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Resumo

No paradigma atual de regulação e operação dos sistemas de energia existe uma grande de-
pendência de estimativas de diversos tipos de variáveis, tais como o preço da eletricidade - que é
altamente volátil -, a produção de fontes de energia renováveis, o consumo e muitas outras. Es-
pecificamente, a previsão de carga é abrangentemente utilizada pelas empresas fornecedoras de
energia para ajudar a prever a quantidade de energia necessária para fornecer num determinado
período. Esta previsão requer a identificação dos fatores que possam potencialmente influenciar
as grandezas a prever. Frequentemente, este impacto é dependente do contexto, como acontece
com a dependência do consumo face à temperatura. A temperatura tem um impacto não-linear
no consumo, porque, por exemplo, depende da época do ano. No verão, quando a temperatura
aumenta, o consumo aumenta, já no inverno, quando a temperatura diminui, o consumo também
aumenta.

Assim, o objetivo principal desta dissertação é a implementação de uma metodologia data-
driven (baseada nos dados) que permita caraterizar, de forma totalmente automática e sem dis-
cricionariedade nem apriorismos, a dependência do consumo face à temperatura. O sistema a
implementar deve, não apenas permitir interpretar a relação entre consumo e temperatura, como
também melhorar a qualidade da previsão. A principal técnica que será utilizada nesta imple-
mentação são os mecanismos de atenção quando aplicados a redes neuronais artificiais, e um dos
objectivos mais importantes deste trabalho é compreender o efeito desta técnica nos resultados
globais das previsões.

Para isso, primeiramente, foi feita uma revisão do estado da arte relativamente aos mecanis-
mos de atenção, à previsão de séries temporais e interpretabilidade dos modelos. A partir daí,
considerando as suas vantagens e desvantagens, foi selecionada uma arquitetura que possibilitou
o cálculo da atenção global de todas as variáveis e também o cálculo da matriz de atenção, o
que permitiu encontrar os períodos em que a atenção é maior e, dessa forma, inferir o efeito da
temperatura na carga.

Os resultados deste trabalho conduziram a várias conclusões interessantes relativamente ao
desempenho dos modelos baseados na atenção e, mais importante ainda, relativamente à influên-
cia da temperatura nos padrões de consumo no caso italiano, de onde foram retirados os dados.
Verificou-se que, com a inclusão da atenção, o desempenho dos modelos melhora, em geral, e,
além disso, no que respeita ao impacto da temperatura no consumo, verificou-se que a atenção é
maior em períodos de maior calor e, especialmente, quando estes apresentam grandes variações,
algo corroborado pela inclusão de duas novas variáveis no modelo relativas a estas condições.
Era também expetável um aumento da atenção em períodos de temperaturas muito baixas. Ou
seja, pode-se concluir que a atenção não foi capaz de detetar este caso, o que pode indicar uma
limitação. No entanto, isto pode ser justificado pelo facto de o sistema de aquecimento em Itália
depender fortemente do gás e, por isso, não ter o mesmo impacto que os sistemas de ar condi-
cionado durante os períodos de calor. Portanto, foi possível inferir que o consumo é mais sensível
a esses períodos, precisamente devido a essa elevada utilização de aparelhos de ar condicionado.
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Abstract

In the current paradigm of energy systems regulation and operation there is a very high depen-
dency on estimations of several types of variables, such as the price of electricity - which is highly
volatile -, the production of renewable energy sources, the demand and many others. Specifically,
load forecasting is widely used by energy-providing companies to help predict the demand of
power required to supply in a certain period. This forecasting requires the identification of the
main factors that may influence the variables that are needed to predict. More often than not, this
influence is dependent on the context, as it is the case with the variation of the load consumption
in relation to the temperature. Temperature has a non-linear effect regarding the consumption,
because, for example, it depends on the time of year. In the summer when the temperatures rise,
the demand also rises, however, in the winter, when the temperatures decrease, the demand also
rises.

So, the main purpose of this thesis is to implement a data-driven methodology that allows the
characterization, in a fully automatic fashion, of the dependency of the load consumption regarding
the temperature. This implementation should, not only make possible the interpretation of the
relation between consumption and temperature, but also improve the accuracy of the prediction.
The main technique that will be used in this implementation is attention mechanisms when applied
to artificial neural networks, and of the most important goals of this work is to understand the effect
of this technique on the overall results of the predictions.

For that, first of all, a revision was made on the state of the art regarding attention mechanisms,
time series forecasting and model interpretability. From that, considering its advantages and draw-
backs, an architecture was selected that made possible the calculation of the global attention of all
features and also the calculation of the attention matrix, which made it possible to find the periods
in which the attention is higher and, that way, inferring the effect of temperature on the load.

The results of this work have led to several interesting conclusions regarding the performance
of attention-based models and, more importantly, regarding the influence of temperature on con-
sumption patterns in the Italian case, from which the data were drawn. In particular, it was found
that with the inclusion of attention, the performance of the models generally improves and, in ad-
dition, regarding the impact of temperature on consumption, it was found that attention is higher
in periods of greater heat and specially when these present great variations, something corrobo-
rated by the inclusion of two new variables in the model concerning these conditions. It was also
expected an increase in attention in the initial part where there is a period of very low tempera-
tures. Meaning that it be can concluded that attention was not able to detect this case, which may
indicate a limitation. However, this can be justified by the fact that the heating system in Italy
relies heavily on gas and, therefore, does not have the same impact as the air conditioning systems
during periods of heat. It was therefore possible to infer that consumption is more sensitive to
such periods, for example, precisely due to that high use of air-conditioners.
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“It is very difficult to predict
— especially the future.”

Niels Bohr
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Chapter 1

Introduction

1.1 Motivation and goals

The influence of load forecasting in today’s energy production and generation cannot be over-

stated. It is used to plan the reinforcement and expansion of the grid, to estimate financial profits,

to better manage the demand, identifying the factors that have an effect on the consumption, to

program the operation and the maintenance of the grid, to study the inclusion of distributed gener-

ation in the grid, and many others. With that being said, it is of a great concern the maximization

of the quality of forecasts.

In the case of this thesis, there are two main goals. The first one is to get a better understanding

of the dependency of the power consumption regarding temperature. One of the main challenges,

and characteristics, of this problem is that this relation is highly dependent on the circumstances.

For example, the temperature has a non-linear effect on the power consumption, meaning, it de-

pends on the time of the year: In the summer, when the temperature rises, the demand also rises,

however, in the winter, when the temperature decreases, the demand is up again. Furthermore, it

also depends on the cumulative effect, for instance, four days of intense heat and high tempera-

tures in the summer causes an increase in the demand, which is not the same as having four days

of intense heat spread across a month. It may also depend on the thermal inertia of the buildings.

These are all possible deductions of the relationship between demand and temperature. The sec-

ond goal is to improve the performance of the forecasts. To help achieve these two goals the plan

is to implement a neural network-based model combined with an attention mechanism, which will

require the study of specialized bibliography concerning the theory and implementation of said

models and, if available, its characteristics when applied to field of load forecasting.

1.2 Dissertation structure

This document consists of five chapters.

The first chapter serves as an introduction, establishing the motivation and outlining the main

goals to be achieved by the end of this work.
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2 Introduction

In the second chapter, titled "State of the Art", a brief overview of load forecasting charac-

teristics and its various approaches is done. This is followed by an exploration of key theoretical

concepts around the development and functioning of attention mechanisms. A more focused anal-

ysis is then conducted on specific models that are pertinent to time series forecasting and contain

interpretability mechanisms.

Drawing on the investigation conducted in the second chapter, the third chapter explains the

main model employed throughout the work, as well as the treatment of the data used.

In the fourth chapter, the primary results of this work are presented. These include compar-

isons of the main model’s performance with other models using the same dataset; analysis of

global attention importance of all features, extracted from the model, and comparison to other

global feature importance methods; an in-depth analysis using the attention matrix, aiming to

discern periods of heightened attention and infer the effect of temperature on the load.

Lastly, the fifth chapter concludes this work by drawing together the main findings and sug-

gesting potential avenues for further analysis in future works.



Chapter 2

State of the art

This chapter presents a general description of the most common procedures, methods and

techniques used in the scope of load forecasting. After that, the purpose is to dive deeper in

how the attention mechanisms work and where they stand between all those previous techniques.

