
This work-in-progress paper was presented as part of the main technical program at IFIP WMNC'2013

 978-1-4673-5616-9/13/$31.00 ©2013 IEEE

A Multi-Layer Architecture for Wireless Sensor

Network Virtualization

Imran Khan
+
, Fatna Belqasmi

*

+
Institut Mines-Télécom

Télécom SudParis

Evry, France

imran@ieee.org, noel.crespi@it-sudparis.eu

Roch Glitho
*
, Noel Crespi

+

*
Dept. CIISE

Concordia University

Montreal, Canada

fbelqasmi@alumni.concordia.ca, glitho@ece.concordia.ca

Abstract—Wireless sensor networks (WSNs) have become

pervasive and are used for a plethora of applications and

services. They are usually deployed with specific applications and

services; thereby precluding their re-use when other applications

and services are contemplated. This can inevitably lead to the

proliferation of redundant WSN deployments. Virtualization is a

technology that can aid in tackling this issue. It enables the

sharing of resources/infrastructures by multiple independent

entities. This position paper proposes a novel multi-layer

architecture for WSN virtualization and identifies the research

challenges. Related work is also discussed. We illustrate the

potential of the architecture by applying it to a scenario in which

WSNs are shared for fire monitoring.

Keywords-Wireless Sensor Networks; Virtualization; Overlay

Networks; Wireless Sensor Network Virtualization

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are amalgamations of
micro-electro-mechanical systems, wireless communication
systems and digital electronics nodes that sense, compute and
communicate [1]. They are made up of sensors, sinks and
gateway nodes. Virtualization is a technology that presents
physical resources logically, and enables their efficient usage
and sharing by multiple independent users [2]. The new
generations of WSN nodes have more and more resources (e.g.
storage, processing) [3]. It now makes sense to consider the
efficient usage and sharing of these resources through
virtualization. WSN virtualization enables the sharing of a
WSN infrastructure by multiple applications [4]. There are two
possible approaches to WSN virtualization. The first one is to
allow a subset of sensor nodes to execute an application, while
at the same time (preferably) another subset of sensor nodes
executes a different application [5]. These subsets can vary in
size and in number according to the application requirements.
The second approach is to exploit the capabilities of the
individual sensor nodes and execute multiple application tasks
[4], [6] and [7]. Each application task is run by a logically
distinct but identical physical sensor node.

This position paper proposes a new multilayer architecture
for WSN virtualization and discusses the related research
challenges. A real-life fire monitoring application scenario is
used for illustration throughout the paper. The rest of the paper
is organized as follows. A fire monitoring motivating scenario,

the requirements and related work are presented in Section II.
In Section III the proposed architecture is presented and its
applicability illustrated by the fire monitoring scenario.
Research issues are discussed in Section IV and Section V
concludes the paper.

II. FIRE MONITORING MOTIVATING SCENARIO,

REQUIREMENTS AND RELATED WORK

A. Fire Monitoring Motivating Scenario

Consider a city near an area where brush fire eruptions are
common and let us assume that the city administration wants to
monitor fires using a WSN and a fire contour algorithm [8].
Some private homes in the area already have sensor nodes to
detect fire. For this application, the city administration could
either deploy sensor nodes all over the city (even in private
homes), or only in areas under its jurisdiction (i.e. streets,
parks) and re-use the sensor nodes already deployed in private
homes. The former is not an efficient approach whereas the
latter approach is efficient and will avoid redundant WSN
deployments. In the latter approach, at least two applications
will share sensor nodes: one, belonging to home owners and
the other belonging to the city administration. Without
technologies such as virtualization this solution would be
‘mission impossible’.

B. Requirements

The first requirement that can be derived from the scenario
is the concurrent execution of tasks from multiple applications
by the sensor nodes. We call this WSN node-level
virtualization. The second requirement is the ability of WSN
nodes to dynamically form a group to perform isolated and
transparent execution of application tasks in such a way that
each group belongs to a different application. We term this
mechanism as network-level WSN virtualization. The third
requirement is support for the prioritization of the application
tasks. For certain events, this might be crucial. The final
requirement is that the proposed solution should be generic and
platform-independent.

C. Related Work

Table I provides a summarized view of the related work in
relation to the requirements identified in the previous section. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357391079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

shows that none of the existing proposals meets all of our
requirements.

