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Abstract—Fine-grained tactile perception of objects is sig-
nificant for robots to explore the unstructured environment.
Recent years have seen the success of Convolutional Neural
Networks (CNNs)-based methods for tactile perception using
high-resolution optical tactile sensors. However, CNNs-based
approaches may not be efficient for processing tactile image data
and have limited interpretability. To this end, we propose a Graph
Neural Network (GNN)-based approach for tactile recognition
using a soft biomimetic optical tactile sensor. The obtained
tactile images can be transformed into graphs, while GNN can
be used to analyse the implicit tactile information among the
tactile graphs. The experimental results indicate that with the
proposed GNN-based method, the maximum tactile recognition
accuracy can reach 99.53%. In addition, Gradient-weighted
Class Activation Mapping (Grad-CAM) and Unsigned Grad-
CAM (UGrad-CAM) methods are used for visual explanations
of the models. Compared to traditional CNNs, we demonstrated
that the generated features of the GNN-based model are more
intuitive and interpretable.

Index Terms—Tactile Sensor, Object Recognition, Graph Con-
volutional Network, Explainability.

I. INTRODUCTION

Vision is the major modality for robotic perception, which
can obtain global observation of unstructured environments for
robots. However, vision-based object recognition may become
challenging due to view occlusions or poor lighting conditions.
In this case, tactile perception becomes significant since it
can provide robots with an alternative exploration mechanism
beyond vision. Therefore, we aim to study tactile-based object
recognition in this paper.

Among the existing tactile sensors [1], optical tactile sensors
have relatively higher spatial resolution [2]. Light conductive
plates, reflective membranes, and displaceable markers have
been used to construct optical tactile sensors. Among these
mechanisms, the marker displacement-based tactile sensors are

1Corresponding author: Dandan Zhang (email: ye21623@bristol.ac.uk).
2Wen Fan, Yijiong Lin, Nathan Lepora and Dandan Zhang are affiliated

with Bristol Robotics Laboratory.

Fig. 1. As seen in (a) and (b), the TacTip’s skin will deform when interacting
with objects. The embedded camera can capture the pins’ movements as tactile
information. The tactile graph data can be obtained and analysed based on
tactile images, as shown in (c) and (d).

easy-to-make, since they can be employed in the arbitrary
shape of sensor skin and do not require special lighting
arrangement. Therefore, we focus on marker displacement-
based optical tactile sensors in this paper. TacTip (see Fig. 1(a)
and (b)), developed by Bristol Robotics Laboratory (BRL) [3],
[4], is such an example that will be used for experimental
studies in this paper.

Recent years have seen promising results of combining deep
neural network models with tactile perception. For example,
Convolutional Neural Networks (CNNs) have been used for
texture classification based on a tactile array sensor [5].
CNNs with Long-Short-Term Memory (LSTM) have been
integrated into a whole network as CNN-LSTM and applied
to a highly-dense optical tactile sensor GelSight [6] for tactile
identification of textures. As for TacTip, CNNs have been used
for object classification, edge perception, contour following
[7], slip detection [8]. However, most of the traditional CNNs
trained for object recognition have millions of parameters
[9]. For marker displacement-based tactile sensors which have
relatively low spatial resolution, CNNs are not efficient for
feature extraction. Therefore, more adequate neural network
architectures should be explored.



Recently, Graph Neural Network (GNN) has emerged as
an alternative to process irregular data, and has demonstrated
better performance compared to CNNs [10]. Considering that
the pins (also known as markers) of the TacTip can form
a graph [4], while the displacements of pins contain rich
information that reveals the contacted objects’ shape, we aim
to leverage graph-like representations of tactile images for
object recognition.

Graph Convolutional Network (GCN) [11], GraphSAGE
[12] and Graph Attention Networks (GATs) [13] are represen-
tative GNNs. GCN is developed based on applying convolution
operation to topological graph, and has been proved to be
effective for Physics, Chemistry [14] and social network
applications [15], [16]. In this work, we employ GCN-based
architecture for tactile object recognition. We aim to compare
GCN-based architecture with CNN-based architecture in terms
of recognition accuracy and model training speed. Moreover,
to ensure that the tactile recognition process is interpretable,
Gradient-weighted Class Activation Mapping (Grad-CAM)
and Unsigned Grad-CAM (UGrad-CAM) methods are used
to enable interpretable tactile sensing [17] [18].

