17,343 research outputs found

    A Neural Model of Surface Perception: Lightness, Anchoring, and Filling-in

    Full text link
    This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.Air Force Office of Scientific Research (F49620-01-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-01-1-0624

    A Neuromorphic Model for Achromatic and Chromatic Surface Representation of Natural Images

    Full text link
    This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.Air Force Office of Scientific Research (F496201-01-1-0397); Defense Advanced Research Project and the Office of Naval Research (N00014-95-0409, N00014-01-1-0624

    Modelling, Measuring and Compensating Color Weak Vision

    Full text link
    We use methods from Riemann geometry to investigate transformations between the color spaces of color-normal and color weak observers. The two main applications are the simulation of the perception of a color weak observer for a color normal observer and the compensation of color images in a way that a color weak observer has approximately the same perception as a color normal observer. The metrics in the color spaces of interest are characterized with the help of ellipsoids defined by the just-noticable-differences between color which are measured with the help of color-matching experiments. The constructed mappings are isometries of Riemann spaces that preserve the perceived color-differences for both observers. Among the two approaches to build such an isometry, we introduce normal coordinates in Riemann spaces as a tool to construct a global color-weak compensation map. Compared to previously used methods this method is free from approximation errors due to local linearizations and it avoids the problem of shifting locations of the origin of the local coordinate system. We analyse the variations of the Riemann metrics for different observers obtained from new color matching experiments and describe three variations of the basic method. The performance of the methods is evaluated with the help of semantic differential (SD) tests.Comment: Full resolution color pictures are available from the author

    Colour appearance descriptors for image browsing and retrieval

    No full text
    In this paper, we focus on the development of whole-scene colour appearance descriptors for classification to be used in browsing applications. The descriptors can classify a whole-scene image into various categories of semantically-based colour appearance. Colour appearance is an important feature and has been extensively used in image-analysis, retrieval and classification. By using pre-existing global CIELAB colour histograms, firstly, we try to develop metrics for wholescene colour appearance: “colour strength”, “high/low lightness” and “multicoloured”. Secondly we propose methods using these metrics either alone or combined to classify whole-scene images into five categories of appearance: strong, pastel, dark, pale and multicoloured. Experiments show positive results and that the global colour histogram is actually useful and can be used for whole-scene colour appearance classification. We have also conducted a small-scale human evaluation test on whole-scene colour appearance. The results show, with suitable threshold settings, the proposed methods can describe the whole-scene colour appearance of images close to human classification. The descriptors were tested on thousands of images from various scenes: paintings, natural scenes, objects, photographs and documents. The colour appearance classifications are being integrated into an image browsing system which allows them to also be used to refine browsing

    Colour constancy using von Kries transformations: colour constancy "goes to the Lab"

    Get PDF
    Colour constancy algorithms aim at correcting colour towards a correct perception within scenes. To achieve this goal they estimate a white point (the illuminant's colour), and correct the scene for its in uence. In contrast, colour management performs on input images colour transformations according to a pre-established input pro le (ICC pro le) for the given con- stellation of input device (camera) and conditions (illumination situation). The latter case presents a much more analytic approach (it is not based on an estimation), and is based on solid colour science and current industry best practises, but it is rather in exible towards cases with altered conditions or capturing devices. The idea as outlined in this paper is to take up the idea of working on visually linearised and device independent CIE colour spaces as used in colour management, and to try to apply them in the eld of colour constancy. For this purpose two of the most well known colour constancy algorithms White Patch Retinex and Grey World Assumption have been ported to also work on colours in the CIE LAB colour space. Barnard's popular benchmarking set of imagery was corrected with the original imple- mentations as a reference and the modi ed algorithms. The results appeared to be promising, but they also revealed strengths and weaknesses

    Neural Dynamics of 3-D Surface Perception: Figure-Ground Separation and Lightness Perception

    Full text link
    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional (2-D) pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding ligures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodaly completed, while the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Munker-White, Benary cross, and checkerboard percepts.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657

    Laminar Cortical Dynamics of 3D Surface Perception: Stratification, transparency, and Neon Color Spreading

    Get PDF
    How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.Air Force Office of Naval Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624
    • …
    corecore