8 research outputs found

    A multilayer architecture for wireless sensor network virtualization,”

    Get PDF
    Abstract-Wireless sensor networks (WSNs) have become pervasive and are used for a plethora of applications and services. They are usually deployed with specific applications and services; thereby precluding their re-use when other applications and services are contemplated. This can inevitably lead to the proliferation of redundant WSN deployments. Virtualization is a technology that can aid in tackling this issue. It enables the sharing of resources/infrastructures by multiple independent entities. This position paper proposes a novel multi-layer architecture for WSN virtualization and identifies the research challenges. Related work is also discussed. We illustrate the potential of the architecture by applying it to a scenario in which WSNs are shared for fire monitoring

    An e-Delphi Study on Software Virtualization in the Medical Diagnosis Process: The Experts' Perspective

    Get PDF
    The purpose of this qualitative e-Delphi study was to collect opinions and experiences from a group of expert panel members made up of physicians and virtualization experts. This e-Delphi research study provided information about the opinions and experiences from experts about the possible benefits for virtualization in medical facilities. The expert panel was comprised of 12 virtualization experts and physicians. Virtualization is a concept of technology where one physical hardware device, called a server, is configured with software that allows for multiple software servers to be installed or implemented. Virtualization may offer benefits to healthcare organizations including the ability to deliver patient data to physicians more quickly. Virtualization has demonstrated substantial benefits in many areas of information technology infrastructure in the medical informatics field. The expert panel members were chosen at random through existing professional relationships and previous employment. The expert panel members were provided three rounds of survey questions and were asked to complete all surveys in its entirety. The findings show that hospitals and medical facilities will benefit from virtualization and provide increased patient care by delivering faster data to the patient and physician. As leaders in hospitals and medical facilities continue to be well-informed, leaders will be better equipped to make more-informed decisions about virtualization and the positive relationship software virtualization has on patient care

    Wireless Sensor Network Virtualization: A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are the key components of the emerging Internet-of-Things (IoT) paradigm. They are now ubiquitous and used in a plurality of application domains. WSNs are still domain specific and usually deployed to support a specific application. However, as WSN nodes are becoming more and more powerful, it is getting more and more pertinent to research how multiple applications could share a very same WSN infrastructure. Virtualization is a technology that can potentially enable this sharing. This paper is a survey on WSN virtualization. It provides a comprehensive review of the state-of-the-art and an in-depth discussion of the research issues. We introduce the basics of WSN virtualization and motivate its pertinence with carefully selected scenarios. Existing works are presented in detail and critically evaluated using a set of requirements derived from the scenarios. The pertinent research projects are also reviewed. Several research issues are also discussed with hints on how they could be tackled.Comment: Accepted for publication on 3rd March 2015 in forthcoming issue of IEEE Communication Surveys and Tutorials. This version has NOT been proof-read and may have some some inconsistencies. Please refer to final version published in IEEE Xplor

    OpenSAF and VMware from the Perspective of High Availability

    Get PDF
    Cloud is becoming one of the most popular means of delivering computational services to users who demand services with higher availability. Virtualization is one of the key enablers of the cloud infrastructure. Availability of the virtual machines along with the availability of the hosted software components are the fundamental ingredients for achieving highly available services in the cloud. There are some availability solutions developed by virtualization vendors like VMware HA and VMware FT. At the same time the SAForum specifications and OpenSAF as a compliant implementation offer a standard based open solution for service high availability. Our work aims at comparing virtualization solutions, VMware, with OpenSAF from the high availability perspective, and proposes appropriate combinations to take advantage of the strengths of both solutions. To conduct our evaluations, we established metrics, selected a video streaming application and conducted experiments on different architectures covering OpenSAF in physical and virtual machines, the VMware HA and VMware FT. Based on the analysis of the initial measurements, we proposed other architectures that combine OpenSAF high availability and the virtualization provided by VMware. Our proposal included architectures targeting two types of hypervisors, non-bare-metal and bare-metal. In both of these proposed architectures we used OpenSAF to manage the availability of the VM and the case study application running in the VM. The management of the availability of the VM is slightly different in these architectures because of the types of the hypervisors. In these architectures we used the libraries and the mechanisms which are available in many other hypervisors. Our work compared to other works on high availability in virtual environments has the important advantage of covering the application/service failure