The authors in [4] discuss SenShare platform, which
supports both WSN-node and network-level virtualization. A
runtime layer on top each sensor node supports multiple
applications. SenShare works on top of embedded Linux OS
and only supports TinyOS applications. A network-level
overlay is created to group WSN nodes executing similar
applications. In [5], WSN nodes form subsets to support
applications that monitor dynamic phenomena. Each
independent subset executes an application, supporting
network-level virtualization. Two illustrative applications are
also discussed. Maté [6] presents a pioneering work that
supports node level virtualization by means of a tiny virtual
machine and a stack-based interpreter. It was designed to work
on early generation, resource-constrained sensor nodes and is
quite restrictive.

Melete [7] is an extension of Maté and supports both node-
and network-level virtualization. At the node level, Melete
provides interleaved execution of multiple applications on a
sensor node. At a network level, Melete supports the logical
grouping of WSN nodes where each group is dedicated to a
single application. The sensor nodes can be part of more than
one logical group at the same time. VITRO [9] aims to
transform application-specific WSNs into large-scale virtual
networks supporting multiple applications. VITRO offers
node-level virtualization using a hypervisor that controls
virtualization-related tasks. Authors in [10] present a self-
organizing tree-based approach, as a possible solution to [5], to
facilitate the creation, operation and maintenance of dynamic
groups that facilitate WSN network level virtualization. The
solution ensures that no event remains undetected. MANTIS
[11] is an embedded operating system that supports the
simultaneous execution of threads on sensor nodes by using
context switching. It supports preemptive multithreading by
assigning priorities to threads.

TABLE I. SUMMARY OF RELATED WORK

Related

Work

Requirements

Node-Level

virtualization

Network-

Level

virtualization

Application

Priority

Platform

Independ

ence

SenShare Yes Yes Yes No

Maté Yes No No Hardware

Melete Yes Yes No No

VITRO Yes No No No

[5] No Yes No Yes

[10] No Yes No Yes

MANTIS Yes No Yes Software

III. PROPOSED ARCHITECTURE

In this section we discuss the architectural principles; the
layers, paths and nodes, the interfaces and the protocols. We

also illustrate them with a fire monitoring scenario. We
assume that all physical sensor nodes can execute concurrent
tasks assigned by applications and services. This assumption is
not far-fetched because existing sensor kits such as SunSpot
[12], operating systems like Contiki [13] and Squawk JVM
[14] do support concurrent task execution.

A. Architecture Princples

The first architectural principle is that any new
application/service (e.g. city administration application) is
deployed as a new overlay on top of the physical WSN.
Overlays have several advantages: they are distributed, lack
central control and allow resource sharing [15]. These features
make them an ideal candidate for WSN virtualization. The
second principle is that any given physical sensor node can
execute (locally) a task for a given application deployed in the
overlay. Any given sensor node may execute several such tasks
at any given time. These tasks include gathering sensor data
and sending event notifications to the overlay applications.

The third principle is that the overlay-related operations are not
necessarily performed by the sensor nodes directly concerned,
as they may not have enough capabilities to support the overlay
middleware. When that is the case, they will delegate the
operations to more powerful sensors and even to other nodes.
The fourth and final principle is that within the architecture
there are separate paths: data and signaling. The sensor data
(e.g. temperature values) is transmitted from sensor nodes to
the overlay application using the data path. The control data
(e.g. overlay initiation and overlay join request/reply messages)
is sent over the signaling path.

B. Layers, paths and functional entities

Figure 1 shows the layers, paths and nodes. There are three
layers (physical, virtual sensor and overlay) and two paths
(data and signaling). At the physical layer a WSN has two
types of sensor nodes. Type A sensor nodes perform overlay
management operations for themselves and on behalf of other
sensor nodes, whereas type B sensor nodes cannot. In figure 1
sensor Z is a type A node and sensors X and Y are type B
nodes. There is another network at the same layer, called the
Gates-to-Overlay (GTO) network, consisting of heterogeneous
nodes such as powerful sensors, gateways and sink nodes.
GTO nodes can communicate with the WSN sensor nodes and
help them to join the application overlays. In this architecture,
type B sensors have two options for joining the application
overlays, either via type A sensor nodes or via GTO nodes. In
figure 1, sensor Z can perform overlay management operations
for itself and for sensor Y, whereas sensor X uses a GTO node
to join the overlay.