The key contributions of our work include:
• Transform the tactile image data obtained by the TacTip

sensor into graph representation;
• Develop an optimal GCN-based model for object recog-

nition based on empirical studies;
• Evaluate the intepretability of the GCN-based model for

tactile object recognition.
Applying GNN-based methods to vision-based object clas-

sification tasks is popular in deep learning. However, to the
best of our knowledge, GNN-based tactile-oriented object
recognition with biomimetic optical tactile sensors has been
scarcely investigated. Intuitive and accurate tactile perception
is a prerequisite for manipulation tasks. Based on our results,
GNN-based methods can be more efficient for processing
tactile images, and have high potentials to benefit tactile
robotics research and can ensure interpretability.

We organize the rest of this paper as follows. Firstly, the
tactile graph construction and the architecture of the proposed
GCN-based frameworks are introduced in Section II. Secondly,
the experiment design and results analysis are described in
Section III. Finally, conclusions are drawn in Section IV.

II. METHODOLOGY

A. Hardware Deployment

Ten different 3D-printed objects are used for data collection,
as shown in Fig. 2(a). A low-cost desktop robot arm (Dobot
Magician) is used for experiments (see Fig. 2(b)). A TacTip
sensor is mounted at the wrist of the robot. The optical tactile
sensor TacTip used for data collection comprises a 3D-printed
soft rubber-like hemispherical skin, whose papillae pins are
distributed uniformly on the inner surface of the skin. The
displacements of the papillae pins in the inner surface of the
skin can be captured by an RGB camera (ELP 1080p module)
to generate tactile data.

Fig. 2. (a) Ten 3D-printed objects with different shapes: Grids, Edge,
Horizontal Cylinder, Vertical Prism, Sphere, Irregular Shape, Hollow Prism,
Irregular Cylinder, Hollow Cylinder, and Curve (from (1) to (10) respectively).
(b) A desktop robot arm (Dobot Magician) is used for tactile data collection.

During data collection, a remote controller was used to
guide the robot arm with tactile sensor on its wrist to contact
the target object’s surface, while the tactile image data was
recorded simultaneously. The whole dataset for 10 class ob-
jects are divided into training set (70%), validation set (20%)
and test set (10%) for model training and evaluation.

B. Tactile Graph Construction

As shown in Fig. 1(b), 169 pins of TacTip are distributed
uniformly in the shape of concentric circles with increasing
radius. Among all the pins, the distances between each pair of
adjacent pins are almost identical. The graph representations
of tactile images are the inputs for our proposed GCN-
based framework. The key features of contact deformation on
TacTip sensor will be extracted by the proposed model. All
the variables used for graph construction are summarised in
Table I.

TABLE I
PARAMETER SYMBOL SUMMARY

Parameter Symbol Parameter Symbol
Graph G Node position v
Node V Number of edge m
Edge E Number of graph n

Node feature X Source index s
Adjacency matrix A Target index t

A graph consists of two mandatory components: Nodes
(Vertices) and Edges, denoted as G = (V,E). When fed into
GNN model, a graph is represented as G = (X,A) where
X indicates the node features and A presents an adjacency
matrix generated from edges E. The white pins of TacTip
can be regarded as graph nodes V , while the positions of
the pins in the tactile images are used as node features
X =

{
vi =

(
vix, v

i
y

)
, i = 1, 2, ...169

}
. Let m indicate the

total number of edges in one graph. Then undirected edges
E = {ej =

[
sj , tj

]T
, sj ̸= tj , j = 1, 2, ...m} can be built

between every pair of possible nodes, where s and t represent
the source index and target index respectively. As illustrated
in Fig. 3, the graph construction process consists of two steps,
i.e. i) node extraction, ii) edge connection.

Every raw tactile image obtained by TacTip sensor is
cropped and resized to 280 × 280, followed by denoising
and binarisation (see Fig. 3(a), (b), (c)). Subsequently, the



Fig. 3. Tactile graph construction procedure: (a) represents the raw tactile
image; (b) shows that the image is cropped and resized; (c) converts the
tactile images into binary images; (d) indicates the result obtained after blob
detection; (e) presents the final graph obtained after edge connection.

blob extraction algorithm, supplied from the OpenCV library,
is used to extract the position of each pin as corresponding
node features (see Fig. 3(d)). Finally, the k-Nearest Neighbors
(kNN), is used to build edge connections (see Fig. 3(e)).

