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Geography 
 

Investigating the Spatial Behavior and Habitat of the Matschie’s Tree-kangaroo (Dendrolagus 
matschiei) using GPS Collars and Unmanned Aircraft Systems (UAS) 
 
Dr. Anna E. Klene 
 
 
Abstract 
 

Understanding the movement patterns and habitat needs of the endangered Matschie’s 
tree-kangaroo (Dendrolagus matschiei) is important for their conservation and management. 
Endemic to the montane cloud forests of the Huon Peninsula in northeastern Papua New Guinea, 
these elusive arboreal marsupials are tremendously challenging to study using traditional 
observational methods.  

This study is an assessment of novel techniques to overcome the significant challenges to 
in-situ data collection in remote and rugged tropical cloud forests. Animal locations are remotely 
tracked using purpose built altitude and motion logging GPS collars and habitat structure data is 
measured using photogrammetry from small Unmanned Aircraft Systems (UAS) aerial imagery. 
Leveraging the autocorrelation of regular GPS location sampling, this study applied a Time-
Local Convex Hull (T-LoCoH) analysis to investigate particular locations that may be important 
to D. matschiei as well as potential barriers to movement that would be inside of the home range 
as identified in previous studies. A novel technique of ground surface interpolation from canopy 
gaps is presented to overcome the challenges of photogrammetric reconstruction of terrain 
surfaces under closed canopy forests. From this a variety of forest structure variables were 
calculated to understand the 3D complexity of these heterogeneous cloud forests. 

This investigation found that custom GPS collars can provide high fix success rates in 
dense multilayer forests found at the research site. The regular sampling intervals resulted in 
areas of utilization that were notably smaller than with traditional home range analyses, and 
provided insight into landscape features that the animals do not use. D. matschiei were found to 
preferentially use trees that were taller than average and were found in closer than average 
proximity to canopy emergent trees. The reconstruction of 3D habitat data from UAS aerial 
photogrammetry resulted in forest structure maps that have significant potential to overcome the 
necessity of manual habitat data collection that hinders large scale habitat research, for this and 
many other species.  
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1 INTRODUCTION 

As one of the largest and highest montane regions in Papua New Guinea (PNG), the 

Huon Peninsula's unique geology has left it geographically isolated and many of its species exist 

nowhere else on earth (Flannery, 1995). The Matschie’s tree-kangaroo (Dendrolagus matschiei) 

is the largest mammal endemic to the peninsula and is significant for the local Indigenous 

people, providing an important protein source as well as cultural and ceremonial products (Mack, 

2005). Due to hunting pressure and habitat loss from agricultural expansion and logging it is 

listed as endangered by the International Union for Conservation of Nature (IUCN) with an 

estimated population of fewer than 2,500 mature individuals (Ziembicki & Porolak, 2016). 

However, accurate estimates of D. matschiei population size and habitat requirements are 

difficult to make because of their naturally low population densities, solitary behavior, and the 

challenge of effectively surveying these elusive animals in their remote and mountainous range 

(Porolak et al., 2014).  

Advances in remote sensing techniques, including animal telemetry and bio-logging, 

have facilitated improved understanding of behavior and habitat for many wildlife species, while 

simultaneously creating new challenges (e.g. Ropert-Coudert & Wilson, 2005; Cagnacci et al., 

2010; Kays et al., 2015). The Matschie’s tree-kangaroo provides an excellent subject to apply 

remote sensing techniques to overcome the tremendous challenges of in situ research (Stabach, 

2005). Previous studies that used remote sensing techniques include scat sampling (Pugh, 2003), 

vegetation transects (Jensen, 2005), very high-frequency (VHF) and global positioning system 

(GPS) collars (Flannery, 1995; Porolak et al., 2014; Stabach, 2005), and satellite land-cover 

classifications (Pugh, 2003; Stabach, 2005; Stabach et al., 2009) to investigate the home range 

and habitat use of D. matschiei. These studies have provided important knowledge about the 
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behavior and ecology of the Matschie’s tree-kangaroo in the wild and provide an ideal 

foundation for the continued refinement and validation of new techniques. While these studies 

found evidence that “D. matschiei may not be a habitat generalist” (Stabach, 2005), 

understanding what specific habitat they depend on was limited by the inexistence of sufficiently 

high-resolution remote sensing data, or dependence on manually locating the animals to collect 

habitat information (Stabach et al., 2009; Porolak et al., 2014). 

Since these studies were conducted some significant advancements have occurred that 

potentially give us the tools to understand the habitat requirements of D. matschiei, including: 

substantial improvements in the accuracy, longevity, and reliability of GPS antennas and the 

addition of biologging sensors on GPS collars (e.g. Cooke et al., 2004; Ropert-Coudert & 

Wilson, 2005); development of more robust spatiotemporal behavior investigation tools (e.g. 

Calenge et al., 2009; Lyons et al., 2013); and the rapid development of portable unmanned 

aircraft systems (UAS) and digital photogrammetry tools (e.g. Anderson & Gaston, 2013; 

Christie et al., 2016).  

1.1 Objectives 

This research has two objectives. The first is to assess the fine-scale use of space by 

individual D. matschiei to identify barriers to movement and areas of important habitat using 

custom designed GPS collars and spatiotemporal investigation tools. As part of this, an 

evaluation of the effectiveness of the GPS collars developed for this project will be made, 

geometric home ranges of individual Matschie’s tree-kangaroos created using each animal’s GPS 

location data during 2017/2018 will be compared to previous studies, and design feedback on the 

collars provided for future deployments.  
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The second objective is to identify habitat structure characteristics of potential ecological 

importance to D. matschiei, such as clearings, forest canopy gaps, and canopy emergent (i.e. 

forest overstory layer) trees. This study presents a novel technique of developing a canopy height 

model (CHM) and other forest structure metrics from very high resolution (~5 cm/pixel) UAS 

imagery. Because of the substantial challenges of, and limited publications about, the application 

of UAS to remote montane tropical cloud forest research, an assessment of techniques will be 

presented.  

This synthesis of spatial behavior from GPS collars and forest structure data to 

investigate habitat structure preferences could provide novel insight for other difficult to study 

animals in similarly challenging habitats. Improved understanding of critical habitat will be used 

to inform and prioritize ongoing land management and conservation efforts to protect D. 

matschiei populations in the wild. 

 

1.2 Study Area 

This research was conducted at the Wasaunon Field Research Area (Wasaunon), Morobe 

Province, PNG located between latitude 6°3’ and 6°1’S and longitude 146°51’ and 146°58’W on 

the northeastern side of the Huon Peninsula in the Sarawaged mountain range with an elevation 

range from 2122 to 3067 m and slopes in excess of 60° (Figure 1). The Wasaunon area is 

designated as a no-hunting zone by clan landowners in the local villages of Yawan, Towet, and 

Worin as part of the larger YUS Conservation Area (National Gazette No. G5., 2009). It is 

located approximately 9 km from the nearest village and is accessed by footpath or helicopter. 

The area is covered extensively (98%) by upper montane tropical rainforest, interspersed with 

small clearings of alpine grassland (Pugh, 2003; Gillieson et al., 2011). Mean annual 
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precipitation is estimated to be 2717 mm and the mean annual air temperature is 13.4°C (Fick & 

Hijmans, 2017).  

 
 
 
 
 
  

Figure 1. Map of the Wasaunon Research Camp and Surrounding Areas, Morobe Province, 
Papua New Guinea. Vegetation from Gillieson et al. (2011). 
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2 ECOLOGICAL AND CONSERVATION CONTEXT 

The Matschie’s tree-kangaroo, also known as the Huon tree-kangaroo, belongs to the 

family Macropodae which includes 55 species of kangaroos, wallabies, and their relatives 

(Flannery, 1995). The non-profit Tree-kangaroo Conservation Program (TKCP) has been 

working in Papua New Guinea since 1996 to study and protect the Matschie's tree-kangaroo, the 

program’s flagship species, as well as the critically endangered Eastern long-beaked echidna 

(Zaglossus bartoni), the vulnerable New Guinea pademelon (Thylogale browni), and the 

endemic bird of paradise species, the Huon astrapia (Astrapia rothschildi; Dabek & O’Neil, 

2007). In the Huon Peninsula’s Yopno-Uruwa-Som (YUS) watershed area where the TKCP 

focuses its work, primary drivers of biodiversity loss are over-hunting and habitat destruction 

through subsistence-use forest clearing (Ancrenaz et al., 2007; Ningal, 2007). The damaging 

effects of climate change were emphasized by severe droughts and frost in 1997 associated with 

El Niño–Southern Oscillation (ENSO) and were linked with food shortages and increased 

hunting pressures on wild animals, and with significant loss of high altitude forests from fire and 

frost (Cobon et al., 2016). The conservation of intact forest habitat along elevational gradients 

such as the YUS landscape is of particular importance in potentially mitigating the biological 

consequences of climate change (Brodie et al., 2012).  

