind
Version 1 x
Version 5 x x

Table 6.8: variable violations throughout print_tokens’s versions

buffer ch fname fp i(1) i(2)
Version 2 x
Version 3 x x x
Version 4 x
Version 5 x x x
Version 6 x x x
Version 7 x
Version 8 x

Table 6.9: variable violations throughout print_tokens2’s versions

n(1) n(2) src_queue proc retval count ratio
Version 1 x x x
Version 3 x
Version 4 x
Version 5 x x x x x
Version 6 x x x
Table 6.10: variable violations throughout schedule’s versions
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next prio_queue next_pid buf prio
Version 1 x

Version 2 x

Version 8 x x x x

Version 10 x

Table 6.11: variable violations throughout schedule2’s versions

retval(1) retval(2) Up_Separation(1) Up_Separation(2) iftmp.1 Positive_RA_Alt_Thresh Alt_Layer_Value Other_Tracked_Alt
Version 1 x

Version 4 x

Version 16 x

Version 28 x

Version 29 x

Version 35 x

Version 36 x

Version 38 x x x x x

Version 40 x

Version 41 x

Table 6.12: variable violations throughout tcas’s versions

6.2.3 tot_info

The figure 6.9 presents the averaged values of the metrics obtained for each program point
of the program throughout all of its versions. The chart depicted by figure 6.9a shows the
number of violations detected by the program’s screeners, located through all the code.
This information is distributed according to the distance to the program’s fault where that
violations occur. The chart depicted by figure 6.9b presents the cost of diagnosis of each
screened program point, meaning, the effort needed to find the failure based on that pro-
gram point’s information. This data is also distributed according to the distance that each
program point is from the fault. As we inspect the charts, we notice that, although the
number of instrumented program points is roughly the same as all the other programs’,
there are much more program points’ screeners detecting violations. Also, the error cov-
erage on each program point has increased, as we can see in chart 6.9a, since the number
of violations per program point is much higher. Moreover, the program points’ cost of
diagnosis is also slightly better, as their 0.5-C_d value is somewhat increased and the
program’s reference 0.5-C_d value is lowered.
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(a) Average number of violations per program point (b) Average cost of diagnosis of each program point

Figure 6.9: tot_info’s averaged metrics

Due to the massive amount of program points reported to have violations, we analyze
the data obtained by value intervals of both distance and 0.5-C_d rather than by variable,
as done in section 6.2.2. Table 6.13 shows just that.

Although there is a slight increase in the 0.5-C_d, as observed in the chart depicted
by figure 6.9, the table 6.13 shows that its biggest value concentration is still between
0 and 0.15 with 84.94% of the total program points reported to have violations which
automatically renders them virtually useless for our study as their diagnosis value is too
little to be considered. The remaining 15.66% are the most interesting ones, as their 0.5-
C_d values fall in the interval between 0.15 and 0.28, which are much more acceptable
values.

Table 6.13 also show us that there is a clear aggregation of program points reported
to have violations near the fault, as 77.5% of them is between 0 and 200 first program’s
executed statements. The remaining are quite disperse as their distance value varies be-
tween 200 and 600 without further significant gathering in a specific location . However
there is another considerable aggregation in the distance interval between 600 and 700,
this represents 7.03% of the considered program points.

Table 6.14 presents tot_info’s program points with the best cost of diagnosis. The
numbers between () after each variable’s name are meant to difference the program points
within the same variable. The presented program points are illustrated in the chart de-
picted by figure 6.9b as: (1) the highest spike in the first group, between 0 and 200
distance, (2) the isolated, highest spike in [200 ; 400] distance interval and (3) the group
in [600 ; 800]. By observing the mentioned table, we can see that the 3 chart points men-
tioned only correspond to 4 distinct variables. In fact, the first two pointed sections in
the chart are actually generated by the same variable. Moreover that one variable (totdf )
has the highest 0.5-C_d values in the program, although its error coverage is very low.
Both ap and del variables present exactly the same metrics, for all their program points,
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0.5-C_d
[0 ; 0.05] [0.05 ; 0.1] [0.1 ; 0.15] [0.15 ; 0.28]