The quality of generated graph is measured in terms of
efficiency, connectivity and robustness. We define that the
efficiency is high if the graph construction frequency (the
number of graphs generated per second) is higher than 50 Hz.
We evaluate graph’s connectivity in terms of the neighbors’
number linked to every node. High connectivity requires that
each node should be connected with at least four adjacent
nodes, while redundant connectivity means connection with
six adjacent nodes. The robustness is measured based on the
difference between the graph connectivity before and after
TacTip sensor interacting with objects.

The numbers of nearest neighbors (k value) selected for
the kNN classifier have significant impact on the quality of
graph construction. According to the characteristics of the
TacTip pins’ distribution, the outmost nodes should have less
neighbors than the inner ones. So we explore an adaptive
kNN approach to build edge connections, as shown in Fig. 4.
Traditional kNN has a single k value (Fig. 4(a)-(d)), while
for our adaptive one, two different parameters k1 and k2 are
used to cluster nodes in central and non-central areas of the
graph respectively (Fig. 4(e)-(f)). The performances of kNN
with different k values are summarized in Table II. Adaptive
KNN approach can minimize the generation of redundant
connections between outmost nodes and remote neighbors.
However, the computation time required for the adaptive kNN
approach increases significantly, which leads to low efficiency.
According to the results, k = 6 is selected as the default value
for graph construction, which can ensure desired performance
in terms of efficiency, robustness and connectivity.

TABLE II
KNN RESULT SUMMARY

Parameter Edges Efficiency Robustness Connectivity
k = 1 (2, 169) High Low Low
k = 2 (2, 338) High Low Low
k = 3 (2, 507) High Low Medium
k = 4 (2, 676) High Medium High
k = 5 (2, 845) High Medium Redundant
k = 6 (2, 1014) High High Redundant

k1, k2 = 6, 5 (2, 971) Low High Redundant
k1, k2 = 6, 4 (2, 928) Low Medium High
k1, k2 = 6, 3 (2, 885) Low Medium High
k1, k2 = 6, 2 (2, 842) Low Medium High
k1, k2 = 6, 1 (2, 799) Low Low Medium

Fig. 4. The graphs generated using kNN with different k value. As shown
in (a), (b), (c) and (d), the magnitude of k is proportional to the graph
connectivity and integrity. (d), (e) and (f) indicate that adaptive KNN approach
can minimize the generation of redundant connections between outmost nodes
and remote neighbors.

C. Tactile GNN Framework

Fig. 5. The framework of Tactile GNN model. The different number of GCN
and FC layers, also with two pooling methods, will be tested in the experiment.

The architecture of Tactile GNN model used for object
recognition in our paper is shown in Fig. 5. It consists of
multiple GCN layers [11], followed by fully-connected layers.
A GCN layer can be defined as H

′
= GCN(H, Ã) =

σ(D̃−0.5ÃD̃−0.5HW ) = σ(V HW ), where Ã is the normal-
ized adjacency matrix generated from A, D̃ is the degree
matrix related to Ã, W is the weight matrix of current GCN
layer, and σ(.) is the activation function. For example, ReLU
is used as the activation function in our work. In the first GCN



layer, H = X , where X represents the node features.
We examine the design spaces to choose the optimal struc-

ture for the GCN-based model. The results can be found in
Section III-A and Table III. Specifically, we experimented with
different numbers of GCN and FC layers, and also two pooling
methods (scatter-max or scatter-mean).

D. Graph Explainable Methods

Follow the definition of GCN layer H
′
= σ(V HW ) and

explainable methods for GCN model in work [18], the k’th
graph convolutional feature map F at layer l is set as:

F l
k(X,A) = σ(V F (l−1)(X,A)W l

k) (1)

The global average pooling feature e of node n from layer
L (normally, L is the last GCN layer) should be:

ek =
1

N

N∑
n=1

FL
k,n(X,A) (2)

Then the Grad-CAM’s weights α for class c is calculated
by (3), where the score y of class c is yc =

∑
kω

c
kek.

αL,c
k =

1

N

N∑
n=1

∂yc

∂FL
k,n

(3)

Finally, the heat-map M which can visualise the positive
contribution of node n for graph G(X,A) is generated by:

M c[L, n] = ReLU(
∑
k

αL,c
k FL

k,n(X,A)) (4)

A new method called UGrad-CAM has been proposed [18],
which can show both positive and negative contributions from
nodes. We decide to apply both their Grad-CAM and UGrad-
CAM explaining tools on our tactile GNN model.

