10 research outputs found

    Optimize Energy Consumption of Wireless Sensor Networks by using modified Ant Colony Optimization ACO

    Full text link
    Routing represents a pivotal concern in the context of Wireless Sensor Networks (WSN) owing to its divergence from traditional network routing paradigms. The inherent dynamism of the WSN environment, coupled with the scarcity of available resources, engenders considerable challenges for industry and academia alike in devising efficient routing strategies. Addressing these challenges, a viable recourse lies in applying heuristic search methodologies to ascertain the most optimal path in WSNs. Ant Colony Optimization (ACO) is a well-established heuristic algorithm that has demonstrated notable advancements in routing contexts. This paper introduces a modify routing protocols based on Ant colony optimization. In these protocols, we incorporate the inverse of the distance between nodes and their neighbours in the probability equations of ACO along with considering pheromone levels and residual energy. These formulation modifications facilitate the selection of the most suitable candidate for the subsequent hop, effectively minimizing the average energy consumption across all nodes in each iteration. Furthermore, in this protocol, we iteratively fine-tune ACO's parameter values based on the outcomes of several experimental trials. The experimental analysis is conducted through a diverse set of network topologies, and the results are subjected to comparison against well-established ACO algorithm and routing protocols. The efficacy of the proposed protocol is assessed based on various performance metrics, encompassing throughput, energy consumption, network lifetime, energy consumption, the extent of data transferred over the network, and the length of paths traversed by packets. These metrics collectively provide a comprehensive evaluation of the performance attainments of the routing protocols

    Single Sink Repositioning Technique in Wireless Sensor Networks for Increasing Throughput and Decreasing Delay

    Get PDF
    Wireless sensor network (WSN) refers to a group of spatially spread and enthusiastic sensors for monitoring and recording the physical conditions of the environment and organizing the collected data at a central location. WSN becomes an energetic subject with the rapid development that is vulnerable to a varied high-quality of attacks due to deployment in the hostile environment. In WSN, throughput is defined as the amount of data transferred from one sensor node to another in a specified amount of time. Delay It refers to the total time taken for a single packet to be transmitted across a network from source to destination. The basic idea of sink relocation is to shorten the distance between sink node and sensor node. So, that significant power savings can be achieved. The problem of distant node energy consumption of wireless sensor node was solved by sink repositioning technique which has capability to move and communicate with all sensor node inside the region. The sink node and sensor node are randomly deployed within the geographic extent of the entire network. In order to test for the impact of repositioning the total power transmission of the sensors for the previous and next sink positions is evaluated and compared. This is result in increasing life time of sensor network by putting sink node at optimum location to decrease the distant node, increases throughput and decrease delay with sink node and analyze the difference. The main aim of the study was to increase throughput and decrease end to end delay. For this study we have used NS-2.35 environment for simulation. Our simulation results show that repositioning the sink achieves significant change on throughput and delay when compared to the static sink approach that have been presented by using network animator(NAM) and Xgraph. Keywords: WSN, Sink node, sensor node, throughput, delay and  sink reposition. DOI: 10.7176/CEIS/11-5-01 Publication date:September 30th 202

    Single Sink Repositioning Technique in Wireless Sensor Networks for Increasing Throughput and Decreasing Delay

    Get PDF
    Wireless sensor network (WSN) refers to a group of spatially spread and enthusiastic sensors for monitoring and recording the physical conditions of the environment and organizing the collected data at a central location. WSN becomes an energetic subject with the rapid development that is vulnerable to a varied high-quality of attacks due to deployment in the hostile environment. In WSN, throughput is defined as the amount of data transferred from one sensor node to another in a specified amount of time. Delay It refers to the total time taken for a single packet to be transmitted across a network from source to destination. The basic idea of sink relocation is to shorten the distance between sink node and sensor node. So, that significant power savings can be achieved. The problem of distant node energy consumption of wireless sensor node was solved by sink repositioning technique which has capability to move and communicate with all sensor node inside the region. The sink node and sensor node are randomly deployed within the geographic extent of the entire network. In order to test for the impact of repositioning the total power transmission of the sensors for the previous and next sink positions is evaluated and compared. This is result in increasing life time of sensor network by putting sink node at optimum location to decrease the distant node, increases throughput and decrease delay with sink node and analyze the difference. The main aim of the study was to increase throughput and decrease end to end delay. For this study we have used NS-2.35 environment for simulation. Our simulation results show that repositioning the sink achieves significant change on throughput and delay when compared to the static sink approach that have been presented by using network animator(NAM) and Xgraph. Keywords:- WSN, Sink node, sensor node, throughput, delay and  sink reposition. DOI: 10.7176/NCS/12-02 Publication date: January 31st 202