Finally an investigation on interpretability methods in time series forecasting is done.

2.1 Load forecasting time horizon

One of the first things that should be taken into consideration when building models for these

types of load forecasts is the time frame in which the predictions will be estimated. Usually, the

time scale can be divided in: Very Short Term Forecasting, Short Term Forecasting, Medium Term

Forecasting and Long Term Forecasting. Very short term typically means a span of a few minutes

to a few hours. Short term can go from several minutes to some days. Medium term generally

stands for forecasts that range from a few days to a few months. Finally, for a forecast that predicts

results within a range of months, quarters, semesters, or even years, the time frame is said to be

Long term [1]. In the case of this work, due to the nature of the meteorological predictions, which

usually present bigger errors for larger forecasting horizons, the time scale used will be short term,

otherwise, it’s not possible to include the prediction of the temperatures in a consistent way.

2.2 Short-term forecasting techniques

Short term load forecasts can be modeled according to several kinds of techniques, such as:

statistical methods, probabilistic methods, artificial intelligence-based methods, hybrid methods,

and others [1]. In the following sections some of these methods will be described, particularly the

artificial intelligence-based ones, since they are the main focus of this work.

3



4 State of the art

2.3 Statistical approaches

Statistical methods utilize a mathematical combination between historical demand data and

other variables, chronological ones and others regarding weather, to perform the forecasts. The

predominant techniques within the statistical methods are ARMA (AutoRegressive Moving Aver-

age) and ARIMA (AutoRegressive Integrated Moving Average) [1].

ARMA is commonly used in the realm of time series analysis and, as the name implies, it

combines the two basic models AR (Auto-Regressive), which depends on the past values of the

series, and MA (Moving Average), which depends on past errors. This technique doesn’t apply to

all time series, it requires time series that are stationarized, by, for example, a process of differ-

entiation. ARIMA models, on the other hand, already explicitly include this differentiation in its

formulation [1].

2.4 Artificial Intelligence vs Machine Learning vs Deep Learning

Before proceeding to more advanced stages of this work, it is of great interest to, first of all, in

a general way, introduce some of the fundamental notions in this field.

The term Artificial Intelligence (AI) was first introduced by Stanford Professor John McCarthy,

who defined it as

“ the science and engineering of making intelligent machines.” [2]

Although, initially, AI was created as way to solve complex, but straight-forward, mathe-

matical problems, the biggest challenge is now the creation of tools to help solve tasks that are

relatively easy for humans to do, but are hard to formulate, for example tasks that require intu-

ition and are instinctively solved by us, such as the recognition of certain elements in a picture.

These intelligent tools can be trained to perform a wide range of tasks, from recognizing patterns

to making decisions, and even engaging in natural conversations with humans [3]. In terms of

scientific research, these methods have been in applied in a number of fields, such as Statistics,

Pattern Recognition, Signal and Image Processing, Computer-aided Medical Diagnosis, Machine

Vision, Data Mining, etc [4].

It is known that a human being by gaining knowledge trough life is capable of making wiser

and more rightful decisions. Therefore, the biggest challenge for AI is to give machines this

ability to gain knowledge from something. So it emerged Machine Learning (ML), which is a

subgroup of AI that enables computers, by using algorithms and statistical models, to improve their

performance on a specific task trough experience, without explicit programming, which means

that these kinds of algorithms can learn from data by extracting patterns and even make subjective

decisions based on that data. This learning can be supervised and unsupervised. In supervised

learning, a model is trained based on labels, eventually attributed by humans, and the goal is to

label new unlabeled data based on the patterns of the input data. Consequently, in unsupervised

learning all the data is unlabeled and the goal is for the machine to make its own predictions by

discovering patterns by itself [4] [5].
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Deep Learning (DL) is itself a subset of ML in which Artificial Neural Networks (ANN) are

used to perform tasks by analyzing sets of data and finding complex patterns in them. It differs

from ML in the sense that the feature extraction of DL is much more automated and so it removes

even more of the human intervention, therefore making possible the use of even bigger sets of

data. These tools are used in several different areas such as: Language processing, computer

vision, speech recognition, and many others, influencing a large number of real-world situations

by solving or facilitating the solution of complex problems [4] [1].

Figure 2.1: AI, ML and DL[6]

2.5 Artificial Neural Networks

ANN are defined as computational models that try to emulate an animal’s central nervous sys-

tem and therefore given the ability to “learn”, in a broader sense. The building-block unit of these

networks are nodes, also called neurons, that, by being linked to each other, are capable of, after

processing the data locally, transmitting information across the neural network. This information

is transmitted by the linking of these neurons, the synapses, characterized by connection weights,

that represent the synaptic/association strength between neurons of the brain/system. By mod-

ifying these weights, with learning algorithms, networks acquire knowledge. In relation to the

neurons, there are some important formulas, 2.1 and 2.2 that can represent it [7] [3]:



6 State of the art

vK =
m

∑
j=0

ωK j(X j) (2.1)

yk = Φ(vK) (2.2)

In which:

• ωK j, represents the weight and specifies the importance of the X j signal in relation to the

neuron K;

• vK , represents the summation, by linear combination, of all input signals to determine the

output of the neuron K;

• Φ, represents the activation function where vK will be inserted into, resulting in the output,

yK .

There are a lot of different kinds of activation functions, and their importance should not be

taken lightly, since they have a major influence in calculating the inputs of the neurons. It’s impor-

tant to note that, if the activation function is nonlinear the neural network will be able to modelize

nonlinear systems. On the other hand, if the activation function is linear, the neural network will

only be able to simulate linear systems. Here are two of the main activation functions [7] [3]:

Sigmoid : (1+ e−x)−1 (2.3)

So f tmax : exi(
n

∑
j

ex j)−1 (2.4)

Although ANN proved to be very useful and enough for the majority of practical applications,

as it is, its simpler version, it has some limitations. One example of those limitations is the fact

that this kind of neural networks flow only one way, called Feedforward Neural Networks (FNN),

(as seen in Figure 2.2) and therefore are not capable of retaining information from previous states

which can be very pertinent to a big number of problems that require the processing of sequential

data. Covering some of those needs the Recurrent Neural Networks (RNN) were created.



2.6 Recurrent Neural Networks 7

Figure 2.2: Example of FNN architecture [8]

2.6 Recurrent Neural Networks

According to [9], RNNs are the most popular deep learning method when it comes to short

term load forecasting.

In RNNs hidden layers are created in order to feed its outputs to itself as seen in Figure 2.3,

thus creating a cycle in which inputs of certain neurons are influenced by previous outputs of those

same neurons.

Figure 2.3: Example of simple RNN structure [10]



8 State of the art

Analysing the simple representation of Figure 2.4 more carefully we can conclude that in each

time step (represented by (t−1), t and (t+1)) the result of the input neuron x is stored in a hidden

layer , h, and then propagated to the outputs, o. The hidden layer can be expressed by:

ht = f (ht−1,xt) (2.5)

In which a function f takes as arguments the input of the previous neuron stored in the hidden

neuron ht−1 and the input of the current neuron xt . U represents a weight matrix that does the

parametrization of the input to hidden connections, W is a weight matrix that does the parametriza-

tion of the hidden to hidden connections and V is a weight matrix that does the parametrization of

the hidden to output connections. L works as a loss function that is intended to be minimized in

regards to the training targets y, this is accomplished by L computing 2.9 (y
′
) and comparing it to

y. With b and c as bias vectors, all these previous relations can be represented by [3]:

at = b+Wht−1 +Uxt (2.6)

ht = tanh(at) (2.7)

ot = c+V ht (2.8)

y
′

= so f tmax(ot) (2.9)

Although RNNs are very useful and accurate for situations where the information needed is lo-

cated in time steps close to the current state, in practical terms, the further we go in a series the

lower the effectiveness is. This happens because when computing the loss value necessary to

obtain the gradients that will adjust the weights according to the change in the errors, since this

operation happens according to the previous layer, small gradients tend to become even smaller in

upcoming layers even if that information is of great relevance. Therefore, initial components tend

to lose influence even though they might be important, culminating in short-term memory. For

that reason, RNNs do not work as well in situations with large sets of data. This phenomenon is

called Vanishing gradient problem and more can be read about it, specially regarding its theoretical

aspect, in [11].
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Figure 2.4: RNN training representation [3]

To cover the previously stated problem several solutions were proposed. One of those solutions

was a variant of the RNN, known as Long Short Term Memory (LSTM) networks.