Because Indigenous landowners own over 90% of the land in PNG, local communities 

are true stewards of the forest. In 2009, TKCP collaborated with local landowners, PNG’s 

Department of Environment and Conservation, and Conservation International to establish 

PNG’s first and only nationally-recognized Conservation Area (CA). This unique project 

recognizes and empowers local landowners in the process of protecting and managing their own 

resources. YUS CA protects over 60,000 ha of the Huon Peninsula’s uniquely diverse habitat and 
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wildlife and serves as a “wildlife bank”, providing safe refuge for wildlife within a no-take zone 

(Ancrenaz et al., 2007). As wildlife populations grow within YUS CA, offspring disperse to 

buffer zones where they can be sustainably hunted by local communities for protein and cultural 

uses. Anecdotal evidence suggests these measures have resulted in greater abundance within no-

take zones and dispersion into buffer and agricultural zones (Sowang, T., personal 

communication) but further research is essential to make effective conservation and management 

decisions (Ziembicki & Porolak, 2016). 
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3 SPATIAL BEHAVIOR AND HOME RANGES 

3.1 Background 

3.1.1 Prior Investigations of Spatial Behavior 

To overcome the challenges of observational location data collection, fieldwork was 

conducted between 2004 and 2007 to deploy VHF and GPS telemetry collars, establish 

vegetation transects, and study food plants (Porolak et al., 2014). Between March 2004 to 

November 2007, 15 Matschie’s tree-kangaroos were captured at the Wasaunon Field Research 

Site and fitted with a VHF collars (MOD-205 VHF Transmitter; Telonics Inc., USA). They were 

manually tracked daily for six months and locations were recorded with handheld GPS units. 

Vegetation data for each location was also collected. Home ranges of 81.3 ± 16.5 ha were found 

using 90% Harmonic Mean (HM), 72.4 ± 24.7 ha using 90% Kernel (KM), and 139.6 ± 26.5 ha 

using 100% Minimum Convex Polygon (MCP) techniques (Table 1; Porolak, 2008). While these 

home range and utilization distribution calculation techniques are historically the most 

commonly used in wildlife biology, they are known to be significantly affected by outliers and 

are unable to differentiate use patterns in internal space (Burgman et al., 2003; Nilson et al., 

2008). Additionally, because Matschie’s tree-kangaroos are known to be extremely sensitive to 

human disturbance it is unknown what effect the process of manually locating them using VHF 

has on their movement and space use patterns (Stabach, 2005). 

In 2004, three adult female Matschie’s tree-kangaroos were captured and fitted with 

Televilt PosrecTM GPS collars (model C200). These collars were programmed to collect 2 

locations per day (6:00 am and 6:00 pm local time) for a five-month study period and had an 

additional VHF transmitter that was used to locate the animal daily. Data on the slope, aspect, 

temperature, tree species, canopy closure, tree height, and other habitat characteristics were 
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collected at each location. Stabach (2005) presented a preliminary assessment of home range 

sizes from the 3 GPS collars deployed and found a mean fixed kernel home range of 28.3 ± 2.3 

ha at 90% UD. These collars had very low GPS fix success rates (~20%) resulting in less than 1 

location per day, which was less than half the number of locations that the manual VHF tracking 

of the GPS-collared animals produced and illustrate the challenges many researchers have had 

using GPS collars to study animals in dense forests (Frair et al., 2010). Stabach et al. (2012) 

noted a significant clustering of the animal locations, “indicating a high level of site fidelity”, 

and that the animals revisited specific areas, “due either to a food resource..., protection, or some 

other factor.” The geometric MCP and Kernel techniques used by previous studies are known to 

overestimate home ranges (Stark et al., 2017) were insufficient in understanding the specific 

resources and habitats used by D. matschiei. 

3.1.2 Techniques for Investigating Spatial Behavior 

Recognizing that GPS locations are spatially autocorrelated and incorporating the time 

stamps from GPS locations allows researchers better to understand the movement patters of 

animals through time on finer spatial scales (Fieberg & Börger, 2012). The primary approaches 

taken to leverage the temporal data from GPS collars have been movement based (e.g. Calenge 

et al., 2009) or kernel (area) based (e.g. Getz & Wilmers, 2004). Time - Local Convex Hull (T-

LoCoH) is a nonparametric kernel home-range technique that was developed to make use of the 

temporal correlation of animal movement from GPS locations (Lyons et al., 2013). It is more 

sensitive to edge effects and boundaries than other methods and while it is known to 

underestimate home range size, its sensitivity to barriers to animal movement make it ideal for 

mapping the fine-scale forest composition and structure patterns that the Matschie’s tree-

kangaroo depends upon (Lichti, 2011; Reinecke et al., 2013; Stark et al., 2017).  



 

 

  9 

T-LoCoH operates in R (R Core Team, 2018), and while it is considered to be a 

nonparametric technique, there are still a number of values that must be selected that influence 

the outcomes (Dougherty et al., 2017). T-LoCoH uses a hybrid space-time metric called “Time 

Scaled Distance” (TSD) to calculate the distance between points in non-Euclidian space, which it 

does by determining the theoretical maximum velocity at which an animal travels (Lyons et al., 

2013). The value for s, the time scaling parameter, is very important and depends significantly on 

the time between location data, the number of points, and the rate at which the animal moves. 

Where s=0 time would not be accounted for in selecting nearest neighbors, and where s is large, 

time would be the only factor determining the selection of nearest neighbors (T-LoCoH Tutorial, 

2014). Three techniques can be used for nearest-neighbor selection including automated, fixed 

kernel, and distance. This project used the fixed kernel, or k-method, to develop utilization hulls 

for comparison with previous studies and to determine areas of use/nonuse.  

Time-use metrics output by T-LoCoH include the number of separate visits (nsv; a 

measure of revisitation), and the mean number of locations per visit (mnlv; a measure of the 

duration of visits). These metrics can reveal temporal patterns in location data which could 

correspond to important resources that D. matschiei depend on, such as food plants or shelter. 

These values depend on the inter-visit gap (ivg) value that defines separate visits, as well as the 

geometry of the hulls. T-LoCoH depends on fairly regular location sampling (i.e., from GPS 

collars), so opportunistic (e.g., manually collected radio telemetry data from previous studies), 

cannot be reanalyzed using this technique.  
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3.2 Methods  

3.2.1 GPS Collar Animal Location 

During a two-week site visit in October 2017, three female and three male Matschie’s 

tree-kangaroos were captured. Animals were located by groups of skilled local hunters and 

trackers and captured using the techniques described by Stabach (2005) and Porolak (2008). 

Animals were given a light sedative upon being brought back to the field camp and kept for 

measurements and fitting GPS and VHF collars before being released to the same tree where 

they were captured after ~2 hours. One of the females (MTK 1) had a joey, or young tree-

kangaroo, at foot. Both were captured, but the juvenile male was not collared because the collars 

were not designed to accommodate the change in neck size of a growing animal. In total, 5 

animals were collared: three with custom GPS collars (Hawk-Owl Systems, Essex, MT), and two 

with VHF radio telemetry collars (Telonics, Inc., Mesa, AZ).  

The GPS collars were developed specifically for this research project and incorporate a 

25 mm ceramic patch antenna, barometric pressure sensor, binary motion sensor in a housing, 

and lithium ion batteries underneath the animals’ chin. The GPS collars were programmed to 

record locations with 4 hour intervals, and no limit was set on how long the collar would attempt 

to get a location fix. The motion data was summed as number of movements per hour, and 

barometric pressure data was used to calculate maximum and minimum elevations during that 

hour, as well as number of vertical movement changes. This data was stored separately from the 

GPS location data. Four collars were built for this project and brought into the field, however one 

had a problem with the VHF telemetry radio used to manually locate the animal and retrieve the 

collar, so it was not deployed.  
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The GPS collared animals were located weekly to biweekly depending on conditions and 

field technician availability using VHF radio. Data recorded by the sensors was stored on board 

and also downloaded remotely by field technicians from a distance of 50-200 m to limit animal 

disturbance using 915 MHz telemetry radio in case the collar could not be retrieved. Only the 

data retrieved remotely was presented here. While previous studies also tracked the locations of 

the GPS collared animals daily, this project specifically did not track the VHF locations of the 

GPS collared animals daily to minimize the impacts of human disturbance on their behavior. The 

VHF-only collared animals were located as frequently as weather conditions and field staff 

capacity would allow. 

3.2.2 Data Processing  

The GPS collar data required significant processing including removing unused or 

incorrect data, formatting inconsistencies, and preparing files for input into R with a Python 

script. Because the process of remotely downloading the data over telemetry radio often failed 

during the field download process, there were substantial blocks of incorrect data that required 

removal. Failure of the GPS to acquire a fix resulted in false latitude, longitude, or time values, 

and any rows with faulty values were removed.  

3.2.3 Temporal and Spatial Behavior Analysis 

GPS and VHF points were imported into an ArcGIS File Geodatabase and a minimum 

bounding geometry tool was used to create the 100% MCP area. To develop a basic 

understanding of movement rate and interval patterns the Tracking Analyst function in ArcMap 

10.6 (ESRI Inc., Redlands, CA) was used to visualize movement patterns that include their 

temporal component. These can be displayed statically but also as animations which can be 
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useful in understanding movement. This visualization was used in selecting the time parameters 

for further investigation using T-LoCoH. 

This study focused on multi-day temporal patterns (such as foraging away from a central 

location) and investigation of what locations individual D. matschiei returned to on a regular 

basis. Based on the tutorial by Lyons (2014) and Lyons et al. (2013) the time scaling value of 

s=0.15 was selected based on plotting the s term, and an inter-visit gap value of 24 hr was used. 

 

3.3 Results 

3.3.1 Collar Performance and Data Collection 

The collars deployed in October 2017 and collected in April 2018 resulted in 77% GPS 

location fix success rate (Table 1 and Figure 2) - an improvement from the ~20% fix rate found 

by Stabach (2005). The batteries on all GPS collars had failed before their retrieval date, 

however the VHF transmitters on the GPS collars were powered separately and did not fail, thus 

allowing the animal to be located for collar retrieval. Downloading collar data remotely was 

generally successful and prevented the complete loss of data if a collar could not be retrieved. 

