453 research outputs found

    Feature Learning in Image Hierarchies using Functional Maximal Correlation

    Full text link
    This paper proposes the Hierarchical Functional Maximal Correlation Algorithm (HFMCA), a hierarchical methodology that characterizes dependencies across two hierarchical levels in multiview systems. By framing view similarities as dependencies and ensuring contrastivity by imposing orthonormality, HFMCA achieves faster convergence and increased stability in self-supervised learning. HFMCA defines and measures dependencies within image hierarchies, from pixels and patches to full images. We find that the network topology for approximating orthonormal basis functions aligns with a vanilla CNN, enabling the decomposition of density ratios between neighboring layers of feature maps. This approach provides powerful interpretability, revealing the resemblance between supervision and self-supervision through the lens of internal representations

    Graph Neural Networks for Interpretable Tactile Sensing

    Get PDF

    Article Search Tool and Topic Classifier

    Get PDF
    This thesis focuses on 3 main tasks related to Document Recommendations. The first approach deals with applying existing techniques on Document Recommendations using Doc2Vec. A robust representation of the same is presented to understand how noise induced in the embedding space affects predictions of the recommendations. The next phase focuses on improving the above recommendations using a Topic Classifier. A Hierarchical Attention Network is employed for this purpose. In order to increase the accuracy of prediction, this work establishes a relation to embedding size of the words in the article. In the last phase, model-agnostic Explainable AI (XAI) techniques are implemented to prove the findings in this thesis. XAI techniques are also employed to show how we can fine tune model hyper-parameters for a black-box model

    Self-supervised text sentiment transfer with rationale predictions and pretrained transformers

    Get PDF
    Sentiment transfer involves changing the sentiment of a sentence, such as from a positive to negative sentiment, whilst maintaining the informational content. Whilst this challenge in the NLP research domain can be constructed as a translation problem, traditional sequence-to-sequence translation methods are inadequate due to the dearth of parallel corpora for sentiment transfer. Thus, sentiment transfer can be posed as an unsupervised learning problem where a model must learn to transfer from one sentiment to another in the absence of parallel sentences. Given that the sentiment of a sentence is often defined by a limited number of sentiment-specific words within the sentence, this problem can also be posed as a problem of identifying and altering sentiment-specific words as a means of transferring from one sentiment to another. In this dissertation we use a novel method of sentiment word identification from the interpretability literature called the method of rationales. This method identifies the words or phrases in a sentence that explain the ‘rationale' for a classifier's class prediction, in this case the sentiment of a sentence. This method is then compared against a baseline heuristic sentiment word identification method. We also experiment with a pretrained encoder-decoder Transformer model, known as BART, as a method for improving upon previous sentiment transfer results. This pretrained model is fine-tuned first in an unsupervised manner as a denoising autoencoder to reconstruct sentences where sentiment words have been masked out. This fine-tuned model then generates a parallel corpus which is used to further fine-tune the final stage of the model in a self-supervised manner. Results were compared against a baseline using automatic evaluations of accuracy and BLEU score as well as human evaluations of content preservation, sentiment accuracy and sentence fluency. The results of this dissertation show that both neural network and heuristic-based methods of sentiment word identification achieve similar results across models for similar levels of sentiment word removal for the Yelp dataset. However, the heuristic approach leads to improved results with the pretrained model on the Amazon dataset. We also find that using the pretrained Transformers model improves upon the results of using the baseline LSTM trained from scratch for the Yelp dataset for all automatic metrics. The pretrained BART model scores higher across all human-evaluated outputs for both datasets, which is likely due to its larger size and pretraining corpus. These results also show a similar trade-off between content preservation and sentiment transfer accuracy as in previous research, with more favourable results on the Yelp dataset relative to the baseline

    A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models

    Get PDF
    A skin lesion is a portion of skin that observes abnormal growth compared to other areas of the skin. The ISIC 2018 lesion dataset has seven classes. A miniature dataset version of it is also available with only two classes: malignant and benign. Malignant tumors are tumors that are cancerous, and benign tumors are non-cancerous. Malignant tumors have the ability to multiply and spread throughout the body at a much faster rate. The early detection of the cancerous skin lesion is crucial for the survival of the patient. Deep learning models and machine learning models play an essential role in the detection of skin lesions. Still, due to image occlusions and imbalanced datasets, the accuracies have been compromised so far. In this paper, we introduce an interpretable method for the non-invasive diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. The dataset used to train the classifier models contains balanced images of benign and malignant skin moles. Hand-crafted features are used to train the base models (logistic regression, SVM, random forest, KNN, and gradient boosting machine) of machine learning. The prediction of these base models was used to train level one model stacking using cross-validation on the training set. Deep learning models (MobileNet, Xception, ResNet50, ResNet50V2, and DenseNet121) were used for transfer learning, and were already pre-trained on ImageNet data. The classifier was evaluated for each model. The deep learning models were then ensembled with different combinations of models and assessed. Furthermore, shapely adaptive explanations are used to construct an interpretability approach that generates heatmaps to identify the parts of an image that are most suggestive of the illness. This allows dermatologists to understand the results of our model in a way that makes sense to them. For evaluation, we calculated the accuracy, F1-score, Cohen\u27s kappa, confusion matrix, and ROC curves and identified the best model for classifying skin lesions
    • …
    corecore