2.7 LSTM

According to [1], LSTM-RNN models present some of the lowest errors of all load forecasting

techniques currently being used.

LSTMs make long term memory more reliable, with the introduction of gates. These gates

dictate the passing of information, by controlling self loops and its weights in which the gradi-

ent flows, therefore making possible the dynamic change of the time scale of integration [3]. A

representation of an isolated cell of this type can be seen in Figure 2.5.
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Figure 2.5: Isolated cell representation [3]

In Figure 2.5 it can also be observed the so-called gates [3]:

• Forget Gate, as the name hints, is responsible for deciding what parts of information should

be "forgotten". It accomplishes that by using a sigmoid (σ ) which normalizes weights of

the self-loops to values between 0 and 1, meaning 0 the deletion and 1 the keeping of the

information as it stands. This proceeding can be expressed as stated in 2.10, where b is bias,

U is input weights, xt is the current input vector, W is recurrent weights and ht is the current

hidden layer vector.

ft = σ(b f +U f xt +Wf ht−1) (2.10)

• Input Gate is responsible for the decision of adding new data back into the cell, therefore,
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like the Forget Gate, it also uses a sigmoid:

gt = σ(bg +Ugxt +Wght−1) (2.11)

• Output Gate is responsible for deciding what information is important and to present it as

an output:

qt = σ(bo +Uoxt +Woht−1) (2.12)

Finally, it is possible to represent the output of one cell, ht , which is the result of the computing

of the cell state (2.13) in an activation function (in this case, the hyperbolic tangent) multiplied by

the output gate function (2.12):

st = ftst−1 +gtσ(bs +Usxt +Wsht−1) (2.13)

ht = tanh(st)qt (2.14)

For some types of models, mainly sequential ones, it is common to use an encoder-decoder

architecture (see chapter 2.8) in which inputs are passed to an RNN, functioning as the encoder,

and then a context vector, c, is created from the last hidden state of the encoder which in turn is

passed as an input to the decoder (Figure 2.6). In cases, though, where the input sets are consid-

erably large, some problems arise. Since the encoder has to compress all the required information

into just a vector some information may be lost. Additionally, the decoder needs to "decode" all

the information received, which is a complex function. With this necessity, Attention Mechanisms

were created [3].

Figure 2.6: Encoder-decoder representation [3]
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According to [9], LSTM-RNN based-models outperform the majority of other load forecasting

tools, such as ARIMA, support vector regression (SVR) and conventional ANN or feed-forward

neural networks (FNN).

2.8 Attention Mechanisms

To put it simply, attention mechanisms (AM) are techniques utilized within the scope of Deep

Learning, that look to imitate human attention. These mechanisms take a set of inputs and de-

termine which set of those inputs should be given more importance, reducing the less important

ones, purposefully concentrating on smaller but more relevant terms, giving them more “atten-

tion”, hence the term. The difference between the encoder-decoder architecture explained before-

hand and this new architecture with the implementation of an attention mechanisms is that without

the AM the decoder has to make predictions based only on the compressed information on vector

c, however, with "attention" the mechanisms look to all information inside the hidden states of the

encoder, at each time step, and then attributes values according to the importance of each one, and

only after that the decoder processes that information (Figure 2.7) [7] [12].

Figure 2.7: Encoder-decoder with Attention Mechanism [9]

The application of attention mechanisms can be implemented according to the next formu-

las [7] [9]:

Attt =
T

∑
j=1

αt jh j (2.15)
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αt j =
exp(et j)

∑
T
j′=1 exp(et j′ )

(2.16)

et j = so f tmax(st ,h j) (2.17)

Generally, attention mechanisms can be formulated as the taking of a vector of T arguments,

and the hidden state of the decoder, s, and then the returning of a vector output, the attention.

This attention is defined as a weighted summation of the T arguments, where weights are selected

for each individual element of the vector T, hi (hidden encoder unit), according to an alignment

function, or compatibility function, in this case so f tmax, which indicates the importance of each

element hi taking into consideration s [7] [3]. With that being said, this representation can be seen

in picture form in Figure 2.8.

Figure 2.8: Attention Mechanism in detail [3]

As concluded by [9], short term load forecasting problem, the inclusion of attention mecha-

nisms in RNNs proves to enhance greatly the performance compared to "state-of-the-art baselines

in both accuracy and efficiency", being instrumental in the accomplishment of said performances.

In [13], which was one of the first works "to show the power of neural network attention mech-

anisms in the domain of time series forecasts", the purpose was to predict the demand of certain

commodities over several stores in the United States of America. With the usage of attention

mechanisms it was possible the automatic incorporation of data from several external sources that

could be potentially important, like weather, holidays, and many kinds of events. In this case, a

baseline forecast was done and it was adjusted based on observations made related to the afore-

mentioned external data, having an interpretative additive consequence on the baseline, achieved

with the attention mechanisms. It was concluded that the utilized soft attention mechanism that

learns attention weights based on a classifier on top of the hidden representations achieved better

results than just the attention weights being based only on the input representation. This model

averaged almost 24% better performance with the incorporation of this external data.
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In [14], an attention mechanism employed into the encoder-decoder architecture of neural net-

works was used to model the time series forecast of the behaviour of temperature of an electric arc

furnace side-wall. With the historical behaviour of 49 variables the model was able to determine

which of the variables were important and proved to be a good tool to apply in any multivariable

problem to predict the behaviour of a given variable.

2.8.1 Multi-Head Attention

In 2017 [15] introduced a new architecture for translation tasks, called Trans f ormer, which

solely works based on attention mechanisms, specifically a new concept named Multi-head atten-

tion which, essentially, rather than having just one layer attention function running, has various

layers of attention running at the same time. The purpose of this is to have each "head" focusing

on information from various representational spaces at different locations, enabling the model to

do it simultaneously.

MultiHead(Attt) = Concat(head1, ...,headk)W O (2.18)

Where W O projects the concatenation of the k heads to the output space [16].

2.9 Interpretability

The primary challenge that prevails in most contemporary architectures is their ’black-box’

nature. The complexity of these models, due to nonlinear interactions between numerous parame-

ters, makes it challenging to understand how these models appraise their predictions. This inherent

opaqueness limits the trust users can place in these models’ outputs and impedes effective debug-

ging. Moreover, as the influence of the inputs on the output is not clear, the user cannot be sure if

the model would completely diverge for some specific inputs combination.

A promising direction is the adoption of inherently interpretable modeling approaches that

build feature selection directly into the architecture. However, since those kinds of architectures

are normally used in sequence-based problems, like translation or speech, different types of input

features are not considered in those problems, like they are in time series forecasting ones. That

means that the attention on those architectures is implemented sequence-wise, giving information

about the attention given to a certain timestep of a sequence, in which every sample/timestep will

have an attention value to all the other values of the sequence (including itself, hence the name

sel f − attention), instead of feature-wise, which means that it cannot distinguish the importance

given to different features at each timestep [17].

Attention mechanisms, while extensively used in language translation and other applications

like image classification and tabular learning, have been adapted recently for time series forecast-

ing. Attention-based methods have been leveraged to enhance the selection of relevant timesteps
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from historical data. Research such [18] has employed direct methods based on sequence-to-

sequence models, like LSTM encoders, to summarize past inputs. The authors introduced a multi-

modal attention mechanism with LSTM encoders to construct context vectors for a bi-directional

LSTM decoder, outperforming traditional LSTM-based iterative methods. However, the same

challenge of interpretability remains unresolved in such direct methods. Moreover, models such

as RETAIN [19] and "Attend and Diagnose" [20] have introduced attention-based mechanisms

to offer instance-specific interpretations. They offer the advantage of identifying salient portions

of input for each instance using the magnitude of attention weights. However, these approaches

still fall short of adequately considering static covariates due to blending variables at each in-

put, and they also fail to provide insights into global temporal dynamics. Another example is the

Interpretable Multi-Variable LSTM, which partitions the hidden state such that each variable con-

tributes uniquely to its own memory segment and weights these segments to determine variable

contributions. This approach represents a significant step towards enhancing model transparency

in time series forecasting, although much progress is still required [17].