III. EXPERIMENTS, RESULTS AND DISCUSSION

A. Empirical Evaluations

We conduct empirical evaluations to study how the design
settings of GCN layers, pooling methods and FC layers influ-
ence the performance of Tactile GNN models. We investigate
the performance of 4 types of network structures. The first two
classes were defined as ‘max, original FC’ and ‘mean, original
FC’, the last two classes were ‘max, standard FC’ and ‘mean,
standard FC’. The ‘original FC’ meant that each FC layer’s
channels would vary with the last layer’s channels. If using
[(ai, bi)](i = 1, 2, ..., I) to represent FC structure, then ai and
bi represented the input and output channel amounts for the ith
FC layer, I indicated the total number of FC layers and was set
as 3 in this paper. J presented the total number of GCN layers,
while cj represented the output channel numbers for jth GCN
layer. For ‘original FC’, ai = cJ+1−i, bi = cJ−i, while b3
was equal to 10. For ‘standard FC’, a1 = cJ , a2 = b1 = 128,
a3 = b2 = 96, and b3 = 10. Both pooling methods of scatter-
max and scatter-mean were tested to explore their impacts.
Adam optimizer (learning rate α = 10−3) was used for model
training with batch size β = 128, while early stop mechanism
was applied.

The training and evaluation results are summarized in
Table III. Based on the results, we notice that the tactile
GNN with 7 layers GCN and 3 layers FC has an adequate
compromise between computation speed and test accuracy.
Increasing the number of GCN layer can enhance the per-
formance, however, the cost of low computation speed is not
desirable. The detailed analysis is given below:

1) Depth of GCN: The network prediction accuracy in-
creases when GCN becomes deeper. However, after the depth
is greater than 7, the improvement of network prediction
accuracy slows down while the cost of training increases
dramatically.

Considering the structural features of TacTip and the GNN
working principles, the feature aggregation from the center to
the outermost nodes (or the opposite direction) would require
at least 7 steps (see Fig. 6). This could explain why the
predictions improve significantly while the layer number is
less than 7. However, network models with 8, 9 and 10 GCN
layers were prone to be over-smoothing, which could result
in the same representation of most nodes. The time required
for training one epoch using 6-layer GCN and 7-layer GCN
is 17.4s and 24.9s respectively, which do not have significant
difference. Compared to 6-layer GCN, the test accuracy of
7-layer GCN increases 0.4%. The test accuracy for 8-layer
GCN is lightly better than the one for 7-layer GCN, while
the improvement is less than 0.2%. However, the computation
time of the 8-layer GCN is nearly two times longer than that
of the 7-layer GCN.

Fig. 6. The aggregation from the center to the outermost circle: (a) presents
the aggregation details between GCN layers. Since there are 8 layers of the
pins, ideally, at least seven aggregation steps are required to maintain the
spatial features, as shown in (b)-(h) respectively.



2) Pooling Methods: Scatter-mean normally performs bet-
ter than scatter-max. With the same setting of hyperparameters,
the training speed of GNNs using scatter-mean are 2% -
5% faster than those using scatter-max. Moreover, GNNs
had higher prediction accuracy when using scatter-mean than
scatter-max. These differences were evident when Tactile
GNN models have 1 or 2 GCN layers. This may be due to
the fact that scatter-mean incorporates all node features, which
reduces information loss and allows the FC network to learn
more useful features.

3) FC layers: The structure of FC layers had significant
influence on the model performance. The model with standard
FC layers showed better performance than the original FC
until the depth of GCN layers increased to 7. When the
depth was more than 8, the model with standard FC layers
had lightly lower test accuracy compared to the one with
original FC layers. However, it had the advantage of higher
computation efficiency, since fewer neurons were required for
model training.

TABLE III
TACTILE GNN TRAINING AND EVALUATING SUMMARY.

Depth Class Train Time (s/epoch) Test Accuracy
1 max,original FC 5.2 62.31%
1 mean,original FC 5.1 79.90%
1 max,standard FC 5.2 76.60%
1 mean,standard FC 5.0 89.01%
2 max,original FC 6.2 86.87%
2 mean,original FC 6.2 87.97%
2 max,standard FC 6.0 93.87%
2 mean,standard FC 6.0 95.73%
3 max,original FC 7.9 94.52%
3 mean,original FC 7.9 94.62%
3 max,standard FC 7.9 97.29%
3 mean,standard FC 7.8 97.32%
4 max,original FC 10.2 96.64%
4 mean,original FC 10.0 96.84%
4 max,standard FC 10.2 98.41%
4 mean,standard FC 10.0 97.88%
5 max,original FC 13.6 98.16%
5 mean,original FC 13.3 97.95%
5 max,standard FC 13.5 98.67%
5 mean,standard FC 13.2 98.56%
6 max,original FC 18.0 98.48%
6 mean,original FC 17.5 98.63%
6 max,standard FC 17.7 98.70%
6 mean,standard FC 17.4 98.60%
7 max 26.2 98.97%
7 mean 24.9 98.99%
8 max,original FC 42.6 99.03%
8 mean,original FC 39.8 99.13%
8 max,standard FC 42.1 99.04%
8 mean,standard FC 39.8 99.16%
9 max,original FC 75.7 99.35%
9 mean,original FC 73.7 99.35%
9 max,standard FC 74.7 99.13%
9 mean,standard FC 72.9 99.28%