All animals that had GPS collars were collared with a VHF telemetry collar for radio tracking 

before a follow-up deployment of update collars between October 2018 and April 2019. 
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ID Collar 
Type 

Start 
Date 

# 
days 

# locations # of GPS 
Fixes 

Attempted 

% Fix 
Success 

Average 
Sampling 
Interval 

MTK 1 GPS 9/27/2017 72.3 329 433 76.0% 4.9 hours 
MTK 2 GPS 9/30/2017 82.7 376 502 74.9% 4.8 hours 
MTK 3 GPS 10/2/2017 139.5 655 836 78.4% 4.2 hours 
MTK 4 VHF 12/9/2017 124 79 - - 1.57 days 

MTK 5 VHF 12/9/2017 124 80 - - 1.55 days 
TOTAL  GPS 

only 
  1360 1771 76.8%  

Table 1. Summary of Tree-kangaroo VHF and GPS collar deployment and performance.  

Figure 2. Sampling frequency of GPS and VHF collars. The y axis for MTK 1, 2, and 3 
(tracked using GPS collars) is in hours, while the y axis for MTK 4 and 5 (tracked using VHF 
collars) is in days. 
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3.3.2 Home Ranges 

The Minimum Convex Polygon bounding geometry around 100% of GPS collar locations 

shows an average area of 23.6 ha (N=3), with a smaller home range for females of 14.4 ha (n=2) 

and 41.8 ha for the male (Table 2). This same data processed using T-LoCoH shows a 95% iso-

hull area average of 15.36 ha (N=3), with an area for females of 12.02 ha (n=2) and 22.6 ha for 

the male. The 100% MCP of the VHF tracked animals results in far larger (2-3 times) home 

ranges with an average of 76.6 ha (n=2; Table 3, Figures 3 and 4).  

 

ID Method Sex 100% MCP 
(ha) 

95% ISO Area 
(ha) 

10% ISO Area 
(ha) 

MTK 1 GPS F 15.4 9.6 0.6 
MTK 2 GPS F 13.4 10.4 0.7 
MTK 3 GPS M 41.8 22.6 2.0 
MTK 4 VHF F 57.3   

MTK 5 VHF M 95.9   

Author Method Sample 
size 
(# of 

animals) 

MCP 
(100%) 

Kernel 
(50%) 

Kernel 
(90%) 

T-LoCoH 
(95%) 

Porolak 
(2008) 

VHF 15 139.6 ± 
26.5 

13.8 ± 2.9 68.7 ± 14.2 - 

Stabach et 
al. (2012) 

GPS 3 - 7.3 ± 1.9 28.3 ± 2.3 - 

Byers 
(2019) 

GPS 
 

VHF 

3 
 
2 

21.7 ± 18.2 
 

76.6 ± 19.3 

NA 
 
- 

NA 
 
- 

15.4 ± 6.7 
 
- 

 
Table 2. Home range area estimates for each individual animal collared comparing Minimum 
Convex Polygon and T-LoCoh results. 
 

Table 3. Mean home range area estimates from previous studies and this research. Location 
collection method and sample size are shown along with results from 100% Minimum 
Convex Polygon (MCP), and Harmonic Mean means calculated using 50% and 90% Kernels, 
and 95% Time Local Convex Hull (T-LoCoH) techniques. 
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Figure 4. Plot of area within 100% MCP for each of the GPS and VHF collars.  

Figure 3. Map showing animal locations from GPS collars and from VHF collars. The bounding 
geometries show 100% MCP. The Wasaunon camp and local trails are also shown. Base map is 
WorldView-2 (imagery ©2018 DigitalGlobe, Inc). 



 

 

  16 

Figure 5. T-LoCoH Descriptive Plots. Clockwise from upper left for each animal show 
number of GPS locations per 7 days, distance traveled between locations (red bar is the 
mean), velocity between locations, and time interval between successful GPS location fixes.  

3.3.3 Spatial Behavior and Movement 

Tree-kangaroos observed in this study generally move very short distances between 

recorded locations, with a mean distance between GPS locations of ~30 m (Figure 5). A 

temporal analysis of GPS locations shows an average time to independence of 72.6 hours, 

indicating very slow movement and significant site fidelity. The ISO value hulls show clear areas 

of non-utilization within the MCP area of MTK 1, indicating that they do not use the open 

grassland (Figure 6). 

 

B) A) 

C) 
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Figure 6. Maps of T-LoCoH Revisitation Rates and Utilization Hulls. Location revisitation rates 
from visits separated by 24 hr windows using T-LoCoH show blue points represent areas visited 
infrequently and red the most frequent. Revisitation rates are dependent upon number of 
locations recorded by each collar, and are not standardized. Isopleth values represent minimum 
areas containing 10%, 50%, and 95% of points. 

 B) 
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3.4 Discussion 

3.4.1 GPS Collar Design and Performance 

The far higher fix success rate of the GPS collars built by Hawk-Owl Systems compared 

to the rates obtained by Stabach (2005) highlight the substantial recent improvements in small 

GNSS antennas. While these collars were not programmed to record which GNSS constellation 

they were using for their locations, or the accuracy of the position, it is likely that the 

substantially greater number of satellites available for location acquisition over only using the 

GPS constellation account for some of this improvement. Additionally, the large ceramic patch 

antennas and unlimited fix acquisition times contribute to the higher success rates, which are 

notably higher than those found in recent literature from other tropical arboreal animals (e.g. 

36.6% fix success rate, white-footed tamarins (Saguinus leucopus; Sanchez-Giraldo & Daza, 

2019).  

Despite this substantial improvement, 

the collars overall did not fully realize their 

designed performance. Most notably, the 

projected lifespan for the collars was at least 4 

months, however all collars failed before this 

point. This was likely caused in part by the 

long times required to get a successful GPS 

fix. While the dense forest canopy could 

explain the long fix times, the collars also had 

the tendency to rotate around the animals neck 

(Figure 7) potentially because they were 

Figure 7. GPS Collared Tree-kangaroo in the forest 
canopy Image showing the rotation of the GPS antenna 
under the neck of MTK 1. Box facing down contains 
GPS, VHF, and Telemetry antennas. Screen capture 
from "A Life in the Clouds: A NATURE Short Film" 
PBS/ J  B  2018  
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designed to not change the animals balance and have less battery weight in the front than the 

heavier collars used on ungulates. The higher fix success rate of these collars reveals the 

potential importance of this parameter in designing GPS collars for deployment in dense tropical 

forests. This fix attempt timeout setting was limited in the redesign of the collars deployed in 

2018-2019 to preserve battery life. Particularly with novel techniques such as this, the specific 

design of the GPS collar can make substantial differences in data collections, but few studies 

report on the design parameters of the equipment used which makes it difficult to compare the 

performance of this collar with the results of other studies (e.g. Frair et al., 2010). 

Another design challenge identified was that by the end of the deployment, all of the 915 

MHz telemetry antennas had been broken or chewed off by the animals close to where they 

emerge from the case. This severely limited the range from which they could be downloaded, 

and while all the collars were retrieved during this study, this problem could be catastrophic if 

the collar was not retrieved. The recommendation that this antenna be partially enclosed within 

the housing surrounding the GPS antenna was taken into account during the redesign for collar 

redeployment in late 2018.  

The barometric pressure altitude data recorded by the collars was not used for this study 

because the elevation values recorded by the collars reflect both the movement of the animal 

throughout the forest canopy, but also variations in barometric pressure from weather, and no 

barometric pressure sensors in fixed locations were deployed at the study site. Another challenge 

presented by the design of the collars was the technique of data recording and storage. By 

recording the GPS locations separate from the elevation data, interpolation would be required to 

match the altitude values (recorded hourly) to the GPS locations (recorded hourly + the amount 

of time required to acquire a GPS fix). These problems were addressed in the redesign and 
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redeployment of the collars and a test box containing the exact same components as the animal 

collars was deployed in a fixed known location to provide barometric pressure reference for the 

deployed animal collars. Instead of altitude ranges, actual elevation values will be recorded in 

sync with GPS locations.  

The failure of GPS location fixes can introduce significant habitat bias (Frair et al., 

2004). Rapid location fixes are more likely to be recorded where there is less obstruction from 

leaves and branches – namely, higher in the forest canopy, near canopy gaps, or in forest types 

with more open structures, but slower with more failures in the densest portions of the forest. 

Further assessment of the errors or biases from these collars is necessary if this location data is to 

be used to make correlations with specific trees from high resolution remote sensing data. 

Additionally, the intermittent nature of GPS sampling means that the actual movement patterns 

of collared animals remain unknown. A potential solution to this is the introduction of GPS-

corrected dead-reckoning sensors that are becoming available. One challenge with this on small 

animals such as tree-kangaroos is the increased power use of this type of sensor, which thus 

requires larger batteries and heavier collars.  

3.4.2 Home Range Sizes 

It is interesting that the 100% MCP home range sizes from 2017-2018 GPS tracking are 

smaller than the 90% Kernel ranges found by Stabach et al. (2012), particularly when the 100% 

MCP is known to overestimate the area used. While the three animals in each study do not 

present a statistically significant sample size, it is plausible that the removal of hunting pressure 

with the establishment of the YUS conservation area in 2009 would result in an increase in the 

number of animals. Anecdotally, the local trackers reported having much easier times finding 
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animals to collar in 2017 than in previous research efforts (L. Dabek, personal communication). 

If D. matschiei are solitary and territorial, that could explain a reduced home range area. 