The virtual sensor layer consists of the virtual sensors that
execute either overlay application tasks or overlay management
tasks. The virtual sensors of sensor X and sensor Y only
execute overlay application tasks, as they are type B nodes.
Sensor Z, a type A node, has three virtual sensors, two for the
overlay application tasks and one (VSZ2) for the overlay
management task. Both sensor Y and sensor Z use VSZ2 to
participate in application overlays. The overlay layer consists
of multiple application-specific overlays (for simplicity only
two overlays are shown). Each application overlay is created

by the end user application and consists of two types of nodes,
virtual sensors that run overlay application tasks and virtual
sensor/GTO nodes that run overlay management tasks.

Figure 1. General architecture

In these overlays the boundaries enforced by the physical
WSNs disappear, easily allowing data exchange between them.
As per the fourth architectural principle, there are separate
paths in the architecture between various entities. The
interfaces and protocols used at these paths are discussed in the
next section.

C. Interfaces and Protocols

In figure 1, the data path uses the data interface (Di)
provided by all the sensor nodes. This interface supports a
lightweight protocol, suitable for resource constrained devices
such as type B nodes. CoAP [16] is a candidate protocol for
this interface. The interface to the overlay (Oi) is used by the
signaling path and supports CoAP along with any suitable
overlay protocol, e.g. TChord [17], ScatterPastry [18] or JXTA
[19]. Both type A and GTO nodes provide this interface. The
Gate-to-overlay interface (Gi) is provided by all sensors as well
as GTO nodes. As type B nodes are not capable of supporting
any overlay protocol, they cannot receive specific overlay
messages. Type A and GTO nodes can receive such messages
and communicate over the Gi interface to prepare type B nodes
to join an overlay. Using CoAP for the Gi interface eliminates
the need for type B nodes to support another protocol.

D. Illustrative Use Case

Figure 2 illustrates the application of our architecture to the
fire monitoring scenario. The city administration and the home

owners deploy the fire detecting sensors in public streets and
private homes, respectively. It is possible that some sensors in
private homes are type A nodes and some are type B nodes. In
figure 2, home 1 and home 3 have type B nodes and home 2
has a type A node. Sensors X and Z use a home gateway and
city sensor A in the public street, respectively, to participate in
the city admin overlay. Sensor Y participates in the city admin
overlay on its own. It is assumed that owners register their
sensors with the city admin during their deployment.

The creation of the city admin overlay is a three step
process. The first step is overlay pre-configuration, which is
performed during offline registration. Data such as sensor
types, their capabilities, IDs and addresses for communication
are collected in this step. During this step it is determined
whether any sensor requires another node for joining the city
admin overlay. If so, then that node’s relevant information is
also collected along with any associated mapping/binding. All
this information is stored in a central repository (not shown in
fig. 2), which is easily accessible to the city administration.

The second step is the activation of the overlay. The city
admin application connects to the repository and retrieves a list
of sensors, along with all the details, to include them in its
overlay. An overlay invitation message is sent to the type A
and/or GTO nodes (Home gateway, VSY2 and city sensor A in
fig. 2) over the Oi interface. These nodes reply by sending
overlay join requests to perform overlay management
operations. The city admin then sends invitation message to the
virtual sensors that will be executing the city admin task
(VSX2, VSY3 and VSZ2 in fig. 2). It is assumed that the
virtual sensors already have the task code.

VSY2 poses no joining issue as its physical sensor is a type
A node, so it easily joins the city admin overlay as a logical
node (OVSY2) and sets up its data path with it. For VSX2 and
VSZ2, the overlay invitation message is received by home
gateway and city sensor A, respectively, on their Oi interfaces.
These nodes then send the overlay join message on behalf of
VSX2 and VSZ2. The city admin creates logical nodes in the
overlay (OVSX2 and OVSZ2) and sends the relevant IDs to
VSX2 and VSZ2 so they can to send their data (e.g. event
notifications) to the OVSX2 and OVSZ2. VSX2 and VSZ2
receive this data on their Gi interfaces from home gateway and
city sensor A respectively, and set up their respective data
paths with OVSX2 and OVSZ2 using the Di interface.