    Evaluation of routing protocol with multi-mobile sinks in WSNs using QoS and energy consumption parameters

    Get PDF
    An efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols in two phases: The first phase is used to evaluate the route quality and networks’ energy consumption on small WSN with one mobile Sink Node (SN) and GMSs. The second phase, is used to evaluate the route quality and networks’ energy consumption on large network (four WSNs) with GMSs. The two phases are implementated by creating five sceneries via using NS2.3 simulator software. The implementation results of the proposed performance evaluation technique have demonstrated that SMSNDRP gives better networks’ energy consumption on small single network in comparison with KM-DGP. Also, it gives high quality route in large network that used four mobile SN, in contrast to KM-DGP that used sixteen mobile SNs. While in large network, it found that KM-DGP with sixteen mobile SNs gives better networks’ energy consumption in comparison with SMSNDRP with four mobile SNs

    Joint routing protocol and image compression algorithm for prolonging node lifetime in wireless sensor network

    Get PDF
    Wireless sensor network (WSN) are among the emerging modern technologies, with a vast range of application in different areas. However, the current WSNs technology faces a key challenge in terms of node lifetime and network connectivity due to limited power resource of the node. The conventional data routing protocols do not consider the power available at the node on the path from source to sink, thus they result in the exhaustion and eventual death of nodes surrounding the sink node, thus generating routing holes reducing the network throughput. In order to address the issue in this research presents a novel protocol based on equal power consumption at all network nodes. The consume power fairly (CPF) protocol achieves a high power efficiency by distributing power consumption equal on all the network nodes. The protocol compares the power available on all the paths from source to sink and then selects the path with highest power. Additionally in order to reduce the transmitted data size, a lossy image compression technique based on adaptive Haar wavelet transform has been implemented. The simulation designs based on MATLAB consists of 100 randomly distributed nodes over an area of 100 m2, with 30 Kbits and 40 Kbits of packet sizes. The comparison between the proposed CPF protocol and the energy aware protocol has been carried out on the basis of number of iterations and the dead nodes in the network. Thorough simulations have been carried out based on different number of network iterations to validate the potential of the proposed solution. Moreover the implemenetation of multiscale retinex technique results in image enhancement and impoved classification. An implementation of the CPF protocol and image compression technique on a 100 node network with 500 iterations, results in the death of 13 nodes as compard to 38 dead nodes with energy aware protocol for the same network. Thus the performance comparision of CPF and energy aware protocol demonstrates an improvement of 81.19% for the energy consumption of the network. Thus the proposed algorithm prolongs the network under consideration by 57 – 62% as compared to networks with conventional routing protocols

    Energy-Efficient Node Deployment in Static and Mobile Heterogeneous Multi-Hop Wireless Sensor Networks

    Full text link
    We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points (APs) gather data from densely deployed sensors and transmit their sensed information to M heterogeneous fusion centers (FCs) via multi-hop wireless communication. This heterogeneous node deployment problem is modeled as an optimization problem with total wireless communication power consumption of the network as its objective function. We consider both static WSNs, where nodes retain their deployed position, and mobile WSNs where nodes can move from their initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal node deployment in static WSNs, we propose an iterative algorithm to deploy nodes. In addition, we study the necessary conditions of the optimal movement-efficient node deployment in mobile WSNs with constrained movement energy, and present iterative algorithms to find such deployments, accordingly. Simulation results show that our proposed node deployment algorithms outperform the existing methods in the literature, and achieves a lower total wireless communication power in both static and mobile WSNs, on average

    Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    No full text
    The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB

    Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    No full text
    The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB

    Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments

    Full text link
    Se están realizando muchos esfuerzos en la acuicultura para alcanzar la sostenibilidad, sin embargo aún está lejos de ser sostenible. Sus impactos sobre el medio ambiente pueden prevenirse y corregirse mediante el uso de sensores, desarrollando la conocida como acuicultura de precisión. La calidad del agua afecta el rendimiento de los peces. La temperatura y la salinidad son algunos factores que afectan al crecimiento de los peces. Sin embargo, otros factores como la turbidez, el fotoperíodo y el oxígeno disuelto entre otros pueden afectar a las necesidades nutritivas de los peces. Ajustar la cantidad de alimento necesario es crucial para garantizar la sostenibilidad de la acuicultura y para aumentar el beneficio económico de las instalaciones. Al monitorear la calidad del agua, es posible estimar las necesidades de alimentación. Sin embargo, no es suficiente. El monitoreo del comportamiento de los peces, especialmente durante el período de alimentación, puede ayudar a adaptar el alimento proporcionado. Entonces, si está tan claro que el monitoreo puede ayudar a la producción acuícola, ¿por qué no vemos este sistema de monitoreo en las instalaciones acuícolas? ¿Por qué en la mayoría de las instalaciones la alimentación se da manualmente sin considerar el comportamiento de alimentación de los peces? El precio de los sensores para monitorizar las piscifactorías es extremadamente alto. Los sensores empleados son, en la mayoría de los casos, los mismos que se utilizan para la oceanografía. Los sistemas propuestos en la literatura cubren pocos parámetros de calidad del agua y generalmente no consideran el comportamiento de alimentación de los peces. Son necesarios sensores de bajo costo adecuados para la monitorización de la acuicultura. Esos sensores deben ser de bajo costo, bajo consumo de energía, fáciles de usar y con la posibilidad de incluirlos en una red para enviar los datos. Por lo tanto, podremos utilizar esta red de sensores y sensores para controlar la actividad, enviar alarmas si es necesario y automatizar los procesos. Además, si incluimos Internet, los datos se pueden ver de forma remota. El uso de esos sensores puede ayudar a la producción acuícola. En esta tesis mostramos el estudio de los requisitos y el diseño de sensores para monitorizar la calidad del agua y el proceso de alimentación en piscifactorías y otros entornos. Primero estudiamos en detalle los requisitos de los sensores en acuicultura. Luego mostramos el estado del arte de los sensores actuales para el monitoreo de la calidad del agua y para el monitoreo de la acuicultura. A continuación, presentamos el diseño y desarrollo de nuestros propios sensores de bajo costo y su aplicación en instalaciones de piscifactorías con sistema abierto y sistema de recirculación. Además, mostramos la posibilidad de monitorizar hasta 10 parámetros incluyendo calidad del agua (temperatura, salinidad, turbidez y presencia de hidrocarburo / capa de aceite), ambiente del tanque (nivel de agua, iluminación, presencia de trabajadores) y comportamiento de alimentación de peces (profundidad de natación de bajura, estimación de los cambios en la velocidad de nado de bajíos y la caída de alimento). El sistema propuesto, capaz de monitorear todos estos parámetros, tiene un bajo coste y bajo consumo de energía. El precio estimado es inferior a 100 € por tanque. Además, mostramos el uso de algunos de los sensores antes mencionados para el ajuste automático del proceso de alimentación de peces. Finalmente, mostramos como algunos de los sensores desarrollados se utilizan en otras áreas acuáticas naturales como manglares y estuarios. Además, se presenta un sistema inteligente para monitorear y rastrear la contaminación en los cuerpos de agua.There are many efforts done in the aquaculture to reach its sustainability, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. The water quality affects to the fish performance. The temperature and salinity are some factors that affect to the fish growth. Nevertheless, other factors such as turbidity, photoperiod and dissolved oxygen among other can affect to the fish feeding needs. To adjust the amount of feed needed is crucial to ensure the sustainability of the aquaculture and to increase the economic profit of the facilities. Monitoring the water quality allows estimating the feed needs. However, it is not enough. To monitor the fish behavior, especially during the feeding period can help to adapt the provided feed. Then, if it is so clear that the monitoring can help to the aquaculture production, why we do not see this monitoring systems in the aquaculture facilities? Why in most of the facilities the feed is given manually without considering the fish feeding behavior? Nevertheless, the current price of the sensors for monitoring the fish farms is extremely high. The employed sensors are in most of the cases, the same that are used for oceanography. The proposed systems in the literature only cover some water quality parameters and usually do not consider fish feeding behavior. It is need low-cost sensors suitable for aquaculture monitoring. Those sensors must also be low-energy consumption, easy to use and with the option to include them in a network in order to send the data. Thus, we can