In [17] the Temporal Fusion Transformer is introduced, which aims to provide better perfor-

mance and interpretability for multi-horizon time series forecasting by, for example, establishing

specific encoders for the problem of the static covariates, has a variable selection network to dis-

card irrelevant inputs and also temporal attention layers for long-term (temporal) relationships,

and many more particular nuances. Despite being so sophisticated, it may be overly complex for

certain tasks that do not require multivariate and multi-horizon forecasting.

For the specific case of this work, it might be preferable not to use such intricate, and exper-

imental, architectures and maybe stick to a simpler model that could facilitate the execution of

the model and thereby make possible a wider range of analysis specific to the temperature and

consumption. For example, by not using the sequence-based models and treating the problem as a

tabular learning one, it would be way more straightforward the extraction of the attention scores.

One example of this kind of model is [21] in which global and local, or instance-based, attention

scores are obtained. The global attention can determine the global importance/significance of all

features, while the local attention (calculated from the attention weight matrix) makes possible the

identification of specific conditions in the data in which the inputs acquire greater relevance.

Post-hoc explanation methods like SHAP (SHapley Additive exPlanations) are also heavily

used for determining feature importance in several machine learning and deep learning regression

and classification tasks [22]. SHAP makes use of shapley values([23]) and game theory to calcu-

late the contribution of each feature to the final predicted value. The shapley values assist on how

to fairly do that distribution. Specifically for deep learning models, SHAP takes advantage of the

DeepLIFT method [24] and the shapley values by taking the discrepancy between the predicted

value and the average prediction and backpropagating this value across the layers of the neural

network [25] [26] [27].
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Chapter 3

Methodology

In the forthcoming chapter, an in-depth exploration of the foundation of this research unfolds,

detailing the procedures, techniques, and models utilized throughout the study. The focus primar-

ily lies on the chosen data and the developed models. Insight is provided into the steps taken to

process and prepare the data, revealing the precautions undertaken to ensure its validity and rele-

vance. Furthermore, the analytical models used in the study are mentioned, especially describing

the model from which the attention scores were taken, including the rationale behind that choice.

The underlying principle of the model, its implementation, and its contribution to the study’s re-

sults and findings are also clarified. Ultimately, this chapter serves as a comprehensive guide to

the scientific methods and strategies that form the core of this research, emphasizing its robustness

and validity.

3.1 Utilized Models

This prediction involves the use of several features for the purpose of demand forecasting, such

as chronological and meteorological variables, for example. Based on the analysis of the previous

chapter, it is mentioned that most of the existing state-of-the-art technologies, like transformers,

utilize attention for sequence-based problems, which could be the case here. However, this type

of attention only allows for an inspection of the attention weights across the time steps of said

sequences and therefore are not completely suitable for the analysis to be carried out, which is the

study of the global impact of the different features in the prediction and, in particular, the effect

of temperature on the consumption. Other models, like the Temporal Fusion Transformer, use

other types of more intricate technologies relating to variable selection and temporal attention but

are extremely complex, more geared towards multi-horizon forecasting, and do not allow more

direct, easier, and repeatable experiments on the attention instances. For that reason, another

approach was needed and another type of attention had to be implemented, fundamentally just one

simple mechanism applied across the features sample-by-sample (instead of one applied across a

sequence of time steps). It is worth mentioning that the use of the previously mentioned sequence-

based models would most likely improve the quality of the predictions, however, a trade-off has

17
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to be done in order to get a simpler model that is able to provide a more direct look into the actual

feature importance and that further allows to make a more in-depth analysis for this case study,

the impact of temperature. The goal is to extract from the model an importance score for each

feature. Generally, these scores range from 0, which means no importance at all, to 1, which

means heavily important, and the sum of all scores has to be 1. After that, it is viable to delete or

change variables that are deemed unimportant and keep the significant ones unchanged. By doing

this, the results of the predictions should improve, the model should work in a more efficient way,

with less computational complexity, and the interpretability should be easier to do. With that being

said, the main model utilized in this work for the acquisition of attention scores is described below.

Firstly, The inputs x are fed into the Multi-head Attention part of the network. For each

attention head, called k, the inputs will be passed through a fully connected layer with input and

output sample sizes equal to the input size (that is the number of features, with the purpose of

trying to keep relations between features) suffering a linear transformation, therefore each of those

heads will have its set of weights and biases. The resulting matrices of the previous operation will

go through a so f tmax function and the results will be multiplied, using the Hadamard product,

⊗, by the input, x. After that, all the matrices, representing each head, will be added together,

using the Hadamard summation, ⊕, and then the cumulative sum is divided by the number of

heads, getting an average of the values of all heads. The idea behind this is that each head has its

own weights and biases, which are learned independently, and this results in a form of ensemble

learning where each head should learn a different feature representation, and all are aggregated to

give a final output. This means that each head can learn to pay attention to different parts of the

input, giving the model the ability to focus on multiple aspects of the data at the same time and

also learn and combine different types of relationships. This attention part can be represented by:

AttL(X) =
1
k
⊕k[X⊗so f tmax(W k

atthX +bk
atth)] (3.1)

In which:

• X , represents the input space

• W k
atth , represents the weight matrix of the attention layer for attention head k

• bk
atth , represents the bias vector of the attention layer for attention head k

After the attention component, the model is then passed through a fully connected layer, with a

particular hidden size, then through a dropout layer, for regularization, then through an activation

function, and finally by another dense layer which will output the final vector containing the

predictions. The following diagram, Figure 3.1, aims to represent the general structure of the

model.
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Figure 3.1: Representation of the structure of the model

With that said, the output of the model is calculated by:

Fc2 = WFc2 · (a(WFc1 ·AttL(X)+bFc1))+bFc2 (3.2)

Where:

• AttL, represents the attention layer

• WFc2 , represents the weight matrix of the last hidden layer

• WFc1 , represents the weight matrix of the second to last fully connected layer

• bFc2 , represents the bias vector of the last hidden layer

• bFc1 , represents the bias vector of the second to last fully connected layer

• a, represents the activation function

After considering several functions for the activation function, such as Sigmoid, ReLU , SELU ,

and swish, the choice eventually fell on the Sigmoid function, because it seemed slightly better in

terms of the convergence of the models for this specific case [28].

In regard to the actual calculation of the feature importance, through the attention scores, two

methods were utilized:

The first, and most obvious one, is simply to, by looking at the mathematical expression 3.1,

factor out the X , which can be done since all the mathematical operations implemented are linear

transformations, and take out the remaining component, the attention matrix. This is represented

in 3.3. This method will return the attention matrix regarding each input for all training examples,

and the analysis of specific training cases (e.g. cases where the temperature is very high) allows

the highlighting of the attention of certain conditions.

Att =
1
k
⊕k[so f tmax(W k

atthX +bk
atth)] (3.3)
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The general implementation of this model was loosely inspired on [21], however, the following

method of calculating global attention was actually taken in its entirety from the previously cited

paper. This method takes, for each head, the diagonal of the respective weight matrix, applies a

so f tmax function to it, which turns it into an activated diagonal, stacks all the activated diagonals

into a matrix, and then simply calculates the (global) average along the columns, and, by doing so,

returns the global mean attention scores of each feature. This can be represented by:

MGA =
1
k
⊕k[so f tmax(diag(W k

atth))] (3.4)

In order to assess if the actual results of the predictions of the previous model are acceptable,

other different models were tested on the same data and comparisons will be made, in the next

chapter, between those models. This is particularly interesting to understand how the model ex-

plained in this section actually ranks among other models, specially sequence-based ones. In order

to make it easier to refer to the different models they have been labeled as follows:

• Model 1, the model explained in this section

• Model 2, similar to Model 1, but without the attention mechanism

• Model 3, a vanilla LSTM model with just two layers

• Model 4, a single layer LSTM layer followed by a traditional multi-head attention layer

(applied to the sequences)

• Model 5, model utilizing XGBoost (eXtreme Gradient Boosting) Reggressor, which is

based on gradient boosted trees algorithms [29] [30]

3.1.1 Hyperparameter tuning

For the purpose of keeping this work focused and concise, this subsection will only explain

the chosen hyperparameters of Model 1, and also because this is the main model utilized in the

analysis of the results. For the other models, the procedure is very similar.

