33 research outputs found

    Target prediction utilising negative bioactivity data covering large chemical space.

    Get PDF
    BACKGROUND: In silico analyses are increasingly being used to support mode-of-action investigations; however many such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective of this work is concerned with the integration of such bioactivity data in the target prediction of orphan compounds to produce the probability of activity and inactivity for a range of targets. To this end, a novel human bioactivity data set was constructed through the assimilation of over 195 million bioactivity data points deposited in the ChEMBL and PubChem repositories, and the subsequent application of a sphere-exclusion selection algorithm to oversample presumed inactive compounds. RESULTS: A Bernoulli Naïve Bayes algorithm was trained using the data and evaluated using fivefold cross-validation, achieving a mean recall and precision of 67.7 and 63.8 % for active compounds and 99.6 and 99.7 % for inactive compounds, respectively. We show the performances of the models are considerably influenced by the underlying intraclass training similarity, the size of a given class of compounds, and the degree of additional oversampling. The method was also validated using compounds extracted from WOMBAT producing average precision-recall AUC and BEDROC scores of 0.56 and 0.85, respectively. Inactive data points used for this test are based on presumed inactivity, producing an approximated indication of the true extrapolative ability of the models. A distance-based applicability domain analysis was also conducted; indicating an average Tanimoto Coefficient distance of 0.3 or greater between a test and training set can be used to give a global measure of confidence in model predictions. A final comparison to a method trained solely on active data from ChEMBL performed with precision-recall AUC and BEDROC scores of 0.45 and 0.76. CONCLUSIONS: The inclusion of inactive data for model training produces models with superior AUC and improved early recognition capabilities, although the results from internal and external validation of the models show differing performance between the breadth of models. The realised target prediction protocol is available at https://github.com/lhm30/PIDGIN.Graphical abstractThe inclusion of large scale negative training data for in silico target prediction improves the precision and recall AUC and BEDROC scores for target models.The authors thank Krishna C. Bulusu for proof reading the manuscript. LHM would like to thank BBSRC and AstraZeneca and for their funding. GD thanks EPSRC and Eli Lilly for funding.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1186/s13321-015-0098-

    Verifying the fully “Laplacianised” posterior Naïve Bayesian approach and more

    Get PDF
    Mussa and Glen would like to thank Unilever for financial support, whereas Mussa and Mitchell thank the BBSRC for funding this research through grant BB/I00596X/1. Mitchell thanks the Scottish Universities Life Sciences Alliance (SULSA) for financial support.Background In a recent paper, Mussa, Mitchell and Glen (MMG) have mathematically demonstrated that the “Laplacian Corrected Modified Naïve Bayes” (LCMNB) algorithm can be viewed as a variant of the so-called Standard Naïve Bayes (SNB) scheme, whereby the role played by absence of compound features in classifying/assigning the compound to its appropriate class is ignored. MMG have also proffered guidelines regarding the conditions under which this omission may hold. Utilising three data sets, the present paper examines the validity of these guidelines in practice. The paper also extends MMG’s work and introduces a new version of the SNB classifier: “Tapered Naïve Bayes” (TNB). TNB does not discard the role of absence of a feature out of hand, nor does it fully consider its role. Hence, TNB encapsulates both SNB and LCMNB. Results LCMNB, SNB and TNB performed differently on classifying 4,658, 5,031 and 1,149 ligands (all chosen from the ChEMBL Database) distributed over 31 enzymes, 23 membrane receptors, and one ion-channel, four transporters and one transcription factor as their target proteins. When the number of features utilised was equal to or smaller than the “optimal” number of features for a given data set, SNB classifiers systematically gave better classification results than those yielded by LCMNB classifiers. The opposite was true when the number of features employed was markedly larger than the “optimal” number of features for this data set. Nonetheless, these LCMNB performances were worse than the classification performance achieved by SNB when the “optimal” number of features for the data set was utilised. TNB classifiers systematically outperformed both SNB and LCMNB classifiers. Conclusions The classification results obtained in this study concur with the mathematical based guidelines given in MMG’s paper—that is, ignoring the role of absence of a feature out of hand does not necessarily improve classification performance of the SNB approach; if anything, it could make the performance of the SNB method worse. The results obtained also lend support to the rationale, on which the TNB algorithm rests: handled judiciously, taking into account absence of features can enhance (not impair) the discriminatory classification power of the SNB approach.Publisher PDFPeer reviewe

    In silico target prediction for elucidating the mode of action of herbicides including prospective validation.