Also, the 100% MCP values from VHF tracking in 2017/2018 are strikingly larger than 

the 100% MCP values from GPS tracking. Because Stabach et al. (2012) do not present a 100% 

MCP value it is difficult to make a direct comparison, but the difference in area between VHF 

and GPS methods found in 2017-2018 does seem roughly proportional to the values presented by 

Porolak (2008) and Stabach et al. (2012). While the cause is unknown of the extreme outliers 

during the VHF tracking in 2017-2018, or the large size difference between the GPS and VHF 

values in previous studies, it is possible that these are the result of D. matschiei to human 

disturbance, with the animal moving outside of their core areas when rangers try to locate them 

using VHF tracking. This behavior was noted twice during the process to recapture animals in 

October 2018, where animals would appear to move rapidly outside their known range, mostly 

on the ground, when trackers would go to locate them, and was reported other times by rangers 

(N. Wari, personal communication). It also is possible that the outliers were the result of errors in 

VHF location data recording and processing, as these locations are manually recorded using a 

handheld GPS, entered into a notebook, and later digitized, rather than an automatically 

generated record directly from the collar. 

3.4.3 Spatiotemporal Ranges  

The 10% iso hulls presented in Figures 6 show the areas of the highest density of use 

through time, presumably places with habitat types or structures that are among the most 

important to D. matschiei. From field experience, these areas coincide with high structural 

heterogeneity and older large trees. This study did not investigate potential movement corridors, 
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which can be examined with hull elongation in T-LoCoH or using movement-based models such 

as CTMM (Calabrese et al., 2016). 

Finding appropriate parameter values in T-LoCoH was challenging as there are few 

publications to provide guidance. Those that do often use significantly higher numbers of 

locations, usually because they are studying a larger animal which can carry a heavier GPS collar 

with larger batteries (e.g. Lyons et al., 2013; Stark et al., 2017) and are not appropriate for this 

species. Because of the subjectivity of parameter selection, Dougherty et al. (2017) propose an 

algorithm for choosing s and k values for T-LoCoH, however their technique does not 

incorporate the time used of locations, and so was not included here. 

 3.4.4 Habitat Use and Movement 

This investigation of spatial behavior of D. matschiei using T-LoCoH revealed clear 

boundaries around forest clearings and canopy gaps that the animal did not use. Each animal 

seems to have several locations it returns to on multiple visits. These locations could be ideal 

sites to deploy remote cameras for future non-invasive behavior research. While Stabach et al. 

(2012) suggest that the importance of different forest compositions should be investigated, these 

results indicate that the importance of different forest structures should also be examined. While 

T-LoCoH can be used with elevation data, it is ultimately an areal technique. For 3D home range 

questions, other studies suggest using movement and travel-path probability techniques which 

incorporate elevations, such as a movement-based kernel density estimator (Tracey et al., 2014; 

Fleming et al., 2016) or continuous time movement model (CTMM; Calabrese et al. 2016). 

Because of the untested biases of GPS collars in different habitat types it is difficult to 

make broad conclusions about whether D. matschiei prefers areas of forest heterogeneity, or 
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whether these are associated with better GPS satellite signal. Additionally, the elevation and 

motion logging data collected by these collars were not utilized in this analysis, but there is a 

burgeoning field of animal movement behavior research that leverages machine learning to make 

inferences and predictions from very large high frequency sampling datasets that could be a 

promising future direction (e.g. Nathan et al., 2012; Wilson et al., 2008). 

 

3.5 Conclusions 

This investigation into space use using GPS collars and T-LoCoH supports the hypothesis 

that Matschie’s tree-kangaroos are not habitat generalists. They clearly prefer using small 

portions of their home range, and totally avoid some areas that would otherwise be included in 

their home range by MCP or Kernel techniques. The home range areas assessed by Porolak et al. 

(2014) from VHF collar locations and MCP or Kernal methods are nearly an order of 

magnitude larger than the utilization distributions of other tree-kangaroo species (Coombes, 

2005). The MCP home ranges from the 2004-2007 and 2017-2018 VHF collars are 2-3× larger 

than the MCP home ranges from the GPS collars during the same studies. While not conclusive, 

this supports the hypothesis of local trackers that this could be due to the sensitivity of D. 

matschiei to human disturbance, although the reduction of hunting pressure from local villagers 

accompanying the establishment of the conservation area may also have contributed. A larger 

sample size, comparing the data between the GPS and VHF collars, and studying home range 

size at different proximities to villages, as well as inside and outside the no-take zone could help 

resolve some of these questions. 

The variations in area between the Minimum Convex Polygon and T-LoCoH hulls 

illustrate the importance of methodology in defining habitat utilization. T-LoCoH is better at 
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excluding areas that are inside the kernel home range, but which the animal does not use. It was 

previously unknown whether grasslands were barriers for tree-kangaroo movement and a visual 

assessment of habitat from UAS orthoimagery shows that grasslands are clear boundaries to D. 

matschiei movement (Figures 3 and 6). This is valuable insight because these alpine grasslands 

cover extensive areas of the high elevation mountains above 3,000 m and effectively provide an 

upper boundary for tree-kangaroo distribution. Furthermore, the large expansions of alpine 

grassland during drought years may aid in predicting the effects of climate change on tree-

kangaroo habitat.  

As an arboreal animal, the Matschie’s tree-kangaroo is dependent on a complex 3-

dimensional forest structure. To understand the resource needs and behaviors of the Matschie’s 

tree-kangaroo, home range and resource selection studies should include vertical movements and 

temporal patterns to identify their needs, threats, and potential barriers to movement (McLean et 

al., 2016; Powell & Mitchell, 2012). 
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4 INVESTIGATING FOREST STRUCTURE FROM AERIAL PHOTOGRAMMETRY 

4.1 Background 

4.1.1 Remote Sensing of Habitat Variables 

Cagnacci et al. (2010) state, “Animal positions... show where individuals interact with the 

ecosystems around them.” From a conservation perspective, understanding the habitat 

composition and structure associated with an animal’s location allows land managers to evaluate 

what features are important and effectively implement actions that protect vital habitat (e.g. 

Craighead, 1979). Understanding the habitat preferences of wild animals is also important in the 

management of captive populations which are increasingly important as wild populations are 

pushed to the brink of extinction (Conway, 1995). Traditionally, understanding the habitat 

variables associated with an animal’s location required manual measurements. The far higher 

number of locations and collected data from GPS collars necessitates a shift towards remote 

sensing techniques to measure habitat variables associated with those numerous locations (e.g. 

Cagnacci et al., 2010; Hebblewhite & Haydon, 2010; Kays et al. 2015).  

Previous research using remote sensing to investigate tree kangaroo habitat has focused 

on categorizing forest composition from 2D satellite imagery (Pugh, 2003; Stabach, 2005; 

Stabach et al., 2009). Based on manually collected habitat data, Porolak (2008) reports that D. 

matschiei were found in Dacridyum nidulum (a large canopy emergent tree) at 51.71% of VHF 

tracked locations. In attempting to categorize D. nidulum forests using satellite imagery, 

however, Stabach et al. (2009; 2012) found that Landsat 7 ETM+ (6-band multispectral, 

pansharpened to 14.25 m/pixel) and SPOT-4 (4-band multispectral, 20 m/pixel) imagery were of 

insufficient resolution to classify heterogeneous forest types, with a mean classification accuracy 

of 70.6%. The increasing availability of very high-resolution (sub-meter) satellite data provides 
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novel ways to investigate habitat use on fine scales, however the near continuous presence of 

clouds in tropical regions (particularly at higher elevations like those found on the Huon 

Peninsula) hinder the regular acquisition of satellite imagery (Chambers et al., 2007).  

For many organisms, the 3D structure of their habitat is as important as, or even more 

important than, the species composition of the habitat (e.g. Goetz et al., 2010; Williams et al., 

2002; Davies et al., 2017). Particularly for arboreal animals, forest canopy structure dictates 

movement pathways, food resources, and shelter from predators, which in turn are reflected in 

the locomotor adaptations and movement patterns of the organism (McLean et al., 2016). For 

better-studied prehensile-tailed vertebrates, forest gaps are known barriers (Emmons & Gentry, 

1983), and forest height (as a proxy for forest maturity) is an important predictor of abundance 

(Palmentiri et al., 2012). Clearly this is also the case for D. matschiei, which were only observed 

on the ground in 2 of 141 sightings by Stabach (2005), and were not recorded crossing the open 

grassland by the GPS collars used here. Because of their distinct evolutionary heritage and 

physiology from arboreal primates, D. matschiei and related arboreal macropods would be 

expected to have unique movement patterns, yet we know almost nothing about the movement 

patterns of these animals in the wild (Procter-Grey & Ganslosser, 1986).  

Nearly all similar investigations of forest habitat structure characteristics use aerial light 

detection and ranging (LiDAR; a.k.a. Airborne Laser Scanning (ALS); e.g. Davies et al., 2017; 

McLean et al., 2016; Zhao et al., 2012). However, the applications of these techniques are 

limited in Papua New Guinea, and many other parts of the world, by the lack of publicly 

available data and the extremely high cost of custom aerial LiDAR data collection. Advances in 

aerial photogrammetry from small, lightweight unmanned aircraft systems (UAS) have opened 

many possibilities applicable to wildlife biology including: direct observation of animals with 
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visible light or thermal infrared cameras (Kays et al., 2019), detection of arboreal animal nests 

(Van Engel et al., 2015), and on demand acquisition of extremely high resolution visible and 

multi-spectral imagery for habitat analysis (Anderson & Gaston, 2013; Chabot & Bird, 2015). 

Additionally, the relative low cost of these systems make these tools attainable by many research 

projects, but implementation of these tools from both a technical and regulatory standpoint 

remains challenging particularly in remote, rugged, high elevation areas (Koh & Wich, 2012). 