Firstly, since this work was all done on a personal laptop, and not with the external help of

more powerful hardware, the hyperparameters were chosen on a trade-off relationship between

performance and computational cost (and therefore execution time).

In terms of hyperparameters directly related to the model itself, for the number of hidden neu-

rons, it was observed that, as expected, the bigger the number of neurons, the higher the execution

time of a single epoch. The improvement in actual prediction results was not substantial in order to

require a high number of hidden neurons, therefore, the chosen number was the standard amount

of 32. For the number of attention heads, on the other hand, a small increase would make a huge

difference in execution time and the prediction results would improve quite a bit. With that being

said, after several experiments, the chosen number of attention heads was 8.
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Regarding the hyperparameters related to the training, the obvious choice for the error criterion

of the loss function is the MSE, which measures the mean squared error, for each input, regarding

the target. Those will be the values later verified in the plots of the training and validation errors.

Adam was the chosen optimization algorithm for gradient descent in training, since it is widely

used in the context of regression problems. Due to the large size of the utilized dataset, there

was a need to divide the dataset into batches, in order to get a lower execution time of the model.

The size of the batch is quite important in the convergence of the model, decreasing or increasing

this value will impact the execution time of the training and validation processes. For this model,

it was used a batch size of 64, a standard size for deep learning models. Something that also

has quite a big impact on the convergence of the models is the learning rate, which is usually

adjusted conjointly with the batch size. In order to obtain a first estimate of this value, a function

of Pytorch−Lightning was used [31]. The estimate returned by this algorithm was around 0.01,

as seen in Figure 3.2.

Figure 3.2: Representation of the results of the algorithm that finds good initial estimations for the
learning rate

It’s worth noting that during the model training process, an early stopping checkpoint was

introduced to prevent overfitting and excessive training time. This checkpoint continually saves

the best model - defined as the one with the lowest validation error - throughout the training.

Training stops if, after a designated number of epochs, no improved model is found. This strategy

assumes that if, for instance, no superior model emerges after 50 epochs, it’s likely that none will

be found in further training. This can be seen in Figure 4.1.
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3.2 Evaluation metrics

To assess the performance of each model in the test dataset three types of errors were con-

sidered, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute

Percentage Error (MAPE) [1]. Each of those errors is calculated by:

MAE =
1
n

n

∑
i=1

|Actuali −Predictedi| (3.5)

RMSE =

√
n

∑
i=1

(Predictedi −Actuali)2

n
(3.6)

MAPE =
1
n

n

∑
i=1

|Actuali −Predictedi

Actuali
| (3.7)

3.3 Brief overview of the data

The data used in this work relate to energy consumption in Italy, obtained over a period of

about 5 years. These data are organized on an hourly basis, meaning each consumption value

corresponds to one hour. It is worth mentioning that the data contains very few occasional gaps,

which should not pose a problem at all due to the large size of the dataset, and it was made sure

that all days had full 24 hours, so the missing data are just a small amount of days across the set.

Figure 3.3 presents the evolution of said consumption throughout the whole dataset. Although not

represented in the plots, all the consumption values throughout this work are in MW (Megawatt).

A decision was made to perform the forecasts 48 hours into the future, therefore for the fol-

lowing two days, which lands on the "short-term forecasting" time frame described in chapter 2.

Figure 3.3: Energy consumption across the entire dataset
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Due to the nature of this type of load forecasting, and due to the characteristics of model 1

described in chapter 3.1, several kinds of variables are needed. First, chronological variables, such

as hour, day of the week, and month. The idea behind the use of these types of variables is to try

to capture the different patterns, or seasonality, of the demand over time, for example, the fact that

on certain days of the week, such as weekends, the consumption is usually lower, or that at certain

hours of the day, like dawn there is little consumption, as opposed to other sections of the day.

Chronological values can help identify that. Moreover, to try to capture odd periods of the year,

for example, national holidays, which can introduce irregularities in the consumption patterns (if

a holiday occurs on a weekday, it may disturb the results of the predictions, since on normal

weekdays the demand is usually different than on holidays), binary variables were introduced,

named from A to E, representing national holidays and other types of unusual days, with the

intention of trying to help the model identify those cases. As previously mentioned, one of the

main objectives of this work is to study the influence of temperature on consumption so, of course,

temperature was introduced as a variable, making it the only meteorological variable used. Apart

from those, as was mentioned in section 3.1, the traits of model 1 do not allow the use of sequences,

like in the traditional models used for natural language processing, for example. Because of this,

it is of great importance the use of lagged inputs, which are essentially features with built-in delay.

Since this is a load forecasting problem, several lagged features of consumption were added, such

as consumption from the previous four days, the previous week, the previous two weeks, and the

previous three weeks.

Figure 3.4: Evolution of the temperature across the entire dataset

Figure 3.4 shows the evolution of the temperature along the dataset, starting from 2012 up

until 2017 as seen in the x-axis, with a clear definition of different periods of heat, representing

the different seasons. Although not represented in the plots, all the temperature values throughout

this work are in degrees Celsius.
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As mentioned, the temperature will be especially relevant in this work, so it is of great interest

to assure that its values follow a normal progression, as is the case.

3.4 Feature creation

With the notions explained in the previous section in mind, the input features of the model

were established. Starting off with a particular case, the chronological variables do need special

concern when considered in the model. These variables are only sequences of numbers repeated

several times across the dataset, for instance, the hour of the day is the numbers 0 through 23

replicated multiple times along the data, the same for the days of the week with numbers 1 through

7 (where 1 represents Sunday and 7 represents Saturday) and the same for the month of the year

with numbers 1 through 12 (where 1 represents January and 12 represents December). However,

if those variables were fed into the model as they are, some considerable oversights would be

overlooked. For example, when feeding the model with the hours of the day, the 0-hour value and

the 23-hour value are far from each other, so that could provide wrong information to the model, in

fact saying that those values have a -22 hour difference, instead of just 1-hour difference, as known.

To resolve that issue, cyclical variables were created. As the name suggests, this type of variable

is specific for features that repeat cyclically. With that being said, the following expressions were

applied to all the chronological variables used, day of the week, hour of the day, and month of the

year, to transform them into cyclical variables:

x = sin(
f ∗2π

max( f )
) (3.8)

y = cos(
f ∗2π

max( f )
) (3.9)

Which, for instance, for the hour of the day translates into:

hoursin = sin(
f ∗2π

24
) (3.10)

hourcos = cos(
f ∗2π

24
) (3.11)

The evolution of both types of variables and the differences between them can be seen in

Figure 3.5
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Figure 3.5: Difference between cyclical and non-cyclical variables

It was also necessary to do a general normalization of the features, to ensure they are all on the

same scale, especially because of the way Pytorch works, otherwise the network would produce

very poor results. Two normalization methods were tried, min-max scaling and standardization

(also called z-score standardization), with the standardization method presenting better results.

This method, essentially, makes sure the mean of the feature is zero and scales it to unit standard

deviation. For this, the mean, µ , is subtracted from each element, x, and the results get divided by

the standard deviation, σ , resulting in z represented in 3.12 [32].

z =
x−µ

σ
(3.12)

To recap, the variables used in the model were: the sine component of cyclical variables

relating to the hour/day of the week/month, the cosine component of cyclical variables relating to

the hour/day of the week/month, "A,B,C,D,E" binary variables, temperature and the consumptions

with lags of 48/96/168/336/504 hours.

The last thing to mention is the division of the dataset into other datasets with different pur-

poses. From the original dataset were created three other datasets: the training dataset, the valida-

tion dataset, and the test dataset. The training dataset was reserved for the training of the model,

the validation dataset served as a tool to better tune the hyperparameters of the models, and the

test dataset was where the actual predictions of the models were done. Regarding the split of the

datasets, 70% was reserved for training, leaving the remaining 30% for the other two datasets,

which were divided evenly, so 15% of the entire dataset for each of the validation and test datasets

(Figure 3.6). This proportion is common for ML problems and ensures each dataset does what it

has to do.
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Figure 3.6: Split of the training, validation and test datasets

In Figure 3.7 there is a representation of the evolution of the consumption across the three

datasets. Due to the split previously explained, the training dataset contains data for the first three

years, approximately, the validation dataset contains the data corresponding to around the follow-

ing eight months and the test dataset contains roughly the next eight months. This is, probably,

not ideal, since the last two datasets do not take in a full year but, as seen in the Figure, they

do incorporate substantial information, including vacation periods of lower consumption, namely

holidays (August) and the transition from one year to another (end of December and beginning of

January).

