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Abstract  

The rapid emergence of pesticide resistance has given rise to a demand for herbicides with 

new mode of action (MoA).  In the agrochemical sector, with the availability of experimental 

high throughput screening (HTS) data, it is now possible to utilize in silico target prediction 

methods in the early discovery phase to suggest the MoA of a compound via data mining of 

bioactivity data. While having been established in the pharmaceutical context, in the 

agrochemical area this approach poses rather different challenges, as we have found in this 

work, partially due to different chemistry, but even more so due to different (usually smaller) 

amounts of data, and different ways of conducting HTS. With the aim to apply computational 

methods for facilitating herbicide target identification, 48,000 bioactivity data against 16 

herbicide targets were processed to train Laplacian modified Naïve Bayesian (NB) 

classification models. The herbicide target prediction model (“HerbiMod”) is an ensemble of 

16 binary classification models which are evaluated by internal, external and prospective 

validation sets. In addition to the experimental inactives, 10,000 random agrochemical 

inactives were included in the training process, which showed to improve the overall 

balanced accuracy of our models up to 40%. For all the models, performance in terms of 

balanced accuracy of ≥ 80% was achieved in five-fold cross validation. Ranking target 

predictions was addressed by means of z-scores which improved predictivity over using raw 

scores alone. An external testset of 247 compounds from ChEMBL and a prospective testset 

of 394 compounds from BASF SE tested against five well studied herbicide targets (ACC, 

ALS, HPPD, PDS and PROTOX) were used for further validation. Only 4% of the 

compounds in the external testset lied in the applicability domain and extrapolation (and 

correct prediction) was hence impossible, which on one hand was surprising, and on the other 

hand illustrated the utilization of using applicability domains in the first place. However, 

performance better than 60% in balanced accuracy was achieved on the prospective testset, 
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where all the compounds fell within the applicability domain, and which hence underlines the 

possibility of using target prediction also in the area of agrochemicals. 
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Introduction 

In agriculture, crop protection is carried out by application of chemical pestices of which 

herbicides are the extensively used class that account for nearly 60% of pesticide 

applications.
1
 But application of herbicides have been found to have environmental effects 

concerning off-target organisms and resistance issues. Herbicide resistance can be defined as 

the condition of a plant’s ability to withstand the standard dose of a herbicide as a 

consequence of genetic response to frequent exposure to herbicides with an analogous mode 

of action (MoA).
2
 More than 450 herbicide-resistant weeds have been catalogued across the 

world, and this number is expected to grow even further.
3
 To combat the resistnace issue, an 

often-used approach is one where herbicide-resistant weed is managed by rotating with an 

alternative herbicide from a different MoA class in practice.
4
  

As a result of such resistance developments, the search for herbicides with novel modes of 

action remains a high priority
5
 - “There is an urgent need for new herbicide options or a new 

weed management paradigm”, as has been commented by Tranel et al.
4 

In addition to loosing 

biological efficacy, regulatory issues also led to some of the older herbicides with unique 

MoAs losing their marketplace in a few countries, for example the banning of paraquat in 

some European countries, making the development of ingredients with novel (and in some 

way superior) properties important at the current stage.
6
 Over the last 40 years, 270 herbicide 

active ingredients possessing 17 identifiable and distinct modes of action have been found, 

based on the empirical screening of chemicals on the whole target organisms. For new 

herbicide chemistries, the mode of action has always been discovered in retrospect even 

though subsequent attempts have been made to utilize this knowledge to aid in discovery and 

optimization of further instances.
7
 

In the last couple of decades, however, the initial stages of herbicide discovery have adopted 

the application of in vitro assays against specific molecular targets as well as high throughput 
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screening (HTS), in addition to the previously existing direct testing of compounds on whole 

plants (i.e., conventional phenotypic screens).
8,9

 

This wealth of target-based bioactivity data can now be utilized for in silico target prediction, 

which has been established in other areas for a while now - in drug discovery, the concept of 

employing bioactivity data for ligand-target prediction (for a review on target prediction, 

please refer the work of Jenkins et al.
10

 and Koutsoukas et al.
11

) has received considerable 

attention in recent times for identification of mode of action. 
10,12,13,14,15

 The purpose of in 

silico approaches is that by exploiting prior knowledge of ligand-target interactions, available 

in various databases either public or commercial, make knowledge based predictions for 

novel molecules or to suggest new probable target interactions for previously marketed 

compounds. This further aids in the hypothesis of mode of action for new molecules. The 

most commonly used in silico target prediction methods are the multiclass Naïve Bayes
16

, 

Similarity Ensemble Approach (SEA)
17,18

, Support Vector Machines (SVM)
19

, the PASS 

method (Prediction of the Activity Spectra of Substances)
20

 , Random Forests (RFs)
21,22

, 

Parzen-Rosenblatt Window
23

, and the Winnow algorithm
24

. Although a number of 

methodologically different in silico target prediction approaches exist, in the following we 

will limit our analysis to ligand-based target prediction algorithms that employs fingerprints 

combined with Bayes-based approaches.  