Visible spectrum (i.e. Red, Green, Blue or RGB) cameras are the most commonly 

deployed on UAS and can be used to identify vegetation using object- and pixel-based 

classification approaches, particularly when combined with machine-learning approaches (e.g. 

Sandino et al., 2018). However, multispectral cameras are better suited for vegetation 

classification than RGB cameras, and are being used for a follow-up study at Wasaunon that will 

not be addressed by this report. Thermal infrared imaging from UAS could be a powerful tool for 

identifying arboreal animals (e.g. Kays et al. (2019) with tropical primates), however the small 

body size, insulating fur, and solitary behavior of tree-kangaroos would likely challenge the 

currently available thermal IR sensors. 

Significant advancements in the process of digital photogrammetry allow the production 

an extremely high resolution digital surface model (DSM) from RGB cameras which can be 

effective in investigating the 3-D structure of forests (e.g. Mohan et al., 2017). If coupled with 

the elevation of the ground surface (digital terrain models (DTM)), then canopy height models 

(CHM) can be calculated from which a variety of commonly used landscape and habitat metrics 

can be derived (Zhang et al., 2016; Mohan et al., 2017). However, because photogrammetric 

methods only capture the upper surface of the landscape, it can be very problematic to detect the 

ground surface in the case of closed canopy forests such as those commonly found in tropical 
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rainforests (Lisein et al., 2013). While no literature has identified the percentage of canopy 

closure at which these techniques begin to fail, the amount of terrain visible between gaps in the 

canopy at Wasaunon was insufficient to see the ground surface.  

Previous work attempting to solve this problem in closed canopy forests include a 

technique to manually collect ground surface points with a GPS and interpolate the ground 

surface (Isenberg, 2017). This method of collecting gridded GPS surface points was attempted at 

Wasaunon, however the extreme ruggedness of the terrain, very dense undergrowth, and low 

GPS signal under the forest canopy made this technique impractical beyond very small study 

areas. Ota et al. (2015) proposed a 10 × 10 m moving window method to recreate the terrain 

surface from gaps in the canopy, however this technique begins to fail if gaps are more than 

10 m apart and was less accurate for terrain reconstruction than LiDAR. These challenges have 

meant that many researchers regard UAS as an ineffective tool for surveying closed canopy 

forests, despite their tremendous potential as a research tool. 

4.1.2 A Novel Approach to Forest Structure Measurement from UAS 

This project investigates a novel approach to the creation of a Canopy Height Model 

(CHM) from RGB aerial photogrammetry in three steps: 1) canopy gap identification, 2) 

interpolation of terrain surface from the lowest elevations of canopy gaps, and 3) the creation of 

a CHM from the interpolated terrain and canopy surface. The first step evaluated automated and 

manual techniques for identifying canopy gaps. Gaps in the forest canopy have long been 

recognized by ecologists as important features allowing light to penetrate the forest canopy and 

important in forest regeneration, nutrient cycling, biodiversity, and to invasive species 

(Schliemann & Bockheim, 2011). This study compared manual gap identification to an 

automated method adapted from Betts et al. (2005) using a high resolution Digital Elevation 
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Model from UAS imagery. The elevations of presumed ground surface points were extracted 

from the lowest points of the canopy gaps. 

  

The second step was to interpolate the terrain surface between canopy gap points. Many 

studies have investigated the use of different interpolation methods for terrain reconstruction 

from LiDAR ground returns, which generally have far higher point densities of ground returns 

than the method of terrain points from canopy gaps used here. Inverse Distance Weighting 

(IDW), a deterministic technique, is one of the most commonly used, however Lloyd and 

Atkinson (2002) found that Kriging, a geospatial statistical fitting method, has less error when 

reconstructing terrain from sparse LiDAR points, and recommend it for mountainous terrain. The 

ANUDEM technique, an iterative finite distance technique (Hutchinson, 1988; the algorithm 

used by the “Topo to Raster” Tool in ArcGIS), was specifically intended for terrain modeling 

and creates surfaces which are, “generally smooth and free of obvious artifacts”, particularly 

Figure 8. Conceptual representation of canopy structure and surfaces used for structure analysis. 
Differences between the digital surface model and interpolated ground surface were used to create a 
canopy height model. 
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when the drainage enforcement functions of this technique are not used (Bater & Coops, 2009). 

This project evaluated the reconstruction of terrain surface from IDW, Kriging, and ANUDEM 

techniques. 

The third step was to subtract each of the interpolated terrain model from the Digital 

Surface Model to get a Canopy Height Model (CHM), which is the normalized height of each 

tree. The CHM allows for evaluation of tree height, texture, and other characteristics and is a 

standard method used by other papers investigating photogrammetric interpolation (e.g. Mohan 

et al., 2017). 

 

4.2 Methods 

4.2.1 Aerial Imagery Capture  

Aerial mapping flights were conducted on two separate site visits with different 

equipment and settings approximately one year apart. Because there are few conventions for how 

to successfully map closed canopy tropical forests in rugged terrain, the techniques used during 

both trips and the relative success of each will be discussed.  

In October 2017 a DJI Mavic Pro (DJI Science and Technology Co. Ltd., Shenzhen, 

China) was used controlled by Pix4D Capture (Pix4D SA) running on an iOS device. The 

camera on this aircraft is a 1/2.3” CMOS sensor with a rolling shutter that captures images of 

4000×3000 pixels with a 78.8° Field of View (FOV). Pix4D Capture only records .jpeg images 

and does not offer terrain following, so flight height was manually set depending on the 

topographic variance of each separate grid mission. These ranged between 80-120 m AGL, and 

80 – 350 m above the takeoff point, therefore image overlap ranged between 50-80% and 

Ground Sample Distance (GSD) varied depending on topography and flight altitude. The DJI 
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Mavic Pro has an advertised range of 7 km and flight duration of 27 min. Shutter speed and 

focus were controlled automatically by Pix4D Capture and flight speed was set to “fast”.  

In October 2018, a DJI Mavic 2 Pro (DJI Science and Technology Co. Ltd., Shenzhen, 

China) was used controlled by the Map Pilot (Drones Made Easy, dronesmadeeasy.com) app 

running on an iOS device. This aircraft has a 1” CMOS sensor also with a rolling shutter that 

captures images of 5472 × 3648 pixels with a 77° FOV. It has an advertised flight range of 8 km 

and duration of 31 min. Map Pilot does allow for terrain following, and flight height was set to 

122 m (400 ft), and a flight path overlap of 75% was used. Mapping missions must be pre-

planned before leaving an internet connection to download terrain and basemap data because 

there is not cellular or internet connection at the field site. Importantly Map Pilot also allows for 

continuation of the mapping mission even with a temporary loss of connection to the controller.  

4.2.2 Photogrammetry Processing 

Images were processed using Pix4D Mapper (Pix4D) to develop 3-D forest canopy 

surface models and orthophotos. After the first step of processing and the generation of a sparse 

point cloud, the locations of 6 ground control points measured in the field with an Emlid Reach 

RS+ (Emlid Ltd.) were incorporated to georeferenced the imagery. Two iterations of processing 

were used for the generation of the densified point cloud and DSM: the first only required tie 

points to be identified in two images reconstruct finer details of the canopy surface (Figure 9A), 

the second required tie points to be visible in three images to remove noise in the canopy surface 

reconstruction that was present in the first round of processing (Figure 9B). 
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4.2.3 Canopy Structure Data Creation 

Manual identification of canopy gaps was done using the photogrammetric DSM and 

orthoimage in ArcMap 10.6 (ESRI Inc.). This was a highly subjective process that relied 

substantially on local experience with forest canopy structure and terrain. A 13 m height 

difference between the surrounding canopy surface and the lowest point of the gap was used as a 

threshold for identifying gaps that reached fully through the canopy to the forest floor. This 

threshold was selected because the average canopy height is ~20 m, and the undergrowth on the 

forest floor often range from 2-5 m. There were several areas where depressions in the DEM 

aligned with gaps in the orthoimage but the difference to the surrounding canopy was <13 m 

indicating that the photogrammetry reconstruction had not successfully reconstructed down to 

the ground surface. These points were not selected as canopy gaps.  

The automated gap-detection process from the DSM used a process modified from Betts 

et al. (2005). First a fill (Hydrology toolbox) was applied so that larger canopy gaps did not 

lower the average height of their surroundings and create artifacts when identifying canopy 

emergent trees. A 25 × 25 m mean moving window average was applied to smooth the canopy 

surface. The smoothed surface was then subtracted from the DSM to yield a raster that showed 

areas lower and higher than the mean. The raster calculator tool was used with a threshold of ≤13 

m below the average being identified as a gap, and ≥7 m above the average being identified as a 

canopy emergent tree (Figure 8). These raster classes were converted to polygons and the zonal 

statistics tool was used to place points on the lowest elevation areas from the DSM inside each 

gap polygon. A 10 × 10 m standard deviation of roughness was also calculated to assess forest 

structure. 
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A) 

B) 

C) 

D) 

 

Figure 9.  Photogrammetry processing technique comparison. A) Subset of the digital surface 
model elevation derived from the point cloud using a densification requiring two matches for 
points. Blue dots are manual canopy gap points. B) Digital surface model made requiring 
three matching points. This was used to calculate the canopy height model. There is a 
smoother canopy structure, reduced noise, and no canopy gap in upper left. C) Difference 
raster of the two methods–purple represents gaps not identified by B), and green represents 
noise introduced by A). D) Orthoimage of the same view.  
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4.2.4 Digital Terrain Model Interpolation 

The original resolution of the DSM was ~5 cm, all products were down-sampled to 2 m 

because of computational limitations. The IDW interpolation used a power parameter of 5 to 

provide increased smoothing of the surface between measured points. The Kriging interpolation 

used ordinary kriging with a spherical model for the semi variogram. The ANUDEM method 

used a Threshold 1 value of 5 and a Threshold 2 value of 200. Sink filling and drainage 

enforcement functions were not used. The results of each interpolation method were clipped to a 

buffer 30 m inside of the original DSM to eliminate artifacts from low aerial photo overlap along 

the edges for CHM calculations. 