Figure 3.7: Evolution of the consumption across the three datasets

3.5 Overview of main studies

The main studies to be carried out in the next section are:

• Set a load forecasting model with attention mechanisms;
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• Set a load forecasting model without attention mechanisms, to confirm if the attention mech-

anisms deteriorate the performance. Compare them with other architectures;

• Compute the global attention, to estimate the significance of the inputs. Compare it with

other methods of calculating global importance;

• Compute the attention weight matrix, aiming to find the periods in which the attention is

higher and, that way, inferring the effect of temperature on the load.
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Chapter 4

Results

In this chapter are presented the main results obtained from the techniques listed in the pre-

vious chapter, regarding the predictions, and the analysis of the attention weights to interpret and

understand the contribution and significance of various features, with a particular emphasis on

temperature.

This section is divided into two main parts. In the first part, an analysis and comparison on the

performances of all models, mainly focusing on their prediction errors, namely the RMSE and the

MAPE, will be made.

In the second part, the first analysis that will be made is a global examination of the impact of

all features in the output, i.e., the predictions, of the model. The main focus will be, obviously,

to understand the importance that is attributed by the attention weights to each feature. Then,

as alternatives, some more popular techniques, such as SHAP, will be used to determine the im-

portance of all features and to understand if, in any way, it corresponds to the ones attributed by

the attention mechanisms. After that, a thorough investigation of the impact of a specific feature,

temperature, on energy consumption will be done. The aim is to explore a potential correlation

between the attention weights assigned to the temperature feature and the actual values of energy

consumption. Ideally, this should provide insights into how closely the model associates tempera-

ture with energy consumption. Furthermore, the plan is also to visualize the changes in attention

weights for the temperature feature over time and its relationship with the actual temperatures and

if they align at all. This time frame could be hourly, daily, or even monthly. This visualization

will provide a better understanding on how the model’s importance on temperature fluctuates at

different stages of the time series. For example, it could determine if the model pays more atten-

tion to temperature during certain hours, months, or under specific conditions such as high or low

temperatures.

4.1 Comparison of the predictions of all models

The obtained results with the proposed models can be seen in Table 4.1. The first major

conclusion that can be inferred is that the models including attention present better results in terms
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of prediction of the test dataset because they have the lowest overall errors.

Table 4.1: Overall results of the models

Model MAE RMSE MAPE
1 834.43 1173.3 5.113%
2 896.20 1235.3 5.474%
3 822.01 1163.3 5.080%
4 803,83 1148.0 5.009%
5 839.35 1189.6 5.121%

In Figure 4.1 it is possible to observe the validation and training errors (namely the MSE) of

the model that obtained the best test results. As expected, the validation error ends up higher than

the training error, and, after stabilizing, starts to improve a bit.

Figure 4.1: Training and validation errors along the epochs

The models with attention produce better results than the models without it, which most likely

means that, as hoped, the inclusion of the attention mechanisms does not degrade the performance

of the models and, in fact, seems like it is working relatively well on selecting/attending to the

most important variables (or time steps). Model 2 is the worse performer, which is to be expected

because it only consists of a simple neural network with two layers. Model 1, with the inclusion

of attention, performed much better than model 2 and slightly better than the gradient-boosting

trees, model 5, but still lost to the LSTM model, model 2. The better performer was model 4,

which is an LSTM with the inclusion of the multi-head attention. This means, as talked about in

previous sections of this work, the sequence-based models do work better for this type of problem,

however, are not as easily interpretable as others.

A comparison between the real values of energy consumption of the test dataset and the ob-

tained values with the prediction of model 1 can be seen in Figure 4.2. It’s observable that the

model captures relatively well seasonality and a lot of the patterns, although, as expected, misses

some valleys and peaks.
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Figure 4.2: Predictions vs real values of consumption

4.2 Comparison of the global importance of all features

Regarding the global attention of all features, the model can return two types of results as

described in the previous chapter. Starting with the global mean attention scores (3.4), it shows

that the model does indeed attribute the biggest attention value to the temperature feature which

is followed by the energy consumption 48 hours before, which makes total sense since the idea is

to predict the consumption 48 hours in the future, and by the consumption variables of previous

days/weeks. Next are the chronological variables which have similar importance, and then are

the special binary variables corresponding to special days of the calendar. This is represented in

Figure 4.3.

Figure 4.3: Global attention taken from 3.4

Regarding the other type of attention (3.3) the results are somewhat different. As seen in

Figure 4.4, this time the most important feature, is considered to be the days of the week, which,
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it appears that in this case this feature was considered very important for establishing the weekly

patterns of consumption, and contrary to what happened with the previous analysis the other two

chronological variables, months and hours, do not have the same importance as this one. However,

this might not always be the case for every situation, especially because hours cannot be considered

much less important. The second more important variable, however, is still the consumption forty-

eight hours earlier, which, as formerly been said, is expected because the prediction is made for

two days in the future; so, this is the consumption instance that is closer to the consumption to be

forecasted. Moreover, the next variables in order of importance are the consumptions in previous

days/weeks which is congruent with the previous attention analysis. The temperature is the next

variable in terms of importance, in line with variables representing the more distant consumptions

and some of the binary variables, depicted by “A,B,C,D,E".

Figure 4.4: Global attention taken from 3.3

Comparing both results, the biggest difference is the importance attributed to the temperature

feature, which is specially concerning since this is the specific variable that is meant to be studied

in a more detailed way by taking advantage of the attention matrix returned by the model. This can

be explained by the fact that the method depicted in Figure 4.3 calculates the attention globally

only by looking at the weight matrices of the attention layer, and the method of Figure 4.4 actu-

ally takes in data and attributes the attention scores of each feature for every instance depending

directly on the data that was fed into it.

Another factor that could be influencing the scores returned by the two methods is the fact

that the considered variables are not entirely independent, in fact, it is quite the opposite, some

variables are closely related to each other, as seen in the general correlation matrix of Figure 4.5,

where 1 means extreme positive correlation and -1 means extreme negative correlation. Since

the weights are randomly initialized the training process can attribute a bigger weight for P(h-

168) in one test but in another test it can do it for P(h-336) instead, and so the attention could

be influenced the same way. Other tests could be done by just considering variables that are

close to being independent, selecting them by looking at the matrix, however that set of variables,
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although potentially resulting in interesting results of the attention scores, may very well lead

to worse performance results. This can mean that the use of attention can introduce a trade-off

problem between performance and coherent interpretability attention scores.

Figure 4.5: Global variable correlation

To try to get a better understanding of the global attention results and a certain validation of

the results previously obtained, other variable importance methods were applied to this model,

such as SHAP, and since model 5, the gradient boosted trees, also presented interesting results an

analysis was also made on the scores attributed by that model by ways of permutation importance.

The attained results for feature importance are represented in Figures 4.6 and 4.7.
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Figure 4.6: Global importances attributed by the shapley values

The Shapley value results indicate that several features play a significant role in the model.

In particular, the P(h-48) feature has a high level of importance, followed closely by the ’day of

the week’ and ’temperature’. After these, a combination of chronological features and lagged

consumptions are influential. The features with the least impact according to the Shapley values

are the binary variables.

Figure 4.7: Global importances attributed by the permutation algorithm

Regarding the results attained from the permutation algorithm, P(h-48) was no longer the most

important consumption variable, that title belonging now to P(h-168) and P(h-504), being the first

one the most important overall. Surprisingly, one of the binary variables was the fourth most

important variable, followed by the days of the week and only after those came the temperature,

which was followed by the remaining consumption, chronological and binary values. It is worth
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mentioning that the permutation importance algorithm works by selecting values for each feature

based on the performance drop if one feature was shuffled, meaning the worse the performance

degradation the more important that variable would be for the prediction of the model [33] [30].