In one of the earlier studies, Multiple-Category Bayesian models were employed by Nidhi et 

al.,
16

 for 964 target classes where data from the WOMBAT database
25

 were used for model 

training which predicted the three most likely protein targets for all MDDR database 

compounds, leading to on an average of 77% correct predictions. In the studies by Nigsch et 

al.,
24

 Naïve Bayesian and Winnow algorithms were applied on 20 drug targets from 

WOMBAT database to compare and evaluate their performances. Both  classifiers were 

observed to perform similar overall, but differed significantly between target classes and 
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among individual structures. Similarly, Koutsoukas et al.
15

 compared the Naïve Bayes and 

Parzen-Rosenblatt Window by training the classifiers on a benchmark dataset on 894 human 

protein targets with more than 155,000 compound-protein pairs; and achieved a recall of 

63.3% and 66.6% on an external dataset. The study also suggested that the model 

performance significantly depends on the class size and underlying diversity of the chemical 

compounds; where with low structural similarity and small class size the performance is 

badly affected.  

Several target prediction studies – such as the ones above - have been based on the Naïve 

Bayes classifier (NB) in the field of drug discovery, and generally good prediction 

performance has been obtained at suitable speed of training models, which was likely helped 

by the ability of the models to handle noisy data reasonably well.
16

  

Computational methodologies have been previously explored and developed for the rational 

design of agrochemicals.
26

 In the last couple of decades, approaches based on graph-

theoretical descriptors have been explored for the design of bioactive agents.
27,28

 There also 

have been computational approaches for identification
29

 and classification of fungicides 

based on toxicity
30

, and QSAR models designed towards the design of fungicides with a 

defined resistance risk using sub-structural descriptors.
31

 These methodologies, especially in 

fungicides, were intended for the discovery and identification of novel leads that are potential 

candidates with a wide spectrum of action against various fungicide species and possibly act 

by means of different modes of action with low resistance issues. The objective of such 

methods was to execute substantial screenings of available databases of heterogeneous series 

of compounds and to extract possible structural information at different levels of molecular 

diversity and complexity. These methods, supported by computer-aided drug design 

techniques, have been developed rapidly in recent years.
31

  

In this work, taking into consideration this previous experience, we now attempted to extend 
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the work of in silico target prediction to the area of agrochemicals, namely to  herbicide 

target prediction and elucidation of modes of action (visualized in Figure 1).  Figure 1 also 

summarizes the data we had at hand for model training, comprising 16 herbicide target 

classes with nearly 48,000 tested compounds (known actives and inactives) across different 

species and including external and prospective test sets for further validation. Hence the 

herbicide target prediction model (“HerbiMod”) is an ensemble of 16 binary classification 

models which are evaluated by internal, external and prospective validation sets (see 

following sections for details).    
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Materials and Methods 

Data preparation and standardization 

In the current work, BASF proprietary compound screening database was queried and a 

subset of all herbicide protein targets and tested compounds of the whole bioactivity data 

were made available. Herbicide targets possessing either less than 50 tested compounds 

(including both actives and inactives) or very few (<10) active compounds were excluded 

from further analysis since it was apparent from previous studies that models generated on 

very small datasets would not be reliable.
32

 After filtering out such targets, the dataset 

consisted of 16 targets associated with around 48,000 compounds that were tested in enzyme 

assays, with bioactivities measured in either dose-response curves (i.e. providing IC50 values) 

or percentage inhibition values (Table 1; Note that the number of datapoints listed here does 

not necessarily represent all data available within BASF, but rather the subset used for 

training this particular type of model). 

This herbicide dataset consisted of compounds tested on some of the well-explored herbicide 

targets that were organism specific (plant species), namely ACC (Acetyl-CoA carboxylase, 

Uniprot-Q94FR5)
6,33,34,35,36,37

, ALS (acetolactate synthase, Uniprot-Q94FR5)
6,33,7,38,39

, HPPD 

(4-hydroxyphenylpyruvate dioxygenase, Uniprot-P93836)
20,7,28,41,42,1

, PROTOX 

(protoporphyrinogen IX oxidase, Uniprot-Q9FYV8)
33,7,1,43,44

, and PDS (phytoene desaturase, 

Uniprot-P26294)
33,7,42,45,46

 as well as a number of proprietary targets which cannot be 

mentioned in this study. The targets are from here on referred to as H01-H16.  