use these sensors and sensors network to monitor the activity, to send alarms if it is necessary and to automatize processes. Moreover, including Internet, the data can be seen remotely. The use of those sensors can help to the aquaculture production. In this thesis, we show the study of requirements and design of sensors for monitoring water quality and feeding process in fish farms and other environments. First, we study in detail the requirements of sensors in aquaculture. Then, we show the state of the art of the current sensors for water quality monitoring and for aquaculture monitoring. Following, we present the design and development of some low-cost sensors and their applications in fish farm facilities with open system and recirculating system. Moreover we show a complete system which monitors up to 10 parameters including water quality (temperature, salinity, turbidity and presence of hydrocarbon/oil layer), tank environment (water level, illumination, presence of workers), and fish feeding behavior (shoal swimming depth, estimation of changes on shoal swimming velocity and feed falling). Moreover, it accomplishes the features of low-cost and low energy consumption. The estimated price for proposed system is less than 100€ per tank. In addition, we show the use of some of the aforementioned sensors for automatic adjustment of fish feeding process. Finally, some of the developed sensors are plied in other natural aquatic areas such as mangroves, and estuaries. Moreover, an intelligent system for pollution monitoring and tracking in water bodies are presented.S'estan realitzant molts esforços en l'aqüicultura per assolir la sostenibilitat, malgrat això, encara està lluny de ser sostenible. Els seus impactes sobre el medi ambient es poden prevenir i corregir mitjançant l'ús de sensors, desenvolupant la coneguda com a aqüicultura de precisió. La qualitat de l'aigua afecta el rendiment dels peixos. La temperatura i la salinitat són alguns factors que afecten el creixement dels peixos. A més a més, altres factors com la terbolesa, el fotoperíode i l'oli dissolt entre uns altres poden afectar a les necessitats nutritives dels peixos. Ajustar la quantitat d'aliment necessari és crucial per garantir la sostenibilitat de l'aqüicultura i per augmentar el benefici econòmic de les instal·lacions. Al monitoritzar la qualitat de l'aigua, és possible estimar les necessitats d'alimentació. No obstant això, no és suficient. Monitoritzar el comportament dels peixos, especialment durant el període d'alimentació, pot ajudar a adaptar el subministrament alimentari. Aleshores, si es tan clar que el monitoratge pot ajudar a la producció aqüícola, per què no veiem aquest sistema de monitoratge en les instal·lacions aquàtiques? Per què a la majoria de les instal·lacions la alimentació es dóna manualment sense considerar el comportament alimentari dels peixos? El preu dels sensors per controlar les piscifactories és extremadament alt. Els sensors empleats són, en la majoria dels casos, els mateixos que es fan servir per a l'oceanografia. Els sistemes proposats en la literatura monitoritzen pocs paràmetres de qualitat de l'aigua i generalment no consideren el comportament dels peixos durant l'alimentació. Són necessaris sensors de baix cost adequats per a la monitorització de l'aqüicultura. Aquests sensors han de ser de baix cost, baix consum d'energia, senzills d'usar i amb la possibilitat d'incloure'ls en una xarxa per enviar-los. Per tant, podrem utilitzar aquesta xarxa de sensors i sensors per controlar l'activitat, enviar alarmes si és necessari i automatitzar els processos. A més, si incloem Internet, les dades es podran veure de forma remota. L'ús d'aquests sensors pot ajudar a la producció aqüícola. En aquesta tesi es mostra l'estudi dels requisits i el disseny de sensors per a monitoritzar la qualitat de l'aigua i el procés d'alimentació en piscifactories i altres entorns. Primer, estudiem en detall els requisits dels sensors en aqüicultura. A continuació, es mostra el estat de l'art dels sensors actuals per al monitoratge de la qualitat de l'aigua i per al monitoratge de l'aqüicultura. A continuació, presentem el disseny i desenvolupament dels nostres propis sensors de baix cost i la seva aplicació en instal·lacions d'aqüicultura amb sistema obert i sistema de recirculació. A més, mostrem la possibilitat de monitoritzar fins a 10 paràmetres, incloent-hi la qualitat de l'aigua (temperatura, salinitat, terbolesa i presència d'hidrocarburs / capa d'oli), ambient del tanc (nivell d'aigua, il·luminació, presència de treballadors) i alimentació del consum de peces (profunditat de natació de baix, estimació dels canvis en la velocitat de naixement de baixos i la caiguda d'aliment). El sistema proposat, capaç de controlar tots aquests paràmetres, té un baix cost i baix consum d'energia. El preu estimat és inferior a 100 € per tanc. A més, mostrem l'ús d'alguns dels sensors abans esmentats per a l'ajust automàtic del procés d'alimentació de peces. Finalment, mostrem com alguns dels sensors desenvolupats es fan servir en altres àrees aquàtiques naturals com manglars i estuaris. A més, es presenta un sistema intel·ligent per monitoritzar i rastrejar la contaminació en els cossos d'aigua.Parra Boronat, L. (2018). Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106369TESI
    corecore