4.2.5 Canopy Height Model Evaluation 

Raster calculator was used to subtract the interpolated terrain from the original DSM to 

create the Canopy Height Model (CHM) for each interpolated terrain surface. Canopy height 

values were extracted from the resulting CHM rasters from comparison with measured canopy 

height values collected in the field by Byers (2018) using a laser rangefinder (Leupold RX-1300i 

TBR) and to those measured at animal locations in 2004 using a clinometer (Stabach, 2005). 

 

4.3 Results 

4.3.1 Aerial Imagery and Photogrammetry 

In 2017, six flights over three non-consecutive days resulted in 864 photographs covering 

~340 ha with an average GSD of ~8.5 cm. In 2018, three flights collected 546 images covering 

194 ha with a GSD of 4.9 cm (Figure 10). The aerial imagery collected in 2017 proved to have 

systematic problems (including bad focus and low overlap) which prevented successful surface 
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reconstruction at a resolution allowing the identification small canopy gaps. Additionally, signal 

interference limited flight range directionally to less than 2 km. In 2018, the new aircraft and 

change of flight control system was effective. While weather conditions were a challenge both 

years, the ability to opportunistically collect aerial imagery when it was clear in the morning was 

critical. Photogrammetric surface reconstruction using Pix4D proved to require a tremendous 

time investment as the available computer systems were not optimized for such large projects, 

and only imagery from flights conducted in 2018 was used for the remainder of these analyses. 

  

Figure 10. Resulting orthoimage and DSM of Wasaunon. Orthophoto of the aerial extent and 
inset of the research camp to illustrate resolution (left), and digital surface model (right) after 
processing. Insufficient overlap along the edges of the survey area reduced the accuracy of 
orthoimage merging and DSM and were trimmed (blue line). 
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4.3.2 Canopy Structure Analysis 

While the manual method of canopy gap detection was tedious, the visual comparison 

between the orthoimage and the DSM was helpful in determining which gaps revealed the true 

terrain surface (Figure 9). The automated canopy gap detection method located more canopy 

gaps overall, and the largest distance between two points for interpolation was 83 m for the 

manual method and 150 m for the automated method (Figure 11A, B). The larger the distance 

between known terrain surface locations, the less likely the interpolation of that surface is to 

accurately represent the real terrain. The difference map (Figure 11C) reveals that gap detection 

techniques found contrasting results in different parts of the landscape–for example, in the lower 

elevation and lower left portion of the analysis area automatic gaps were closer together, and on 

the right side of the area in higher elevations the manual points were closer. No validation data 

was available to evaluate these further. 

The distribution of canopy emergent trees resulting from the automated analysis shows 

broadly expected distribution, with no emergent trees detected in the open grassland (Figure 12). 

Similarly in pattern to the automated canopy gap detection, greater numbers of emergent trees 

were identified in the lower left (and lower elevation) portion of the study area. Because canopy 

emergent trees were only identified using the automatic thresholding method, there is no manual 

method from which to compare the effectiveness of the technique. The roughness analysis 

highlights the areas of large vertical change in canopy height, with a higher standard deviation of 

elevation along the edge of the grassland in the center of the analysis area, as well as the lower 

left part of the analysis area (Figure 13). No validation data was available to evaluate these 

further. 
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Figure 11. Maps of distance from canopy gaps by method. Canopy gaps identified A) using 
manual methods B) using automated methods. Color gradient is distance raster in meters from 
each point or polygon. C) Difference map of distance from canopy gaps determined from 
manual and automated methods meters. Orange is where the distance to automated gaps is 
closer and blue is where distance to manual gaps is closer. 

A) B) 

C) 
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Figure 13. Map of canopy surface roughness. Calculated using the standard deviation of the 
canopy height model created using the ANUDEM method. 

Figure 12. Map of distance from canopy emergent trees. Orange polygons represent emergent 
trees identified from automated thresholding and distance gradient is in meters. 
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4.3.3 Terrain Interpolation Comparison 

Of the three methods tried for terrain surface interpolation (Figures 14-16), the Topo to 

Raster (ANUDEM) method produced the most visually appealing and smoothest terrain surface 

(Figure 14). Kriging resulted in sharp stepwise changes of terrain surface in the larger gaps 

between points, but generally seems to represent the terrain (Figure 15). The IDW revealed 

characteristic bumps in the DTM, which translated to patches of artificially lower canopy height 

in the CHM (Figure 16).  

 

 

Figure 14. ANUDEM Hillshade and CHM. Hillshade of the DTM generated from the ANUDEM 
interpolation method (left) and resulting canopy height model (CHM; right, in meters above 
ground). 
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Figure 15. IDW hillshade and CHM. DTM from the IDW interpolation method (left) and 
resulting canopy height model (CHM; right, in meters above ground). 

Figure 16. Kriging hillshade and CHM. DTM from the Kriging interpolation method (left) and 
resulting canopy height model (CHM; right, in meters above ground).  
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4.3.4 Evaluation of Canopy Height Models 

The CHM developed from interpolation of the terrain surface using the technique 

proposed in this study and UAS photogrammetry consistently overestimated the height 

of the canopy compared to the measured canopy heights in 2018. The measured canopy height 

was on average 3.77 m lower than the Kriging interpolation, 6.89 m lower than the IDW 

interpolation, and 8.25 m lower than the ANUDEM interpolation (Figure 17). This contrasts with 

the height of the canopy measured by Stabach in 2004, who reported an average canopy height 

4.2 m taller than the interpolated surfaces (Figure 18). 

 

Figure 17. Plot of CHM and 2018 measured tree heights. Height differences between 
interpolated canopy heights and canopy heights measured in 2018 using DGPS location and 
direct laser rangefinder. Positive values indicate taller interpolated estimates. 
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4.4 Discussion 

4.4.1 UAS Aerial Imagery and Photogrammetry of Tropical Cloud Forests 

Throughout the process of data collection for this project, the process of aerial imagery 

data collection was the largest challenge. With any project attempting to use UAS for data 

collection, the implementation of imagery collection requires substantial knowledge of complex 

aircraft flight control, mission planning, camera system, and data processing techniques. 

Particularly in complex, forested terrain, aircraft safety is a top priority because locating and 

retrieval of a downed aircraft is effectively impossible. High contrast and large shadows in the 

early morning and evening can make imagery processing challenging, so flights could only be 

conducted between ~9 am–4 pm, however, most days the research area was fully cloud-covered 

by 10 am. Additionally, to reduce animal disturbance, no gasoline generators are used at the field 

Figure 18. Plot of CHM and 2004 measured tree heights.  Interpolated canopy heights 
compared to canopy heights measured by Stabach (2008) in 2004 using GPS location 
and trigonometry from clinometer angle/laser rangefinder distance.  
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site, and re-charging aircraft batteries with ~280 W solar panels proved to be very challenging 

given the cloud cover. Finally, the physical limitations of the site (a small forest clearing 

surrounded by 20+ m trees at ~3,000 m which must be accessed by walking ~5 km from the 

nearest village or by helicopter) limit the aircraft used to a small multirotor or hand-launched 

fixed wing. 

The poor performance of aerial imagery collection in 2017 can be attributed to several 

factors. The lens-focusing issues from missions flown with Pix4D Capture meant that image 

matching in the processing stage produced lower precision images. Pix4D capture does not 

continue to capture photos when connection with the aircraft is lost, resulting in missions limited 

to less than 1.5 km from the takeoff point because of the high radio control attenuation of dense, 

wet tropical forest canopy. The inability to follow terrain resulted in low image overlap on 

ridges, causing photogrammetric reconstruction of these surfaces to fail. Additionally, fixed 

flight heights were set based on topographic maps of the area, plus an additional 20 m for forest 

canopy, however areas of tall forest canopy reduced image overlap as well. 

Aerial imagery collection in 2018 using the Mavic 2 Pro and Map Pilot proved more 

successful, and would be recommended for future projects, however several challenges were 

encountered. Poor weather conditions in 2018 limited the number of opportunities for flying 

which prevented the acquisition of data over the entire area traversed by the collared animals. 

Because of the computationally intensive nature of digital photogrammetry, each iteration 

of processing in Pix4D required 6-12 hours during which the computer was otherwise 

unavailable. This meant that each parameter change effectively required a full day of processing. 

Most workflows for photogrammetry processing from UAS were developed in temperate and 

semi-open forests, so finding the optimal settings for dense tropical forests required a substantial 
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number of parameter changes. A 2016 MacBook Pro with an Intel i7 quad-core processor and 

16GB RAM, and a PC desktop with an Intel i7 six-core processor and 32GB RAM failed while 

processing the densified point cloud with the original image resolution and failed to generate the 

3D textured mesh at medium resolution. A computer designed for data processing and graphics 

intensive tasks would be recommended for future investigations, as currently available cloud 

computing services do not offer the parameter adjustment necessary to use these techniques. 

4.4.2 Canopy Structure & Interpolation Methods 

The results of the interpolation between canopy gaps technique were encouraging 

because the forest canopy coverage at Wasaunon is very high. Despite this, the structure of the 

treefall gaps allowed for ground points to be found. Because this is an intact old growth forest, 

there are large trees to clear the gaps necessary for this technique to be successful when they fall. 