 

Bioactivity threshold 

Defining a bioactivity threshold for considering compounds as actives or inactives varied 

considerably between target classes – and this was a major task in the current work, 

compared to (relatively) more homogenous bioactivity data available in the pharmaceutical 
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area. In the pharmaceutical context, e.g., in HTS campaigns, often compounds with a 

bioactivity of better than 10µM (pIC50 > 5; where pIC50 = -log10IC50) are considered as 

actives.
26, 27

 However, for the data at hand in the current study, this would in some cases have 

led to a very small number of actives (or even no actives), and in other cases to too large a 

number of active compounds – it seems that agrochemical screening data, and even less so 

than pharmaceutical screening data, rarely follows a neat normal distribution of bioactivities 

amenable to such consistent bioactivity cut-offs across assays. As the compounds for this 

study come from historical data (and from sometimes multiple assays which have been 

performed for a given target), the bioactivity threshold to be chosen a priori in the majority 

of assays was unknown. Hence, two options were investigated to proceed in practice. One 

option was the utilization of fixed activity thresholds, since for some target assays the activity 

threshold was known (as suggested by biological experts) i.e., for actives pIC50 ≥ 6 and 

inactives pIC50 ≤ 5.3. However for the majority of target assays this information was not 

available, and hence after manually examining the activity distributions in different 

bioactivity classes a fixed threshold of pIC50 ≥ 5 (10 µM) was used for actives, and pIC50 ≤ 

4.3 (50 µM) was used for inactives. A gap of 0.7 log unit was defined to increase the 

likelihood of ‘active’ compounds being indeed active and ‘inactive’ compounds being indeed 

inactive, given experimental uncertainty. (This gap is similar to the one suggested in recent 

studies discussing experimental uncertainty, which mentions a mean error of 0.44 pKi units
47

 

for bioactivity data from public sources, which similar to the current study also span different 

types of experimental assay setups.) The other option was using compounds with all IC50 

values as actives (since in cases where dose-response curves have been determined this led us 

to conclude that the compounds have been considered as ‘actives’ in this particular screen), 

and all compounds with percentage inhibition values below 50% as inactives. Both the 

options were investigated on all target classes for model building and based on model 
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performance class-specific decision was taken.  

Tautomeric compounds and duplicates were manually analysed and annotated as active or 

inactive or discarded. Subsequently, a unique target identifier from UniProt was assigned to 

all targets, enabling easy access to protein information on all the target classes.  

 

Increasing the size of the inactive dataset 

In order to increase the chemical space covered by the inactive dataset a set of 10,000 

inactive compounds was randomly extracted from the BASF in-house database comprising 

all the pesticide indications (herbicides, fungicides and insecticides) which were then 

included in all the 16 inactive datasets. This step has been found to be necessary to generate 

sets of inactive compounds of sufficient size, given that some targets only contained an 

insufficient number of experimentally annotated inactive compounds. In machine learning 

experiments, it has previously been observed that the inclusion of random inactive training 

instances influences the performance of the classifier, and at least in some cases also shows 

improvement in precision.
48

 The influence of adding random inactives to the known inactives 

on model performance has been previously analysed
48,49

 and was also further evaluated in our 

work  on this particular pesticide dataset, where two separate models, one with, and the other 

without inclusion of random inactives were trained and analysed. The average predictive 

measures were calculated from five-fold cross validation and compared for both the models 

on individual targets. 

 

External validation dataset 

With the pesticide-like (agrochemical) data recently becoming available in ChEMBL 

database, ChEMBL_20
50

 was used to generate an external test set for the five targets 

mentioned in the current study that are tested only on the plant species. As not all the 
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compounds were annotated as actives or inactives we applied the fixed threshold for this 

dataset where compounds with IC50, Ki and ED90 values below 10 µM were considered as 

actives, and those with values equal to or above 10 µM, as well as compounds with less than 

50% inhibition values, were considered as inactives. Duplicates were removed and 

compounds with conflicting bioactivities were discarded. A total of 250 compounds thus 

formed the external test set, comprising 165 active and 85 inactive compounds.  

 

Prospective validation dataset 

With the aim to apply HerbiMod to novel unseen compounds and to further estimate the 

predictive ability on such new molecules, 394 compounds were prospectively tested in the 

assays against ACC, ALS, HPPD, PDS and PROTOX by BASF. Standard inhibitors were 

included in the dataset that was checked for consistency in order to allow comparison of data. 

This testset consisted of very few active compounds in each class; 7 in ACC; 11 in ALS; 2 in 

HPPD; 6 in PDS and 65 in PROTOX. None of the 394 compounds were included in any of 

the previous datasets used for model building or model evaluation and hence constitute a true 

prospective validation dataset.  

 

Molecular fingerprints 

In the current work, Atom Environments
39

 also known as MOLPRINT 2D descriptors, were 

used as molecular representation. These atom environments are similar to Scitegic ECFP 

fingerprints, Signature Molecular Descriptors
35

 and also Augmented Atoms.
36

 In 

MOLPRINT 2D 
51

, an individual atom fingerprint is calculated for each of the heavy atoms in 

a molecule which have been assigned Sybyl mol2 atom types, and stored in a count vector, 

where the vector elements are counts of atom types at a certain distance from the central 

atom. In this work, calculations were performed by employing distances from 0 up to 2 



12 

 

bonds.  