10 max,original FC 151.8 99.49%
10 mean,original FC 150.2 99.53%
10 max,standard FC 151.5 99.10%
10 mean,standard FC 149.9 99.26%

Fig. 7. The visual explanation results using Grad-CAM and UGrad-CAM.
(a) shows the examples that CNNs extract useful features from the tactile
images; (b) indicates the situation that CNNs shift the main attention to
the background, which is not reasonable; (c) UGrad-CAM method is used
to visualize the positive and negative impacts from nodes; (d) The positive
contributions of each node for GNN to predict is visualized via Grad-CAM.

B. Results Analysis

To ensure that the deep learning-based tactile recognition
process is interpretable, Grad-CAM and UGrad-CAM are used
to provide visual explanations for GCN models [18].

1) Comparisons for Recognition Accuracy: CNN networks
with standard FC layers and different numbers of convolutional
layers were constructed for comparisons. The training speed
of CNNs was much lower than GNNs with same number of
layers, while CNNs’ prediction accuracy was slightly higher. A
3-layer CNN provides the best performance with test accuracy
of 99.8%. However, the training time for one epoch is 129.2s,
which is much longer than 3-layer GCN. If increasing the
CNN layers to 7, the training time is 314.9s per epoch while
the test accuracy is 99.67%. As for the 7-layer GCN, the test
accuracy is 24.9s. This indicates that GCN-based models are
computationally efficient.

2) Comparisons for Interpretability: We then compare the
interpretability of CNNs and GNNs for tactile perception. The
examples of Grad-CAM and UGrad-CAM based analysis are
shown in Fig. 7. The red regions refer to the areas where
the attention from model is strong. For Grad-CAM based
analysis, the blue regions indicate the areas contribute less
to the models’ decision-making process. As for UGrad-CAM,
blue areas represent negative contributions to decision-making.

Fig. 7(a) shows examples that CNNs can successfully ex-
tract useful features depending on the deformation. However,
they may generate the prediction mostly based on the back-
ground information (see Fig. 7(b)), which is not reasonable
since the background has been denoised and binarised (see
Fig. 4(c)). As for GNNs-based model, attention is paid to
the contact regions instead of the background areas. Fig. 7(c)



and (d) show the visual explanations of GCNs-based object
recognition process using UGrad-CAM and Grad-CAM re-
spectively. Refer to Fig. 4(d)(e), implicit contact information,
such as the location and level of deformation can be visualised.

To quantify the interpretability of both types of models,
we randomly selected 100 tactile images for analysis. 55%
of tactile images failed to be interpreted by CNNs in a
reasonable manner, since the attention of CNNs is located at
the background, instead of the deformation. According to the
results, GNNs can identify the regions where deformation is
caused by interaction with the target object.

IV. CONCLUSION

In this paper, a GCN-based model (Tactile GNN) was
proposed for tactile object recognition. The soft biomimetic
optica sensor TacTip was used to record tactile images. The
performance of Tactile GNN models with different structures
were investigated, while the highest test accuracy for object
recognition could reach 99.53%. Grad-CAM and UGrad-CAM
were used to evaluate the interpretability of the proposed
model. Compared with CNNs, the accuracy for object recog-
nition using GNNs is lower, but the training efficiency is
improved significantly. This is due to the fact that Tactile
GNNs can extract the key contact information effectively,
while CNNs based methods need to process the entire tactile
images that contain redundant information. Moreover, Tactile
GNN could identify the useful information of deformation,
and can be used for interpretable tactile sensing.

We hope the empirical studies and discussions in this paper
can provide inspiration for researchers who are interested in
GNN-based tactile object recognition with interpretability. We
envision that the proposed method can be generalised to other
types of tactile sensors and benefits robot learning research
where efficient tactile perception is significant.
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