[-1 : 0] 9.02% 2.21% 0% 0.6% 11.85%
[0; 1] 0% 7.63% 0% 0.6% 8.23%
[1;10] 8.84% 4.62% 0.60% 0% 14.06%

[10; 20] 0.6% 11.24% 2.21% 1.61% 15.66%
[20; 30] 5.42% 1.61% 0% 0% 7.03%
[30; 40] 3.01% 0.6% 1.2% 0% 4.82%
[40; 50] 0% 0.6% 0.6% 2.21% 3.41%
[50; 60] 0.6% 0% 0.6% 0% 1.2%
[60; 70] 1.81% 2.21% 1.2% 1.2% 6.43%
[70; 80] 0.6% 3.61% 1.2% 0.6% 6.02%
[80; 90] 0% 0.6% 0% 0.6% 1.20%
[90; 100] 0% 1% 0.6% 0% 1.61%
[100; 200] 0.6% 1.2% 5.42% 0.6% 7.83%
[200; 300] 0% 0% 0% 0.6% 0.60%
[300; 400] 0% 0% 1.2% 1.2% 2.41%
[400; 500] 0% 0% 0% 0.6% 0.60%
[500; 600] 0.6% 0% 0% 0% 0.60%
[600; 700] 0% 0% 1.81% 5.22% 7.03%

31.12% 37.15% 16.67% 15.66% 100%
Table 6.13: Frequency table relating the distance to the fault with the 0.5-C_d

and even between each other. The variable sum presents variations between its program
points in all of its metrics. Its distance variations are minor, ranging from 651.59 to
664.35, their 0.5-C_d values oscillate between 0.21 and 0.23 as its distance vary and its
number of violations suddenly drops from around 25 to 5.

Variable Distance Violations 0.5-C_d
ap(1) 664.35 5 0.23
ap(2) 664.35 5 0.23
del 664.35 5 0.23

sum(1) 651.59 25.35 0.21
sum(2) 655.06 25.94 0.23
sum(3) 655.41 25.35 0.21
sum(4) 664.12 4.82 0.23
sum(6) 664.35 5 0.23
totdf(1) 255.29 2.59 0.26
totdf(2) 78.65 1.76 0.28

Table 6.14: tot_info’s program points with best cost of diagnosis

The table 6.15 shows in which versions the program points’ screeners are detecting
violations. Although we have instrumented 20 of the 23 program’s version to use in this
study, in 3 of those versions have not been detected any violations whatsoever, as such we
disregard them for the current analysis. From the versions with violations, versions 1, 8
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and 9 do not have reported violations of any of the program points in study. However all
the mentioned program points have violations reported in versions 8, 11, 12, 15, 17 and
23, roughly a third of the studied versions. Both of the mentioned (ap)’s program points
have violations exactly in the same versions as the del’s program points, which actually
makes sense as in table 6.14 they have the exact same metrics value. Program points 3
through 5 of sum also only have violations in the exact same versions as ap and del. The
totdf variable’s program points are the ones which show the most consistency throughout
the versions having violations reports in 11 and 12 out of the 17 versions in study.

ap(1) ap(2) del sum(1) sum(2) sum(3) sum(4) sum(5) totdf(1) totdf(2)
Version 1
Version 2 x x x x x x x x x
Version 4 x x x x x x x x x
Version 5 x x x x x x
Version 7 x x
Version 8 x x x x x x x x x x
Version 9
Version 10
Version 11 x x x x x x x x x x
Version 12 x x x x x x x x x x
Version 13 x x
Version 15 x x x x x x x x x x
Version 16 x x
Version 17 x x x x x x x x x x
Version 18 x x
Version 20 x
Version 23 x x x x x x x x x x