Feature selection 

Feature selection
40

 is originally employed to select the top features for the nodes of a decision 

tree; however the underlying concept of information content is in general applicable.
51

 The 

information gain measure of Quinlan
41,42

 was employed for computation of information 

content of individual atom environments. Bender et al.
51

 in their work have shown how a 

number of selected features can influence the mean percentage of active compounds found in 

the Top 5% of the ranked library and so 250 features were selected in the current study for 

each model generation. 

 

Classification using Laplacian-modified Naïve Bayesian classifier 

The Naïve Bayes (NB) classifier
51

 was used as the classification method which follows the 

Bayes rule of conditional probability. The classifier was trained on the feature vector (F) 

containing features fi with their associated target classes (TC) for a given dataset. For a new 

feature vector the classifier then predicts the class it belongs to as the class with maximum 

probability of P(TC|F) which is calculated as follows: 

𝑃(𝑇𝐶𝑛|𝐹) =  
𝑃(𝑇𝐶𝑛) 𝑃(𝐹|𝑇𝐶𝑛)

𝑃(𝐹)
 

 

where P(TCn) is the probability of class n, P(F) is the probability of feature vector and 

P(F|TCn) is the probability of feature F for target class n. This classifier is said to be ‘naïve’ 

because of its assumption that the features are independent. Based on this assumption, for two 

datasets (actives and inactives for a given target class), the binary NB classifier used for 

classification is given as 

𝑃(𝑇𝐶1|𝐹)

𝑃(𝑇𝐶2|𝐹)
=  

𝑃(𝑇𝐶1)

𝑃(𝑇𝐶2)
∏

𝑃(𝑓𝑖|𝑇𝐶1)

𝑃(𝑓𝑖|𝑇𝐶2)
𝑖
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where molecules for the given dataset are characterised by their feature vectors F. Laplacian 

correction was employed in order to keep the calculations running when the feature for a new 

molecule is not observed in the training datasets. We consider highest probability ratios to 

most likely belong to class 1 (active class in our case) and lowest values to class 2 (inactive 

class) for a given target class. 

 

Model assessment and validation 

Studies
43

 have shown that model accuracy can be determined by building a model using a 

portion of the training dataset, and computing the prediction accuracy of the model using the 

rest of the dataset.
44

 

To assess our models, v-fold cross validation
52

 technique of model assessment was 

performed. Five-fold cross-validation method was performed where the datasets were split 

into five equal folds. Each time one fold was used as the test set while the rest was used for 

training the classifier. The trained classifier was then tested with the test set. This process was 

repeated five times over each fold, thus ensuring that every compound was used in the 

prediction once. The prediction results over all the folds were then averaged to compute the 

average predictive measures.  

 

Predictive measures 

The predictive measures, viz., true positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) rate were computed for a range of score cut-offs. For all the classification 

models, a mean of all the five-folds was calculated followed by sensitivity (SN) and 

specificity (SP). Sensitivity and specificity given by recall and precision, respectively, are 

complementary measures commonly used for information retrieval and are used to measure 

the effectiveness of a classifier.
46
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The sensitivity is calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

and specificity is calculated as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Balanced accuracy measures the performance of a model by valuating the two classes equally 

regardless of the class size and is considered to be more effective than using accuracy alone. 

It is computed using the equation given below,  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

In machine learning, to measure the quality of binary (two class) classifications, the 

Matthews correlation coefficient (MCC)
47

 is one of the frequently used predictive measures 

and was also calculate in our work as follows:  

𝑀𝐶𝐶 = (𝑇𝑃 ∗ 𝑇𝑁) – (𝐹𝑃 ∗ 𝐹𝑁) /√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
 

However, it can fail to provide a fair evaluation, for example, MCC will be high in cases 

where the predictive models give very few or no false positives but at the same time very few 

true positives.
53

 

 

Optimization of classification cut-offs 

Probabilistic modelling techniques generally result in a predictive probability which is then 

transformed into a “yes or no” (active or inactive in our study) classification. Conventionally, 

the default is set to use a threshold of 0.5 but this does not certainly result in the highest 

prediction accuracy and hence represents parameters that need to be optimized.
54

 The 

thresholds, alternatively, can also be chosen to optimize classification accuracy which is to 
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empirically determine the prior as is described Bayesian approaches.
55

 In this work, for each 

model a range of thresholds were computed based on the raw scores. At each threshold all the 

predictive measures were computed and a cut-off was chosen based on the highest balanced 

accuracy.  