    Get PDF
    The rapid emergence of pesticide resistance has given rise to a demand for herbicides with new mode of action (MoA). In the agrochemical sector, with the availability of experimental high throughput screening (HTS) data, it is now possible to utilize in silico\textit{in silico} target prediction methods in the early discovery phase to suggest the MoA of a compound via\textit{via} data mining of bioactivity data. While having been established in the pharmaceutical context, in the agrochemical area this approach poses rather different challenges, as we have found in this work, partially due to different chemistry, but even more so due to different (usually smaller) amounts of data, and different ways of conducting HTS. With the aim to apply computational methods for facilitating herbicide target identification, 48,000 bioactivity data against 16 herbicide targets were processed to train Laplacian modified NaĂŻve Bayesian (NB) classification models. The herbicide target prediction model ("HerbiMod") is an ensemble of 16 binary classification models which are evaluated by internal, external and prospective validation sets. In addition to the experimental inactives, 10,000 random agrochemical inactives were included in the training process, which showed to improve the overall balanced accuracy of our models up to 40%. For all the models, performance in terms of balanced accuracy of ≄80% was achieved in five-fold cross validation. Ranking target predictions was addressed by means of z-scores which improved predictivity over using raw scores alone. An external testset of 247 compounds from ChEMBL and a prospective testset of 394 compounds from BASF SE tested against five well studied herbicide targets (ACC, ALS, HPPD, PDS and PROTOX) were used for further validation. Only 4% of the compounds in the external testset lied in the applicability domain and extrapolation (and correct prediction) was hence impossible, which on one hand was surprising, and on the other hand illustrated the utilization of using applicability domains in the first place. However, performance better than 60% in balanced accuracy was achieved on the prospective testset, where all the compounds fell within the applicability domain, and which hence underlines the possibility of using target prediction also in the area of agrochemicals.BASF SE, Unilever, European Research Council (Starting Grant ERC-2013-StG-336159 MIXTURE

    Virtual Affinity Fingerprints for Target Fishing: A New Application of Drug Profile Matching

    Get PDF
    We recently introduced Drug Profile Matching (DPM), a novel virtual affinity fingerprinting bioactivity prediction method. DPM is based on the docking profiles of ca. 1200 FDA-approved small-molecule drugs against a set of nontarget proteins and creates bioactivity predictions based on this pattern. The effectiveness of this approach was previously demonstrated for therapeutic effect prediction of drug molecules. In the current work, we investigated the applicability of DPM for target fishing, i.e. for the prediction of biological targets for compounds. Predictions were made for 77 targets, and their accuracy was measured by Receiver Operating Characteristic (ROC) analysis. Robustness was tested by a rigorous 10-fold cross-validation procedure. This procedure identified targets (N = 45) with high reliability based on DPM performance. These 45 categories were used in a subsequent study which aimed at predicting the off-target profiles of currently approved FDA drugs. In this data set, 79% of the known drug-target interactions were correctly predicted by DPM, and additionally 1074 new drug-target interactions were suggested. We focused our further investigation on the suggested interactions of antipsychotic molecules and confirmed several interactions by a review of the literature

    The Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning

    Get PDF
    Here we report PPB2 as a target prediction tool assigning targets to a query molecule based on ChEMBL data. PPB2 computes ligand similarities using molecular fingerprints encoding composition (MQN), molecular shape and pharmacophores (Xfp), and substructures (ECfp4), and features an unprecedented combination of nearest neighbor (NN) searches and NaĂŻve Bayes (NB) machine learning, together with simple NN searches, NB and Deep Neural Network (DNN) machine learning models as further options. Although NN(ECfp4) gives the best results in terms of recall in a 10-fold cross-validation study, combining NN searches with NB machine learning provides superior precision statistics, as well as better results in a case study predicting off-targets of a recently reported TRPV6 calcium channel inhibitor, illustrating the value of this combined approach. PPB2 is available to assess possible off-targets of small molecule drug-like compounds by public access at ppb2.gdb.tools
    corecore