Table 6.15: program points’ violations throughout tot_info’s versions

The code snippet depicted by figure 6.10 show the code section of tot_info’s source
code in which ap’s, del’s and sum’s studied program points are. Both del’s and sum’s
program points except sum(5) are instrumented over the statement in line 194. ap(1),
ap(2) and sum(5) are instrumented over the statement in line 198. As we can see, the
studied variables’ values are deeply connected, since the program point’s statements are
no more than load and store operations made over the 3 variables, making their value
codependent. Also we can say that their value is, ultimately, fully dependent from the
value of a variable, a function’s argument as such ruling out the possibility of any of them
being a collar variable. (see line 194 in figure 6.10) Thus explaining the fact that these 3
variables are reported to have errors in exactly the same program’s versions, as presented
in table 6.15. Following these reasoning we can also say that there are a false negatives
both in sum(1) and sum(2) in version 5 as there is no other apparent reason for these
program points to not have violations reports in that version.

The code snippet depicted by figure 6.10 show the code section of tot_info’s source
code in which totdf ’s studied program points are. Both totdf(1) and totdf(2) are instru-

51



Experimental Results

184 gser( a, x )
185 double a, x;
186 {
187 double ap, del, sum;
...
194 del = sum = 1.0 / (ap = a);
195
196 for ( n = 1; n <= ITMAX; ++n )
197 {
198 sum += del *= x / ++ap;
199
...

Figure 6.10: ap, del and sum location on the source code

mented over the statement in line 106. The function presented in the code snippet is
actually the main() function of the code and totdf is only used on it two times, in line
106 and in a printf instruction. However, its value is totally dependent from infodf, thus
excluding the possibility of being a collar variable.

40 int
41 main( argc, argv )

...
99 if ( info >= 0.0 )
100 {
101 (void)printf( "2info = %5.2f\tdf = %2d\tq = %7.4f\n",
102 info, infodf,
103 QChiSq( info, infodf )
104 );
105 totinfo += info;
106 totdf += infodf;
107 }
..

Figure 6.11: ap, del and sum location on the source code

6.3 Summary

The results analysis that we perform in this chapter confirms that there are indeed very
few variables that have some kind of diagnosis potential. Moreover these variables tend
to aggregate near the fault, thus confirming that the location actually has some impact in
the variables’ diagnosis capabilities. In spite of this, there are still variables with error di-
agnosis potential that are located far away from the fault or before it. The first case occurs
when the variable is caught in a loop that periodically triggers a screener violation, thus
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reporting the variable as containing errors at increasingly values of distance. The second
case occurs mainly when the violations is triggered by an incorrect test case before the
fault, most of the variables in which this happens tend to be somewhat fault-independent.
Although we can verify that there is only a small set of variables per program in which
errors can be detected and that these variables are generally near the fault, the actual val-
ues of cost of diagnosis found are much worse than expected. Additionally, the number
of violations per program point is also very low, which indicates a deficient test coverage,
further decreasing the variable’s diagnosis quality. These behaviors are justifiable by the
apparent variables’ incapability of maintaining its diagnosis capabilities throughout their
program’s versions. Most of the variables that appear to have diagnosis capabilities, actu-
ally only have them for less than 20% percent of the program’s version, which obviously
renders them useless for our study. However there are some variables that can have their
screeners to consistently detect violations for over 50% of the versions. Although this is
not enough to consider them as possible collar variables, and most of them have been
ruled out as such, there are strong evidences of false negatives in their screeners error
detection. Thus indicating that even if we have not been able to find any collar variables
in our study, that does not mean that they do not exist.
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Chapter 7

Conclusions and Future Work

In Section 7.1, it is presented our contributions as well as a summary of our findings.
Finally, in Section 7.2, we present the guidelines for the future work.