 

Transforming raw scores from Naïve Bayesian to standard score (z-score) 

The probable targets for the test compounds were ranked based on z-score statistics (also 

referred to as a ‘standard score’). The z-score approach
56

 allows to calculate the probability 

of a score occurring within a distribution (generally, normal distribution) and aids to compare 

two scores that are from two different target distributions.
57

 The z-score is calculated from 

raw score of each data point in a sample or population relative to the sample’s mean and 

standard deviation as follows: 

𝑍 =  
𝑥 − µ

𝜎
 

 

where x is the raw score, and µ and 𝜎 are the mean and standard deviation of a population 

(active training set for each model, in our study), respectively. In the current work, each of 

the active dataset per model was input into its own model to calculate the mean and standard 

deviation obtained for active compounds from their raw scores. Z-scores were then calculated 

for both actives and inactives using the above equation.  

Based on z-scores for each target model, recall analysis was then performed to evaluate every 

model’s ability to predict the true target in the top 3 positions. For this analysis, active 

compound set of each target class were tested on all the final 16 models. The Naïve Bayes 

raw score for each tested (active) compound was transformed into a z-score for all the 

predicted targets. The z-scores were sorted in descending order, with the hypothesis that 

moving from raw scores to z-scores would allow for an improved comparison between 

models.  
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Applicability domain (AD) 

 

In order to define AD for our herbicide and fungicide models, the k-nearest neighbours 

method
58

 (k-NN, k=5 in our work) was employed. For all the target classes, the dataset was 

divided into five sections as done in five-fold cross validation. For each fold – as a test set, 

the final model was applied to predict activity class (active/inactive). Each prediction was 

then analysed for prediction error, where for each false prediction the prediction error was 

counted. Further, for each test compound, distance was calculated by averaging similarities 

(in terms of Tanimoto coefficient) of five nearest training neighbours (NN) and computing 1- 

NN. Theoretically, lower distance values correspond to a higher similarity, whereas the 

increasing distances indicate higher levels of structural difference. These calculations were 

performed for all the five folds and merged for each target class. The distances were binned 

into thresholds (nbins = 40) and frequencies of number of compounds along with number of 

prediction errors at the distance were estimated. Plotting prediction error against the distance 

assisted in defining the maximum acceptable prediction error and also aided in deriving the 

maximum allowed distance for the new test compounds.  
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Results and Discussions 

Diversity analysis 

For understanding the chemical diversity of our herbicide dataset, pair-wise Tanimoto 

similarity was computed for each active compound with every other active compound in its 

activity class
59

, and distributions were plotted as shown in Figure 2. It is observed that the 

majority of the target classes consisted of rather diverse active compounds, where the mean 

similarity was less than 0.3 in all the target classes. Taking into consideration the active 

datasets for four of the five well studied targets, it can be seen that target classes ACC, 

HPPD, PDS and PROTOX on average had less than 0.1 Tanimoto similarity, while for ALS 

the similarity was fairly broadly distributed with a mean of 0.27. Hence, this analysis shows 

that the current dataset is composed of a diverse set of bioactive compounds which is used for 

model building and that might capture a relatively wider chemical space for our predictive 

models. Employing a diverse (or heterogeneous) data however represents a heavy limit for 

most of the in silico methods given that the models are extensively dependent on the data 

used.    

 

Model validation and evaluation 

Table 2 summarizes the predictive measures MCC, sensitivity, specificity and balanced 

accuracy, obtained at the NB score threshold (cut-off) where highest balanced accuracy was 

observed. The model performance was observed to be more than 80% for all the models with 

a mean performance of 92.42% and standard deviation of 6.6%. It was observed that for 

herbicide models H03, H04, H06, H08 and H16 had classification accuracy of 0.9 to 1.0 in 

terms of balanced accuracy at a target-specific threshold. In Figure 2, it can be seen that for 

these target classes the compounds were observed to be relatively less diverse with average 

similarity between 0.2 – 0.3 in terms of Tc, thus indicating high predictive ability of these 
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models. Also, the z-score distributions between actives and inactives of these classes showed 

a clear separation (refer Figure S1), further suggesting such high performance. While for the 

other target models that included target like ACC, ALS, HPPD, PDS, PROTOX, slightly 

lower model performance was observed which may be because of the high diversity 

(similarity less than 0.2 as seen in Figure 2) and also due to the overlapping region in the z-

score distributions (seen in Figure S2) of these target class. 

The results of the recall analysis in top 1-3 positions based on raw scores and z-scores, were 

plotted as seen in Figure 3. It was observed that for 10 of the 16 modes, raw score gave 

higher predictions in top 3 positions than z-score. For all the models a recall of more than 

80% was achieved in the top 3 positions together based on z-scores. Except for target H01-

ACC, for all the other target models more than 90% of the true targets of compounds were 

predicted in the first position. Based on these results, raw scores were used for activity 

classification (active/inactive), and since z-scores provide confidence to the predictions given 

the fact that they are drawn from the target-specific distributions, the ranking of active 

predicted targets was determined by z-score.  