It seems likely that a disturbed forest or an area of recent regrowth might not have enough gaps 

for this technique to work. Manually collecting the locations of canopy emergent trees from the 

ground is nearly impossible because the closed canopy obscures the tops of the trees. While this 

makes validation difficult, it also highlights the value of airborne LiDAR or UAS imagery to 

map this important habitat structure that cannot be measured from the ground. 

Collecting additional GPS points under the forest canopy would be necessary to fully 

assess the accuracy of the canopy height models from the interpolation methods. A combination 

of manual terrain point collection and interpolation from gaps could prove an ideal balance, 

particularly if areas that are far from gaps could be identified in advance and targeted for 

additional point collection. The sharp edges around a few of the canopy gap elevation points 

visible in the hillshade visualizations of the DTM indicate that these were likely not 

representative of the true terrain surface.  
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The averaging method used to automatically identify canopy gaps and canopy emergent 

trees appeared to overall be and effective technique, although it appears to be less accurate in 

areas of high structural variability. As seen in the lower left of Figures 11-13, the higher 

roughness areas mean that the average canopy height is lower which then would lead to a larger 

number of trees being identified as canopy emergent. Setting higher threshold values or using a 

larger moving window for height averaging could address this issue. The larger problem with 

this technique is that it is impossible to see the tops of canopy emergent trees from the ground to 

validate height measurements and canopy emergent status.  

 

4.5 Conclusions 

UAS can successfully be used to acquire far higher resolution imagery on demand 

quickly and less expensively than other sources, however, the wider utilization of UAS in 

ecology has been limited by many of the challenges encountered here. With effective 

preparation, aircraft selection, and mission planning, high resolution imagery can be collected in 

the most remote places on earth. It is understandable why many studies of forest structure from 

photogrammetry rely on LiDAR as a comparison because of the more regularly spaced ground 

returns. However, the need to map high resolution forest structure in areas where LiDAR data 

does not exist or is impractical to collect will continue to drive researchers towards using 

photogrammetry techniques.  

The different interpolation methods appear to generally represent the underlying terrain 

but it could be oversimplifying the terrain. This can be seen in Figure 14 where the linear 

patterns of ridges and valleys are seen in the canopy height model. While there may be 

differences in canopy height between ridges and valleys, these patterns could also be explained 
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by the interpolated terrain model oversimplifying the terrain. While a conservative threshold of 

13 m below the average canopy height was used for the automated gap detection it appears to 

overestimate the number of gaps, particularly in areas of higher slope. Without measurements of 

the terrain surface across the entire study area it is difficult to accurately assess the interpolation 

methods used in this analysis. The manually collected locations and canopy heights provide 

some comparison but the difference in technique and 14 year time difference between the data 

collection introduce uncertainties.  

Despite these uncertainties, this data will be essential in evaluating the altitude and 

location data from the redesigned collars deployed in 2018-2019. Because they record corrected 

barometric altitude, the height of the animal below the canopy surface can be known from the 

DSM, and the interpolated DTM will provide a lower boundary to know whether the animal was 

traveling on the ground. Additionally, because the altitude data is collected every minute, as 

opposed to the 4-hour intervals of the GPS locations, it could potentially even be used to 

constrain the probable movement pathways between measured GPS locations.  

This study proves that interpolation of terrain from canopy gaps is a feasible technique to 

create a DTM from which a CHM can be calculated, however further assessment of this 

technique in closed canopy forests with existing LiDAR coverage would be needed to assess the 

accuracy of this method. This understanding of the 3D forest structure at Wasaunon provides an 

ideal foundation to use the corrected barometric altitude data from the currently deployed GPS 

collars to understand the importance of forest structure for these elusive animals. 
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5 EVALUATING FOREST STRUCTURE PREFERENCES FROM GPS POINTS 

 
5.1 Connecting Location to Structure 

While manually locating animals using VHF collars provided the opportunity for 

researchers to collect habitat information in situ while taking the observation for each location, 

the vastly larger number of locations from GPS collars invites using remote sensing to measure 

habitat variables over even larger numbers of locations. While species composition of habitat is 

commonly investigated from available satellite data, our ability to assess forest structure on a 

landscape scale relies primarily on LiDAR (e.g. Chambers et al., 2007). For many species, the 

structure of a forest is important in determining their movement pathways, food resources, and 

shelter (Davies et al., 2017; McLean et al., 2016), but for some researchers, LiDAR data is not 

available or feasible. The synthesis of habitat structure data from UAS photogrammetry and 

habitat utilization from GPS points has the possibility to provide an effective tool to investigate 

habitat utilization that is far more accessible than LiDAR. 

Anecdotally, D. matschiei use different parts of the forest canopy depending on 

environmental conditions. During field tracking individuals were known to move quickly away 

from trackers on the ground or remain motionless in the canopy in response to human 

disturbance. During times of bad weather and high wind they are believed to remain lower in the 

shelter of the forest canopy, but when it is sunny, they move into the higher canopy to dry out 

and warm up (N. Wari, personal communication). Stabach (2008) found that D. matschiei were 

found in trees that were taller than the overall average (26.1 m) but suggested that accurately 

assessing the habitat preferences of D. matschiei has always proved to be challenging because it 

required assessing the forest structure manually. By combining the location and behavior from 

the GPS collars with complete forest structure data from aerial photogrammetry, the habitat 



 

 

  48 

characteristics of any point can be known without requiring in situ measurement allowing larger 

areas to be studied in higher resolution. 

 
5.2 Methods 

For this analysis, the number of separate visits (nsv) values from T-LoCoH were exported 

from R. Areas with a high number of separate visits can be interpreted as areas of importance to 

D. matschiei (Lyons et al, 2013). The raster values of habitat structure metrics of distance from 

canopy emergent trees, distance to manually and automatically identified canopy gaps, canopy 

height, and canopy roughness were extracted for each GPS location. The distance to emergent 

trees and/or gaps was used instead of whether they were inside or outside the polygon of an 

emergent tree or gap to account for potential GPS inaccuracies. The mean values of these points 

for each animal, and for all animals combined were compared to the overall average of that 

orthoimage to examine differences. The areal extent of the UAS orthoimage and DSM did not 

cover the entire areas used by MTK 2 and 3, therefore only the locations from those animals 

falling inside the area covered by the CHM were used. This resulted in a subset of 948 locations, 

or 70% of the total GPS points collected. One-tailed T-tests were conducted for all animals 

combined to assess the significance of correlation between locations and habitat variables. The 

hypothesized habitat preferences are that the distances between D. matschiei locations and 

canopy emergent trees would be lower than average, that distance to canopy gaps would be 

lower than average as GPS fixes are more likely in less dense canopy cover, and that canopy 

height and roughness would be higher than average. 

An assessment of the number of GPS locations contained within the polygons of 

automatically identified canopy gaps and emergent trees, and within buffers of 5, 10, and 15m 
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was conducted to assess the importance of these variables and potentially minimize the effects of 

inaccurate GPS locations on habitat correlations. 

5.3 Results & Discussion 

The general findings of this comparison support the hypothesis that some variables of 

canopy structure are important for the habitat utilization of D. matschiei. There appears to be no 

reliable trend in their distance from manually or automatically identified canopy gaps; the mean 

distance was lower using the automatically identified gaps and greater than the orthoimage using 

the manually identified gaps, and individual TKs had contrasting means (Figures 19 and 20; 

Table 4). The significance of correlation between tree-kangaroo locations and automatically 

generated canopy gaps is questionable since there is no significant correlation with manually 

identified gaps and the automatic method identified far higher numbers of gaps in some areas of 

the study site (Figure 11; Table 4).  The GPS-collared tree-kangaroos were most often located 

substantially (13.7 m) and significantly closer to canopy emergent trees than the mean (21.5 m) 

within the study area, especially MTK 1 and MTK 3 (Figure 21; Table 4).  MTK 2 did not show 

this trend clearly, but this may have been due to the few GPS points (58 of 376) located within 

the orthoimage compared to the other animals. Overall, 78% of the GPS positions located were 

within 15 m of the polygon defining an emergent tree (Table 5) and while the accuracy of the 

GPS positions is unknown, it seems probably that it is less than the 15m buffer used here. 

All tree-kangaroos were found at locations with slightly, but significantly, taller canopy 

heights (23.1 vs. 21.2 m averages; Figure 22; Table 4).  MTK 3 was found in areas with more 

than mean canopy roughness, but MTK 1 and 2 were observed in areas with average roughness 

(Figure 23; Table 4). There were no distinct patterns apparent between habitat variables and 

revisitation rate. An assessment of percentage of locations contained within buffers of different 
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distances from canopy emergent trees and from canopy gaps confirms the importance of 

emergent trees (Table 5). 

Further investigation should be made of the structural patterns within each animal’s home 

range and using different utilization metrics, however additional collared animals and complete 

areal coverage is needed. Statistical tests comparing the distributions (e.g. Kolmogorv-Smirnov) 

and ones designed specifically for spatial dataset instead of t-tests comparing the mean 

characteristics should also be explored. The fact that the CHM did not cover the entire areas 

traversed by the collared animals was disappointing, but provides opportunities for synthesis 

with future high-resolution height models or future aerial mapping flights over larger areas. 