7.1 Conclusions

In this thesis, we have discussed an approach that have intended to answer the following
academic question: "Is it possible to reduce the amount of program points that need to
be screened in a program without losing diagnosis accuracy?". We have applied this
approach to the Siemens Set benchmark. We have instrumented all the program points
of the benchmark program’s using Zoltar toolset and calculated the diagnosis potential of
each one as well as its distance to the programs’ fault. The results obtained confirm that
there are indeed very few variables that have some kind of diagnosis potential. Moreover
these variables tend to aggregate near the fault, also confirming that their location actually
has some impact in the variables’ diagnosis capabilities. In spite of this, the actual values
of cost of diagnosis found are much higher than expected. Additionally, the number of
violations per program point is also very low, which indicates a deficient test coverage,
further decreasing the variable’s diagnosis quality. These behaviors are justifiable by the
apparent variables’ incapability of maintaining its diagnosis capabilities throughout their
program’s versions. Moreover, all the candidates to collar variables found have been ruled
out after a deeper analysis. Although there had been also found strong evidences of false
negatives in their screeners error detection. Thus indicating that even if we have not been
able to find any collar variables in our study, that does not mean that they do not exist.

In this thesis we make the following contributions:

• Empirical findings showing that a program point’s diagnosis potential is affected by
its proximity to the fault, indicating that there is locality

• Empirical evidence showing that most of a program’s program points completely
irrelevant for automatic error detection purposes.
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• Empirical evidence exposing that it is not possible to find collar variables using only
range and bit-mask fault screeners. As its false negative rate is too high

7.2 Future Work

Future work includes change the fault screeners type to bloom filters, which as a much
lower false negative rate, and redo the experiments. If that also fails we will have to take
a step back and leave the use of screeners to focus in the raw values of each variable in
order to completely validate or invalidate this thesis crucial question.
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Appendix A

Set up instructions

Here we explain how to install and use the tools employed in this thesis research.

A.1 Installing LLVM

The following shows the method we have used to download and install LLVM. First, we
have downloaded the llvm version 2.6 sources and the llvm-gcc frontend sources. The
latter is required to compile C programs using llvm. Both have been downloaded here.
Next, we have unpacked both using

# tar -xzf llvm-2.6.tar.gz
# tar -xzf llvm-gcc-4.2-2.6.source.tar.gz

We have made an object directory and an install directory for llvm:

# mkdir llvm-obj
# mkdir llvm-install
Installed llvm:
# cd llvm-obj
# ../llvm-2.6/configure
# make

At this point, an LLVM version without gcc-frontend have been built. To make the gcc-
frontend, however, the following installation of llvm is needed. We have made an object
directory and an install directory for llvm-gcc as well:

# cd ..
# mkdir llvm-gcc-obj
# mkdir llvm-gcc-install

and configured it to use the llvm we have just installed.

# cd llvm-gcc-obj
# ../llvm-gcc4.2-2.6.source/configure \
> --prefix=‘pwd‘/../llvm-gcc-install --program-prefix=llvm- \
> --enable-llvm=‘pwd‘/../llvm-obj --enable-languages=c,c++
# make
# make install
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After this, llvm has been reconfigured to include llvm-gcc.

# cd ../llvm-obj
# ../llvm-2.6/configure --prefix=‘pwd‘/../llvm-install \
> --withllvmgccdir=‘pwd‘/../llvm-gcc-install
# make
# make install

The above procedure created two installation directories, llvm-install and llvm-gcc-install.
The bin directories of both have been added to the PATH environment, enabling a system
wide call to the llvm tools.

A.2 Installing Zoltar

The following shows the method we have used to download and install the Zoltar tool set.
First we have downloaded the source package here. Then we have unpacked it with:

# tar -xzf zoltar.tar.gz

Inside the unpacked directory we have ran

# ./configure --with-llvmsrc=<LLVMSRCDIR> \
> --with-llvmobj=<LLVMOBJDIR> --prefix=<INSTALLDIR>

where <LLVMSRCDIR> and <LLVMOBJDIR> are the directories containing the llvm
source files and llvm object files respectively (/path/to/llvm-2.6 and /path/to/llvm-obj in
the previous section). The tool binaries and libraries have been located in <INSTALLDIR>.
After that we have built and installed the tool set using:

# make
# make install

At this point the Zoltar tools have been installed in the bin directory of <INSTALLDIR>
and the libraries have been installed in the lib directory. Zoltar’s bin directory was added
to the PATH environment variable and lib directory was included the library search path.
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