 

Influence of adding random inactives on model performance 

On evaluating the balanced accuracies for all the targets, it was found that inclusion of 

random inactives increased the model performance (balanced accuracy) by an average of 

13% (see Figure 4 and Table S1). Hence overall it was clearly seen that the addition of 

random inactives played a positive role in the successful classification of compounds which 

was also observed by Kurczab et al.
48

 and Heikamp et al.,
60

 in their studies.  
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Defining applicability domain  

By employing k-nearest neighbours approach (k-NN, k=5 in our work), AD was defined by 

computing the distance (1-Tc) for each compound of the test set to the nearest neighbour in 

the training set and was achieved for all the folds as divided in a five-fold cross validation 

method. The distances were binned into thresholds (0.0 to 1.0) and frequencies of number of 

compounds along with number of prediction errors at the distance were estimated. Plotting 

the distance to prediction error assisted in defining the maximum acceptable prediction error 

and also aided in deriving the maximum allowed distance for the new test compounds, which 

in case of our models was set to 0.09 to 0.42. The maximum allowed distance (in terms of 

Tc) for each target model is listed in Table 3. Further, five nearest training neighbours to the 

test set were computed based on Tanimoto similarity coefficient to assist in extrapolation of 

the applicability domain.    

 

 

External validation 

Next, the compounds extracted from ChEMBL database were investigated for model 

validation, with the first step being the estimation whether they lie in the applicability domain 

of our models. Surprisingly, only 15 compounds (listed in Table S2) were found to have Tc 

similarity > 0 to the training sets, meaning that the remainder of the 235 compounds had no 

similarity, or in fact shared features, at all, to the compounds used in the training set and 

hence lied outside the applicability domain of our models. Accordingly, results from 

HerbiMod showed that for the compounds with no similarity to the compounds in the training 

set, no targets were predicted above the cut off, and for the 15 compounds with similarity 

greater than zero (maximum Tc of 0.034) the predictive measures were calculated, TP = 6, 

TN = 2, FP = 4 and FN = 3. Also, the dataset contained three well-known marketed HPPD 
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inhibitors like sulcotrione, mesotrione and nitisinone (Figure 5) that were correctly predicted 

by HerbiMod as inhibitors of HPPD. The average Tc similarity of the five nearest neighbours 

in the active set of HPPD was 0.034, 0.033 and 0.035 for nitisinone, mesotrione and 

sulcotrione, respectively, and even though the structural similarity of these compounds was 

very low compared to the training dataset, the model could predict the target HPPD correctly 

for these compounds.  

However, overall due to small sample size not many conclusions can be drawn from this 

result, except that chemistry even against the same target, when derived from different 

sources, can be very different, and that it is hence important to determine if a model is 

applicable to those new parts of chemical space in the first place. On a positive note, the 

current models can be updated with the data becoming available from either in-house or 

public databases, and trained in a semi-automated process, and then be employed for 

prediction on a wider chemical space.  

 

 

Prospective validation 

Next, a prospective test set consisting of nearly 400 compounds were experimentally tested 

in-house against ACC, ALS, HPPD, PDS and PROTOX. The Tc similarity of these 

compounds to the nearest neighbour in the training set was analysed and found to be in the 

range of 0.21 to 0.6 (mean = 0.4 and stdv =0.2), with none of the compounds having a 

similarity of zero, therefore suggesting that this dataset lies in the applicability domain of our 

models. The results of predictive measures (sensitivity, specificity and accuracy) for all 5 

target models on the prospective test set are summarized in Figure 6. All the five target 

models achieved an accuracy of more than 60%. In case of targets like ACC and PROTOX, 

the specificity was 78% to 90%, but the sensitivity was only around 43% and 46%, 
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respectively. The targets ALS, HPPD and PDS fared better, where the sensitivity was 73%, 

100% and 67%, respectively, and specificity amounted to 84%, 96% and 68%. It is also 

important to note that very few compounds that were actual actives were present in this 

dataset, for example, in case of HPPD only two actives were tested. Although these results 

are lower for some target classes than the results of the five-fold cross validation, they are 

likely to be closer to real world applications, where new compounds may come from a 

previously un- or underexplored area of the chemical space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

Conclusion 

In the current work, with the aim to utilize historical agrochemical bioactivity data from a 

large agrochemical company, an in silico herbicide target prediction model was developed by 

employing a Naïve Bayesian classifier trained on molecules tested against 16 herbicide 

targets.  

Assigning activity thresholds turned out to be less trivial than one might have anticipated, and 

on investigating the approaches for differentiating actives and inactives; for five target classes 

a fixed threshold was set, while for the other eleven targets the type of reported activity units 

(compounds with IC50 values as actives and inhibition values as inactives) was used for 

differentiation.  