Across the four results, the variable regarding consumption in the previous forty-eight hours

is one of the most important, for the previously explained reasons. Hour and, specially, day of the

week are also very important and the most important among the chronological variables. All the

other time-lagged consumptions are moderately-to-very important and, as expected, the special

“ABCDE” variables are the least important in the aggregate of the four methods. The most inco-

herent result across the four methods is the importance regarding temperature, which interestingly

enough is exactly the variable that is of most interest for this work, because, although two of the

methods attribute very high importance to the temperature, the other two methods consider it to be

not so important, which is particularly upsetting because is based on the importance attained from

one of those methods that the next more in-depth analysis about the attention weights regarding

temperature will be made.

It should be noted that these metrics relate to global values spread out across the entire data,

and are all calculated in different ways. In this dissertation, the main interest lies in the analysis

of the relative attention given in certain circumstances. For example, it may be that temperature

does not have a very relevant effect in general, but there could be specific conditions under which

it does. It may, for example, be more important when the temperature has large variations. As

mentioned, another point to note is that there are several methods of estimating attention, and

even more of estimating importance, using different criteria, which can lead to different results.

However, the large difference between results is not reassuring and leaves the impression that this

concept of attention has not yet reached its maturity.

4.3 In-depth analysis of temperature using the attention matrix

In analyzing the attention weight matrix, the initial step involves seeking a correlation between

the attention weights for temperature and the temperature itself. Figure 4.8 overlays the actual

temperature with the attention weights for temperature, derived from the attention weight matrix.

It is readily apparent that high real temperatures (in red) correspond to high attention weights,

while lower temperatures result in attention weights close to 0.

However, this hourly analysis, where the x-axis represents time in hours, only captures a rudi-

mentary correlation and falls short for a more comprehensive investigation. Therefore, it is helpful

to visualize the same graph on a daily basis instead of hourly. This new representation is displayed

in Figure 4.9.
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Figure 4.8: Actual temperature vs. Attention weights for temperature (hour by hour)

The graphs below provide a more detailed view of how attention weights change on a day-

by-day basis. It continues to support the observation that the attention weights and temperature

appear to be correlated – when the temperature increases, the attention weights also increase, and

vice versa. From these new plots, the days in which the highest, and lowest, attention values occur

are more explicit, for example, around the 19th of June 2013 (Figure 4.10) depicted in the data is

when the highest peak of attention takes place, and that peak makes up for more than one-third of

the whole attention in that specific instance, meaning that the other sixteen features only get less

than two-thirds of the whole attention, most likely meaning that temperature is one of the, if not

the, most important feature in that occurrence. It was also expected an increase in attention in the

initial part where there is a period of very low temperatures.

Figure 4.9: Daily temperature vs attention weights for temperature
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In addition to the general tendency to have higher attention for higher temperatures, the graph

also seems to show that attention is higher when there are large variations in temperature and the

temperature is high.

Figure 4.10: Zoom in on of one the highest peaks of attention

Figure 4.11 also shows that the attention peaks match the consumption peaks, which means

that in those circumstances the temperature has a determining effect. The higher attention for large

variations is also apparent. As previously stated, it was also expected an increase in attention in

the initial part where there is a period of very low temperatures. Meaning that it be can concluded

that attention was not able to detect this case, which may indicate a limitation. However, this can

be justified by the fact that the heating system in Italy relies heavily on gas and, therefore, does

not have the same impact as the air conditioning systems during periods of heat.

Figure 4.11: Daily consumption vs attention weights for temperature
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However, it is worth noting that although the visual inspection of Figures 4.8 and 4.9 might

suggest correlation, it does not establish a statistically significant relationship. For that purpose, a

formal statistical test was done, Pearson’s correlation. With the Pearson’s correlation coefficient

is it possible to obtain a numerical value that indicates the linear relationship between two sets.

The calculation of the coefficient translates the strength and direct association that exists between

two continuous variables. This coefficient ranges between -1 and 1 in which -1 means the data

is perfectly negatively correlated, 0 means no correlation at all and 1 means perfectly positive

correlation. Besides the coefficient, Pearson’s correlation also has another characteristic value,

known as p-value which can be used to determine the statistical significance of the correlation. A

lower p-value (<0.05) means the correlation is statistically significant [34] [35].

A Pearson correlation of 0.624 was obtained from the analysis as well as a null p-value. The

obtained p-value means that the observed correlation (i.e., the correlation coefficient) is statisti-

cally significant. The Pearson correlation coefficient value obtained suggests a moderate positive

correlation between the temperature and the attention weights. This means that as the temperature

values increase, the attention weights also tend to increase, and vice versa. This positive correla-

tion is in line with the visual analysis done earlier, where it was observed that higher temperatures

seemed to correspond with higher attention weights.

To further confirm the correlation between the two variables and the obtained Pearson coef-

ficient, a scatter diagram based on the two variables was plotted (Figure 4.12). From the scatter

plot, it looks like there is a general trend where attention weights increase as temperature increases,

which aligns with the positive Pearson correlation coefficient of 0.624 obtained. This, as previ-

ously stated, indicates that there is a moderate positive linear relationship between temperature

and attention weights. However, it can also be seen a considerable amount of spread in the data

points, indicating that while temperature is an important factor, there are likely other factors at

play influencing the attention weights.

The line of best fit visually confirms the positive correlation coefficient. It shows that as

temperature increases, the model’s attention to the temperature feature also tends to increase,

which suggests that the model considers temperature more important when it’s high. However, the

scatter plot also shows a significant amount of variability around this line, indicating that while

there’s a general trend, there’s also a lot of variability in the attention weights that is not explained

by temperature alone.

Figure 4.12: Scatter of attention weights vs Temperature



4.3 In-depth analysis of temperature using the attention matrix 39

The scatter plot, along with the Pearson correlation coefficient, suggests that temperature is

indeed a factor the model considers, but, as anticipated, it’s not the only factor. Additionally,

while this correlation is statistically significant (as indicated by the p-value), it does not necessarily

imply causation.

Also, the strength of the correlation (0.624) while moderate, is not extremely high. This

suggests that while there is a relationship between temperature and attention weights, there are

likely other factors that the model is also considering when making predictions, being, of course,

other features. Moreover, attention mechanisms are complex and can be influenced by various

factors in the model and data.

To further analyze this relationship and try to expand on the correlation between those vari-

ables, a different temporal analysis was made, in order to understand how the importance of tem-

perature changes over different time periods. For that, the next analysis made was for the variation

of the weights over the different hours of the day, which is represented in Figure 4.13.

Figure 4.13: Hourly average across all days of the temperature vs attention weights for temperature

The graph displays the model’s average attention weight assigned to the temperature feature

for each hour of the day, juxtaposed with the actual temperature values. The results are intriguing.

It’s evident that the patterns for the attention weights and the temperature values differ. The tem-

perature values seem to follow a sinusoidal-type pattern, peaking around midday. Conversely, the

attention weights seem to peak twice, once in the early morning and again in the late afternoon.

At first glance, these results seem to contradict a prior analysis, which suggested a correla-

tion between increasing temperature and increasing attention weights. Especially as the attention

weights dip precisely when the temperature reaches its peak. Moreover, both the initial rise and

final drop in temperature and attention weights appear to be delayed.

However, a deeper analysis reveals a nuanced relationship. While it’s true that higher temper-

atures generally correspond to higher attention, as seen in summer, a closer examination of the
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hourly data tells a different story. The attention given is more significant during the hours leading

up to the warmest parts of the day. Because of this, it is of good interest to perform a similar anal-

ysis to the previous one, but this time inspecting the change in the attention weights juxtaposed to

the actual consumption hourly distribution across the day.

The results, visible in Figure 4.14, display a stronger relationship than in the previous analysis.

Now, the attention weights appear to follow a pattern similar to consumption, which peaks in the

morning and does not drop much until late afternoon, with two significant variations. First, the

attention weights exhibit a delay, and second, they show a more prolonged slope around the 10-

hour mark. In contrast, consumption tends to remain constant after that, until it drops late in the

afternoon, while attention weights present a somewhat big valley and only reach its second peak

when the consumption is already on a descending curve.