 

 

Mean values MTK 1 MTK 2 MTK 3 All 
Locations 

Ortho-
image 

 

One 
tailed 
t-test 

P- 
Value 

Distance from 
manual 
canopy gaps 
(m) 

23.9  19.2  27.9  26.0 25.6  .99 0.32 

Distance from 
automatic 
canopy gaps 
(m) 

22.9 19.3 18.4 20.0 22.7 -6.39 2.47-10 

Distance from 
canopy 
emergent 
trees (m)  

18.8 21.5  9.8  13.7 21.5  -19.96 2.56-74 

Canopy 
height (m) 

22.1 22.9  23.6  23.1 21.2  6.80 1.82-11 

Roughness  2.6 2.6 3.5 3.1 2.6 8.08 1.95-15 
Count 329 58 561 948    

Table 4. Mean values of canopy structure for each tree-kangaroo compared to average values 
for the entire study area. T-test critical value of 1.96 for n-1 sample size. Bold values indicate 
significance lower than 0.01 p-value threshold. 
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Figure 19.  Distance from manual gap by revisitation rate. A) Scatterplot of distance from 
manually identified canopy gaps (in m) by the nsv value from T-LoCoH. The black dashed 
line shows the average distance from a manually identified canopy gap. B) Map of GPS collar 
locations and distance to manually identified canopy gap points in meters. 

A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 
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  A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 

Figure 20. Distance from automatic gap by revisitation rate. A) Scatterplot of distance from 
automatic canopy gaps (in m) by the nsv value from T-LoCoH. The black dashed line shows the 
average distance from an automatic gap. Note zero distance values are points within the polygon 
defining the automatic gap. B) Map of GPS collar locations and distance to automatically 
identified canopy gap points (in m). 
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  A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 

Figure 21. Distance from emergent trees by revisitation rate A) Scatterplot of distance from 
emergent trees (m) by the nsv value from T-LoCoH. The black dashed line shows the mean 
distance from a canopy emergent tree. Zero values are points within the polygon of the 
canopy emergent tree. B) GPS collar locations and distance to canopy emergent trees (in m). 
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Table 5. GPS locations within and near emergent trees and canopy gaps. Percentage of TK GPS 
locations that were located within a polygon of an automatically identified canopy emergent tree 
or canopy gap, as well as those locations within buffered distances of 5, 10, and 15 m from those 
polygons.  

% of GPS Locations Canopy Emergent Tree Canopy Gap 
Contained Within 2.0% 1.7% 
Within 5 m: 15.2% 7.3% 
Within 10 m: 43.1% 23.6% 
Within 15 m: 78.4% 44.3% 
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Figure 22. Canopy height by revisitation rate. A) Scatterplot of canopy height at GPS points 
from the ANUDEM interpolation CHM. The black dashed line shows the average canopy 
height across the study area. B) Map of GPS collar locations overlaid on ANUDEM CHM. 

A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 
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Figure 23. Canopy roughness by revisitation rate.  A) Scatterplot of canopy roughness by the 
nsv value from T-LoCoH. The black dashed line shows the average canopy roughness across 
the raster layer.  B) Map of GPS collar locations overlaid on roughness. 

A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 
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5.3 Conclusion  

These results support the hypothesis that the structural complexity of the forest, 

particularly canopy emergent trees and taller canopies are important to D. matschiei, and validate 

the results found by Stabach (2008) that D. matschiei are commonly found in trees that are taller 

than the forest canopy average. Further investigation in needed, however, to validate the 

accuracy of the structural metrics developed, expand the area covered by the UAS orthoimagery, 

and increase the sample size of GPS collared animals.  

The importance of habitat structural complexity is useful for conservation management 

and planning as the removal of structural complexity through selective logging or fires would 

negatively impact tree-kangaroo habitat. To provide sound management advice for local 

community landowners, further investigation of these patterns at different elevations and in 

different forest species compositions would be necessary.  

This analysis proves the viability of remotely interpreting canopy structure at animal GPS 

collar locations from UAS aerial imagery in closed canopy forests. While further evaluations and 

refinement of aspects of data collecting and processing are necessary, including additional 

ground sampling and validation and refinement of interpolation techniques, the techniques 

demonstrate here can provide a valuable framework to help answer challenging questions in 

similar habitats. Plans for continued refinement of these techniques are already in place and will 

be used to assess results from the 8 collars deployed in 2018-2019 and provides a better 

foundation for building on further investigations of 3D habitat utilization and movement. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

6.1 The Importance of Forest Structure for Tree-kangaroos 

 As an arboreal animal, forest structure provides the framework of where and how tree-

kangaroos move. The results of this study support the hypothesis that TK’s are not habitat 

generalists and had some locations (emergent canopy) frequently visited while grasslands were 

rarely traversed. Whether these patterns of movement are driven more by forest species 

composition or more by forest structure remains undetermined. The destruction of complex 

forest at higher elevations from climate change associated fires and frosts, and at lower 

elevations from population expansion and swidden agriculture poise substantial threats if indeed 

the complex structure of primary cloud forests is necessary for D. matschiei. 

Despite the low sample size, each individual animal exhibited interesting differences in 

movement pattern, velocity, and habitat use. D. matschiei appear to be very sensitive to the 

vertical structure of their habitat, with no evidence of them crossing forest clearings, which has 

significant implications however movement data were of insufficient resolution to see if they 

similarly avoid forest gaps. The far larger 100% MCP sizes from the VHF data than the GPS 

data add evidence to the argument that VHF data overestimates the area in which individual tree-

kangaroos are found due to sampling error or disturbance by trackers. 

While this project shows photogrammetric height reconstruction of closed canopy forest 

structure is possible, validation of forest height using LiDAR data would still be valuable. The 

NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR that deployed to 

the International Space Station successfully in December 2018 has the potential to provide forest 

canopy and terrain surface measurements at 60 m intervals, with a 500 m/pixel output. Combined 

with high resolution radar data such as TAN DEM-x (2 m/pixel) this may provide high 
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resolution accurate forest structure and biomass measurements in the tropics. (Qi & Dubayah, 

2016). Having very high-resolution 3D forest structure data from UAS could be used to increase 

the spatial resolution of the data provided by GEDI, while simultaneously providing a validation 

of the representativeness of GEDI data of localized forest types and structure. The rapid 

developments of powerful new tools in animal-attached remote sensing, Unmanned Aircraft 

Systems (UAS), satellite sensors, and computational methods indicate rapidly increasing new 

possibilities to understand the natural world.  

 

6.1.2 Animal-Attached Remote Sensing 

The GPS collars deployed during this study proved to be far more capable of collecting 

regular GPS locations in the dense forests at Wasaunon than previously deployed collars and 

collected far more location information than VHF tracking has provided. This deployment was 

an effective test of a new collar design and the lessons learned have been applied to the 

redesigned collars that were deployed October 2018 to April 2019. The temporally correlated 

nature of this location data requires new processing techniques which produce a higher 

resolution picture of the spatial and temporal use of habitat by D. matschiei. 

The experiences gained from this project have already been applied to a redesign of GPS 

collars for redeployment with the objective of implementing novel 3D movement and probability 

distribution for an arboreal organism. A number of other directions of investigation would be 

interesting including: integration of still cameras with motion and/or altitude triggers into the 

GPS collars to have the animals themselves photogrammetrically map the 3D structure of their 

habitat, broad deployment of motion triggered cameras in the forest canopy to observe 

movement patterns, collaring efforts with GPS in different forest types and across altitudinal 
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gradients where previous VHF studies proved to be too challenging, or the incorporation of small 

solar panels and the use of low power inertial sensors for GPS-corrected dead-reckoning 

modules to get continual motion and location pathways without the high power requirements of 

high frequency GPS tracking. Of all of those, the dead-reckoning technique combined with 

machine learning has the most potential in GPS limited environments such as tropical forests 

(Dewhirst et al., 2016), and has already begun to revolutionize animal movement research 

particularly in marine organisms. 

 

 6.1.3 Applications of UAS  

Despite the widespread espousal that UAS has the potential to revolutionize ecology, the 

logistical and technical challenges in deploying these systems in the field, particularly high-

altitude tropical cloud forests, remain high. However, the conclusions presented here represent 

the limits of the capabilities of inexpensive commercially available systems in 2018, and these 

technologies continue to advance rapidly in capability and ease of use. UAS mapping projects 

need to be planned with knowledge of aircraft system and environmental limitations. Terrain 

following is essential for both data collection (to maintain a consistent GSD, and avoid 

uncontrolled flight into terrain), and regulatory reasons (maintain legal flight altitudes). Off-the-

shelf solutions such as the DJI Mavic aircraft used here often prove to be insufficient for large 

areas because of radio-signal attenuation but can provide otherwise unobtainable data about the 

vertical structure of the forest.  

One of the challenges of UAS are their limited spatial coverage. While they can collect 

raster data at far higher resolution, the flight times of the longest duration multi-rotors are less 

than 30 minutes. Flying at 120 m AGL with 75% overlap, this results in a maximum area 
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covered per flight of about 80 ha. In the case of Wasaunon, it is possible to fly five or six 80 ha 

areas and cover sufficient areas to gather habitat information about the collared animals but this 

would not be sufficient when working with larger numbers of animals. Also, as this study found, 

2.4 GHz control radios are limited to ranges far shorter than their theoretical maximum because 

of the high radio attenuation in dense, wet forest canopies.  

The ideal UAS for this type of work would be a hand-launchable fixed wing capable of 

carrying a multispectral sensor with high accuracy DGPS image geotagging with flight times of 

~1 hour, and 1.2 GHz long range control and telemetry radios.  Fortunately, this aircraft has 

already been built and deployed during field research in October 2018 supported by the funding 

of a Conservation Technologies grant from the National Geographic Society.  The canopy 

structure data presented by this study is an ideal foundation to continue testing and validating 

new techniques in being able to understand forest habitat using UAS. 
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