All the herbicide models achieved an averaged balanced accuracy of more than or equal to 

80% in the five-fold cross validation. Classification was achieved by utilising target-specific 

raw NB score cut-off and ranking of the probable targets was established by z-scores, since z-

score represented the underlying distribution of compounds (actives/inactives) for each target 

class. When generating datasets, 10,000 agrochemical random inactives were included in the 

inactive training set, a step which was found to have a minimum of 3% and maximum of 40% 

positive influence on all of the model’s performance in terms of balanced accuracy, which 

was also observed to be in agreement with similar previous studies.  

The external validation set used for assessing our models represented completely new 

chemistry and lied outside the applicability domain of the models, and hence the model was 

unable to make predictions on such a dataset. This underlines the difference in chemotypes 

present in bioactivity data from different sources, even against the same protein targets, and 

the necessity to evaluate applicability domains before applying a model. On the contrary, the 

prospective validation set represented compounds that lied in the applicability domain of our 

models and hence extrapolation in this case was possible with 60% overall accuracy on five 
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targets. The predictive ability of our models on the external test set and prospective set 

provided a realistic assessment of in silico modelling approach and hence presents a real 

world application. Five nearest training neighbours to the test set were computed based on 

Tanimoto similarity coefficient to assist in extrapolation of the applicability domain.    

With these results obtained from our approach, we conclude that exploiting in silico target 

prediction indeed presents a way to elucidate mode of actions for new agrochemical 

compounds. This however is highly dependent on the applicability domain of the models, as 

was apparent from the application of ChEMBL external dataset. Still, on the positive side any 

new activity data for molecules as well as new targets can easily be added to the model, 

thereby taking advantage of all data available at any point in time. 
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Figures 

 

 

Figure 1. Schematic representation of an in silico target prediction workflow. For a 

computational model to predict protein targets of small molecules, firstly target class models 

for up to 16 proteins targets with 48,000 compounds are constructed with application of the 

Naïve Bayesian Classifier. A chemical structure input (shown on the left) in the model 

(shown in the center) can then be annotated with its likely targets based on the probability 

classification score (shown on the right) generated by the model. These predictions can then 

be ranked based on the z-scores. 

 

 



30 

 

 

Figure 2. Distribution plots of pairwise compound similarity among the actives per target class for all the herbicide target classes. On the x-

axis is the similarity measure (Tanimoto coefficient) and on the y-axis is the density of the occurrences in the respective datasets. The 

compounds in majority of the classes are seen to be diverse with a mean Tanimoto coefficient of less than 0.3. The diversity of datasets 

contributes in covering a wider chemical space but at the same time can pose challenges in the predictive ability of the prediction models.
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Figure 3. Recall analysis assessing predictive ability of the herbicide models based on raw 

scores (A) and z-score (B) in top 1, top 2 and top 3 positions. From the plot it is seen that 

recall based on Z- scores generated higher prediction results than raw scores and consistently 

yielded more than 80% correct predictions for all the target models in top 1-3 positions. 
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Figure 4. Balanced accuracy achieved by performing 5-fold cross validation for all the 

herbicide models built with and without random inactives (RI) and the percent influence of 

adding RI. It is observed that the models with inclusion of RI performed nearly 3% - 40% 

better than the model with no RI, which is in agreement with previous studies. 
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Figure 5. Examples of a class of triketone compounds in the external testset, which are 

marketed herbicides and are known to specifically inhibit HPPD. The average Tc similarity 

of the 5 nearest neighbours (5-NN) in the active set were 0.034, 0.033 and 0.035 for nisinone, 

mesotrione and sulcotrione respectively, and despite those low similarities they were 

correctly identified as inhibitors of HPPD by HerbiMod.  
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Figure 6: Results of the prospective validation test set for 394 compounds tested on the five 

well studied herbicide targets. Overall, balanced accuracy of more than 60% is seen to be 

achieved for all the target classes. These results illustrate the predictive ability of HerbiMod 

for elucidating the mode of action of new compounds which, importantly, fall into the 

applicability domain of the model. 
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Table 1: The number of active and inactive compounds tested against 16 herbicide target 

classes and the total number of compounds including the random inactives used for training 

the NB models. (Note that the number of datapoints listed here does not necessarily represent 

all data available within BASF, but rather the subset used for training this particular type of 

model.) ‘H’ in the model-column represents ‘herbicide’ target. Five well studied herbicide 

targets, ACC, ALS, HPPD, PDS and PROTOX are named in the table. It can be seen that 

target classes are highly imbalance where some classes contain more actives than inactives 

and vice a versa. 