Figure 4.14: Hourly average across all days of the demand vs attention weights for temperature

A deeper and more insightful analysis can be performed by examining each month of the year

to identify patterns or unique relationships. To further investigate the relationship between the

temperature attention weights and the actual temperature, the plots of the daily values for specific

months were done (Figure 4.16) as well as the monthly averages (Figure 4.15). This approach

allows for a better understanding of the monthly evolution of both variables.

As confirmed by the previous overall analysis, the attention weights for temperature are gener-

ally higher when the temperature is high. Thus, during warmer months like June, July, and August,

the weights are relatively high. Conversely, during colder months like November, December, and

January, the weights are lower.

As for the shapes of the plots, the weights tend to fluctuate more, displaying peaks and valleys,

compared to the more stable temperature data. This fluctuation aligns with the expected inconstant

nature of attention mechanisms. An excellent illustration of this is July, from days 5 to 15. Despite

only subtle changes in temperature during this period, the weights undergo much more drastic



4.3 In-depth analysis of temperature using the attention matrix 41

shifts. This variation may indicate a shift in the model’s attention from temperature to another

feature it deems more important at that specific time.

That said, despite significant changes in weights in some months, the overall trends and pat-

terns of those months’ temperatures are well-captured by the model. For instance, this is evident

in March.

Figure 4.15: Monthly averages of the temperature vs attention weights for temperature

To sum up, this overall monthly analysis confirms the previous results regarding the attention

levels. On the one hand, the months with higher temperatures have a higher level of attention,

which coincide with periods of higher consumption, and the variations in the various days, in a

way, also impact the level of attention. It can probably be inferred that Italy is more sensitive to

heat than cold, meaning more sensitive in the summer, and is more influenced by the usage of air

conditioning than the usage of heaters.

Finally, one last simple experiment that could be made is, with the knowledge acquired from

the previous analysis regarding the relative attention given to temperature in the studied circum-

stances, to introduce one more or more variables that could represent those cases that corresponded

to higher values of attention.

A new variable that could be introduced is one that took the temperature value only if the

variation of temperature in the previous day would be higher than a certain threshold (k1). Sim-

ilarly, another new feature could be one that takes the value of the temperature only if it is above

a specific threshold (k2). It should be mentioned that, initially, the values of the thresholds would

be established by observation of the graphs (attention and temperatures) and so it would just be an

approximation.
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Figure 4.16: Monthly plots of the temperature vs attention weights for temperature
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The approach addressed in the previous paragraph was tried using k1 equal to 4 and k2 equal

to 15, resulting in Figures 4.17 and 4.18, respectively.

Figure 4.17: Temperature-variation feature

Figure 4.18: High-temperature feature

The results obtained for the predictions with each separate variable and with both are repre-

sented in Table 4.2. The new results show that the model does not improve, performance-wise,

with the addition of the new variables. It is possible that the model finds the new information to

be redundant or even that the threshold values were not the best and should be adjusted.
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Table 4.2: Results with the addition of the new variables

Variable MAE RMSE MAPE
Temperature variation variable 853.29 1188.2 5.219%

High Temperature variable 854.97 1188.6 5.290%
Both 857.35 1195.4 5.245%

To see how the attention changes with the inclusion of these two variables, in Figure 4.19, 4.20

and 4.21 are the plots of the general attention of each feature, obtained from the attention matrix,

in which the first one corresponds to just the addition of the variation variable, the second one

corresponds to the addition of the high-temperature variable and the third one corresponds to the

addition of both variables to the inputs of the model.

Figure 4.19: New attentions with the variation variable

Figure 4.20: New attentions with the high-temperature variable
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Figure 4.21: New attentions with both variables

Through the analysis of the three figures, first and foremost, is possible to observe the volatile

nature of this attention mechanism, with the values regarding attention scores of some of the

features fluctuating a little, which could be explained by an analysis done earlier in this work

about the correlation between the variables. Regarding the temperature, in Figure 4.19 the new

feature has a slightly bigger score than the temperature and both are a bit higher than the previous

general analysis. In Figure 4.20 the new feature has a somewhat bigger score than the temperature

itself. Finally, with the addition of both variables, in Figure 4.21, the score of the temperature

itself drops very close to zero and the two new ones are almost on par, with the high-temperature

variable just marginally higher.

The main conclusion drawn from this is that the two new variables can potentially constitute an

advantage in terms of the analysis of the attention weights since they generally have higher scores

than the temperature itself which. In terms of performance, the addition of these new variables, at

first glance, does not seem to improve the results of the model, however, a better adjustment of the

thresholds could help the model in performance (and/or analysis). It is worth noting that, the two

new variables are the most obvious ones inferred from the previously done studies and, therefore,

the integration of different, more sophisticated, variables could help in deeper ways. However, it

is necessary to always keep in mind the nature of these scores (the sum of all importances has to

be equal to 1) and the correlation between all the variables and how it can impact those scores.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This work had two main goals, to examine if the inclusion of attention mechanisms in load

forecasting problems brought benefits for predictions, and to employ those mechanisms in the

study of the impact of temperature on consumption.

After researching the current state of the art for attention mechanisms, time series forecasting,

and model interpretability, a choice was made to slightly sacrifice the quality of the predictions in

favor of a simpler, lighter, and easier-to-explain model with also much more direct interpretability.

It was indeed concluded that, although the model performed better with than without the attention,

it still lost performance-wise to sequence-based models.

Regarding interpretability, the model calculated the global attention in two ways, by averaging

all features of the attention matrix and through a novel way based on the direct inspection of the

weights of the model. Both methods resulted in somewhat different results, especially regarding

temperature, where one gave it the biggest importance across all features while the other gave it

small importance. Other global comparisons were made, utilizing SHAP and permutation feature

importance, which, again, resulted in different scores for some features, namely temperature. It

is important to state, however, that all methods calculate importance using different criteria and

different approaches, and the permutation one was applied to a completely different model, which

could explain the distinct results, as well as the strong correlation between the features. However,

the large difference in some of the results could indicate that this concept of attention has not yet

reached its maturity. Nevertheless, the core of this dissertation is focused on the attention variation

over time and not particularly on its value compared to the other inputs’ attention. In fact, the goal

was to find particular conditions for which the attention boosts and try to interpret these variations.

The computation of the attention weight matrix, also made it possible to find out the periods in

which the attention was higher and, that way, infer the effect of temperature on the load. Those pe-

riods were around the warmer occasions of the year, namely summer. The attention was, however,

also particularly high when those hot periods also had big variations, which was also confirmed
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when analyzing the evolution of the consumption values. The main conclusion of this is that con-

sumption in Italy is more sensible to warmer periods, probably due to the heavy air conditioning

usage, and not as much to colder periods when heaters are used the most. Maybe in this country

heaters are not so temperature-responsive as air conditioners. However, it was also expected an

increase in attention in the initial part of the data where there was a period of very low tempera-

tures, which is further confirmed by the increase in consumption in this period. Meaning that it

be can concluded that attention was not able to detect this case, which may indicate a limitation.

However, this can be explained by the substantial reliance on gas in Italy’s heating systems during

cold periods, which, therefore, does not yield the same effects as air conditioning systems during

hot periods that do not work on gas.

Finally, inspired by the previous analysis, two other variables were introduced in the model,

one relating to big variations in temperature and the other concerning high-temperature values.

Both seem to validate the previous analysis since the score of these two new variables surpassed

the score of the temperature itself. Moreover, it seemed that the high-temperature variable as-

sumed more importance than the other two, confirming the previous suspicions regarding the Italy

example carried out in this work.

5.2 Future work

Due to some limitations, like inexperience in the field, computational restrictions and time

constraints, some interesting analysis could not be carried out and should be considered in further

similar studies. Here are the main ones:

• in-depth simulations with independent variables, i.e. not correlated, in which the attention

results would, most likely, be more consistent;

• better adjustment of the thresholds in the proposed new variables, as well as, for exam-

ple, instead of the high-temperature variable taking the values of the temperature above the

threshold it could just take value 1, becoming a binary variable

• conception of other, if possible more sophisticated, variables similar to the two new ones

relating to temperature made in this work;

• use of other types of data, namely from other countries with different characteristics found

in the Italian case;

• use of different models, with different architectures and other types of attention, that could

function with sequences, which could possibly capture better temporal dynamics.
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