98 research outputs found

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Acta Cybernetica : Volume 21. Number 1.

    Get PDF

    High-speed surface profilometry based on an adaptive microscope with axial chromatic encoding

    Get PDF
    An adaptive microscope with axial chromatic encoding is designed and developed, namely the AdaScope. With the ability to confocally address any locations within the measurement volume, the AdaScope provides the hardware foundation for a cascade measurement strategy to be developed, dramatically accelerating the speed of 3D confocal microscopy

    Metamaterials for Computational Imaging

    Get PDF
    <p>Metamaterials extend the design space, flexibility, and control of optical material systems and so yield fundamentally new computational imaging systems. A computational imaging system relies heavily on the design of measurement modes. Metamaterials provide a great deal of control over the generation of the measurement modes of an aperture. On the other side of the coin, computational imaging uses the data that that can be measured by an imaging system, which may limited, in an optimal way thereby producing the best possible image within the physical constraints of a system. The synergy of these two technologies - metamaterials and computational imaging - allows for entirely novel imaging systems. These contributions are realized in the concept of a frequency-diverse metamaterial imaging system that will be presented in this thesis. This 'metaimager' uses the same electromagnetic flexibility that metamaterials have shown in many other contexts to construct an imaging aperture suitable for single-pixel operation that can measure arbitrary measurement modes, constrained only by the size of the aperture and resonant elements. It has no lenses, no moving parts, a small form-factor, and is low-cost.</p><p>In this thesis we present an overview of work done by the author in the area of metamaterial imaging systems. We first discuss novel transformation-optical lenses enabled by metamaterials which demonstrate the electromagnetic flexibility of metamaterials. We then introduce the theory of computational and compressed imaging using the language of Fourier optics, and derive the forward model needed to apply computational imaging to the metaimager system. We describe the details of the metamaterials used to construct the metaimager and their application to metamaterial antennas. The experimental tools needed to characterize the metaimager, including far-field and near-field antenna characterization, are described. We then describe the design, operation, and characterization of a one-dimensional metaimager capable of collecting two-dimensional images, and then a two-dimensional metaimager capable of collecting two-dimensional images. The imaging results for the one-dimensional metaimager are presented including two-dimensional (azimuth and range) images of point scatters, and video-rate imaging. The imaging results for the two-dimensional metaimager are presented including analysis of the system's resolution, signal-to-noise sensitivity, acquisition rate, human targets, and integration of optical and structured-light sensors. Finally, we discuss explorations into methods of tuning metamaterial radiators which could be employed to significantly increase the capabilities of such a metaimaging system, and describe several systems that have been designed for the integration of tuning into metamaterial imaging systems.</p>Dissertatio

    Signal processing for improved MPEG-based communication systems

    Get PDF

    Photoacoustic reconstruction using sparsity in Curvelet frame: Image versus data domain

    Get PDF
    Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. We derive a one-to-one map between wavefront directions in image and data spaces in PAT which suggests near equivalence between the recovery of the initial pressure and PAT data from compressed/subsampled measurements when assuming sparsity in Curvelet frame. As the latter is computationally more tractable, investigation to which extent this equivalence holds conducted in this paper is of immediate practical significance. To this end we formulate and compare DR, a two step approach based on the recovery of the complete volume of the photoacoustic data from the subsampled data followed by the acoustic inversion, and {p_0bf {R}}, a one step approach where the photoacoustic image (the initial pressure, p_0) is directly recovered from the subsampled data. Effective representation of the photoacoustic data requires basis defined on the range of the photoacoustic forward operator. To this end we propose a novel wedge-restriction of Curvelet transform which enables us to construct such basis. Both recovery problems are formulated in a variational framework. As the Curvelet fram
    • …
    corecore