Target ID Actives Inactives Actual tested 

compounds 

Total training 

compounds 

(including 10,000 

random inactives) 

H01 – ACC 310 3,054 3,364 13,364 

H02 – ALS 1,454 4,129 5,583 15,583 

H03 34 477 511 10,511 

H04 277 636 913 10,913 

H05 94 857 951 10,951 

H06 41 87 128 10,128 

H07 - HPPD 4,161 1,884 6,045 16,045 

H08 40 638 678 10,678 

H09 87 780 867 10,867 

H10 517 432 949 10,949 

H11 1,192 3,125 4,317 14,317 

H12 – PDS 737 1,339 2,076 12,076 

H13 88 601 689 10,689 

H14 - PROTOX 4,741 2,139 6,880 16,880 
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H15 76 849 925 10,925 

H16 922 1,489 2,411 12,411 
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Table 2. Summary of model performance statistics for 16 herbicide target models at specific 

NB score cut-off. The cut-offs are chosen based on highest balanced accuracy for each 

model. 

Model Cut-off MCC Sensitivity Specificity Balanced 

accuracy 

H01 – ACC 

 

0 0.77 0.89 0.89 0.89 

H02 - ALS  

 

10 0.69 0.89 0.80 0.84 

H03 

 

10 0.99 1.00 0.99 1.00 

H04 

 

50 0.99 1.00 0.99 0.99 

H05 

 

0 0.60 0.94 0.65 0.80 

H06 

 

30 1.00 1.00 1.00 1.00 

H07-  HPPD 

 

0 0.82 0.97 0.86 0.91 

H08 

 

10 0.99 1.00 0.99 1.00 

H09 

 

10 0.92 1.00 0.92 0.96 

H10 

 

0 0.88 0.99 0.89 0.94 

H11 

 

20 0.63 0.87 0.76 0.81 

H12 – PDS 

 

0 0.79 0.98 0.81 0.89 

H13 

 

10 
0.80 0.82 0.98 0.90 

H14 – 

PROTOX 

 

220 0.86 0.93 0.94 0.93 

H15 

 

10 0.84 0.87 0.98 0.92 

H16 

 

360 1.00 1.00 1.00 1.00 
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Table 3. For each target model, a maximum allowed distance was set at the defined 

classification error of 0.2. The maximum allowed distance was observed to be 0.4 (in case of 

H07 - HPPD). 

Herbicide Model Maximum allowed distance (Tc) 

H01 – ACC 0.27 

H02 – ALS 0.24 

H03 0.18 

H04 0.19 

H05 0.21 

H06 0.22 

H07 – HPPD 0.41 

H08 0.1 

H09 0.12 

H10 0.23 

H11 0.09 

H12 – PDS 0.1 

H13 0.1 

H14 – PROTOX 0.42 

H15 0.09 

H16 0.39 
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Supplementary Material  

 

 

 

Figure S1. Z-score distribution of active and inactive compounds in the training sets of 

herbicide target classes H03, H04, H06, H08 and H16 showing relatively clear separation 

among the actives and inactives. It is seen that target H03 serves a case overlapping region 

which indicates false positives and/or false negatives.
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Figure S2.  Z-score distribution plots of active and inactive compounds in the training sets of 10 herbicide target classes that show overlapping 

distributions among the actives and inactives suggesting that area to constitute false positive and false negative predictions.
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Table S1. Influence of adding random inactives on the model performance of each of the 

individual herbicide target class. 

Target ID 

Balanced Accuracy - 

No Random 

Inactives 

Balanced Accuracy - 

With Random 

Inactives 

Influence 

(Balanced 

Accuracy) 

H01 - ACC 0.85492 0.89008 3.52% 

H02 - ALS 0.748986 0.843457 9.45% 

H03 0.789474 0.996659 20.72% 

H04 0.927917 0.99365 6.57% 

H05 0.653509 0.798109 14.46% 

H06 0.941176 0.999256 5.81% 

H07 - HPPD 0.757697 0.911414 15.37% 

H08 0.854331 0.995299 14.10% 

H09 0.774194 0.961253 18.71% 

H10 0.501214 0.940683 43.95% 

H11 0.680908 0.813871 13.30% 

H12 - PDS 0.826913 0.894295 6.74% 

H13 0.765931 0.899495 13.36% 

H14 - PROTOX 0.850276 0.930826 8.05% 

H15 0.874951 0.922038 4.71% 

H16 0.949495 0.997606 4.81% 
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Table S2. List of 12 compounds from the external dataset extracted from ChEMBL database 

associated to the five herbicide targets with their structures and associated targets. These 

compounds lie in the applicability domain of our models and for which predictions were 

generated.  

Herbicide target ChEMBL ID Chemical structure 

ACC 

CHEMBL38166 

 

CHEMBL2271423 

 

ALS CHEMBL2253256 
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CHEMBL2253235 

 

CHEMBL2251940 

 

HPPD 

CHEMBL2251435 

 

CHEMBL2251434 
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CHEMBL2251433 

 

CHEMBL1873440 

 

CHEMBL1337 

 

CHEMBL2252422 
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CHEMBL2251432 

 

PROTOX 

CHEMBL2145069 

 

CHEMBL1905010 

 

PDS CHEMBL1863061 

 

 