    Leveraging virtualization to optimize high-availability system configurations

    No full text

    An Infrastructure for Robotic Applications as Cloud Computing Services

    Get PDF
    Robotic applications are becoming ubiquitous. They are widely used in several areas (e.g., healthcare, disaster management, and manufacturing). However, their provisioning still faces several challenges such as cost efficiency. Cloud computing is an emerging paradigm that may aid in tackling these challenges. It has three main facets: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Virtualization is a technique that allows the abstraction of actual physical computing resources into logical units; it enables efficient usage of resources by multiple users. Its role is a key to resource efficiency. Virtualization can be performed at both node and network level. This thesis focuses on the IaaS aspects of robotic applications as cloud computing services. It starts by defining a set of requirements on the infrastructure for cost efficient robotic applications provisioning. It then reviews the state of the art. After pinpointing the shortcoming of the state of the art, it proposes an architecture that enables cost efficiency through virtualization and dynamic task delegation to robots, including robots that might belong to other clouds. Overlays and RESTful Web services are used as cornerstones. The virtualization in the IaaS is achieved by providing a coalition formation algorithm, which is the cooperation between several robots to perform a task that either cannot be solved individually or can be solved more efficiently as a group. Forming the effective coalitions is another big challenge. We adapted heuristic-based Multi Objective- Particle Swarm Optimization (MO-PSO) algorithm to solve this specific problem. As a proof of concept, a prototype is built using LEGO Mindstorms NXT as the robotic platform, and JXTA as the overlay middleware and the prototype architecture is presented along with the implemented scenario (i.e., wildfire suppression). Performance measurements have also been made to evaluate viability. To evaluate the effectiveness of our algorithm, WEBOTS simulation software is used

    Data Annotation and Ontology Provisioning for Semantic Applications in Virtualized Wireless Sensor Networks

    Get PDF
    In recent years, virtualization in Wireless Sensor Networks (WSNs) has become very popular for many reasons including efficient resource management, proper sharing and using the same WSN physical infrastructure by multiple applications and services. Semantic applications are very much pertinent to provide situational awareness to the end-users. Incorporating semantic applications in the virtualized WSNs can play a crucial role in providing contextual information to understand the situation, increase usability and interoperability. However, provisioning of semantic applications in virtualized WSNs remains as a big challenge. The reason is the data collected by the virtual sensors needs to be annotated in-network, and the pre-requisite of the data annotation process is to have an ontology that needs to be provisioned, i.e., developed, deployed and managed. Unfortunately, annotating sensor data and ontology provisioning in virtualized WSNs is not straightforward because of limited resources of sensors, on-demand creation of virtual sensors, and unpredictable lifetime. As the existing researches do not consider data annotation in virtualized WSN infrastructure level, these solutions are domain specific and lack of providing support for multiple applications. Moreover, the major drawback of the current ontology provisioning mechanisms requires domain experts to develop, deploy, and manage the ontologies in WSNs. This thesis aims to propose a solution for provisioning of multiple semantic applications in the virtualized WSNs. The main contribution of this thesis is twofold. First, we have proposed an architecture to annotate sensor data in the virtualized WSN infrastructure and defined an ontology in sensor domain to perform data annotation. Second, we have proposed an architecture for provisioning ontology in the virtualized WSNs that consists of an ontology provisioning center, an ontology-enabled virtualized WSN, and an ontology deployment protocol. The proposed architectures use overlay network as a foundation. We have built a proof-of-concept prototype for a semantic wildfire monitoring application in the cloud environment using the Google App Engine. In order to evaluate the viability of the proposed architecture, we have made performance measurement of the implemented prototype. We ran a simulation to justify our proposed ontology provisioning protocol
    corecore