The third and final step is the execution of the end user
application, which is fire monitoring in this use case.
Whenever fire is detected by a physical sensor (e.g. sensor X),
its virtual sensor (VSX2) sends the gathered data to the
OVSX2 in the city admin overlay using the Di interface. Inside
the city admin overlay OVSX2 initiates the fire contour
computation based on the algorithm used by the city admin. It
is now able to share the received fire event data with its
neighboring overlay nodes. In the absence of this type of
overlay, the exchange of fire event data is not possible as each
sensor node is in its own private domain.

IV. RESEARCH CHALLENGES

The first challenge is providing a discovery and publication
framework. Such a framework will be used by the different

actors, including the resource constrained devices, to publish
and discover on the fly. The approach used in the previously
discussed use case (i.e. offline and static registration) has too
many limitations. A dynamic publication and discovery
mechanism that factors in the limitations of the resource
constrained devices is required.

Figure 2. Fire monitoring problem

The second challenge is the signaling framework. There are
several signaling frameworks, but they usually target resource
reservation (RSVP) and session management (e.g. SIP) and
may not be suitable for our needs. In addition, the framework
should be adequate for resource-constrained environments. A
potential direction is the design of a signaling framework that
uses CoAP as its underlying protocol.

 Yet another challenge is the protocols for data paths.
CoAP is an emerging protocol targeting resource constrained
devices and is an attractive option. However, CoAP presents
many issues that have not yet been solved. In addition, the use
of CoAP in an overlay environment remains to be investigated.

The fourth challenge is finding an efficient mechanism to
disseminate the application task to the sensors. Some solutions
are provided in [6], [7] and [13], but none is suited for the
requirements of WSN virtualization. A proposed solution must
provide the flexibility of updating the application task and the
modification of parameters at runtime for adaptive sampling.

A fifth challenge is the protocols to be used in the overlays,
especially as these protocols should be middleware-
independent whenever possible.

The final challenge is developing a viable business model
for WSN virtualization. While the use case discussed in this
paper does not provide the classical separation between WSN
infrastructure providers and WSN service providers, in a
realistic business model there may be other players as well, e.g.
GTO node providers, when these nodes do not belong to WSN.

V. CONCLUSION

 This position paper has proposed a three-layer architecture
for WSN virtualization and has discussed the related
challenges. The next step of our research will be a proof of
concept prototype that demonstrates its feasibility. After that

we will tackle the research issues we have identified: the
publication/discovery framework, the signaling framework, the
protocols for the data path, the framework for disseminating
the applications tasks to the sensors and finally the
middleware-independent protocols for the overlays.

REFERENCES

[1] Akyildiz, Ian F., et al. "Wireless sensor networks: a survey." Computer
networks 38.4 (2002): 393-422.

[2] S. Loveland, et.al, “Leveraging virtualization to optimize high-
availability system configurations”, IBM Systems Journal, vol. 47, no. 4,
2008. 591-604.

[3] Andréu, Javier, Jaime Viúdez, and Juan Holgado. "An ambient assisted-
living architecture based on wireless sensor networks." 3rd Symposium

of Ubiquitous Computing and Ambient Intelligence 2008. Springer
Berlin/Heidelberg, 2009. 239-248.

[4] Leontiadis, Ilias, et al. "SenShare: transforming sensor networks into
multi-application sensing infrastructures." Wireless Sensor Networks
(2012): 65-81.

[5] Jayasumana, Anura P., Qi Han, and Tissa H. Illangasekare. "Virtual
sensor networks-A resource efficient approach for concurrent
applications." Information Technology, 2007. ITNG'07. Fourth
International Conference on. IEEE, 2007. 111-115.

[6] Levis, Philip, and David Culler. "Maté: A tiny virtual machine for sensor
networks." ACM Sigplan Notices, Vol. 37. No. 10. ACM, 2002. 85-95.

[7] Yu, Yang, et al. "Supporting concurrent applications in wireless sensor
networks." Proceedings of the 4th international conference on
Embedded networked sensor systems. ACM, 2006. 139-152.

[8] Bhattacharya, Amiya, Meddage S. Fernando, and Partha Dasgupta.
"Community Sensor Grids: Virtualization for sharing across domains."
Proceedings of the First Workshop on Virtualization in Mobile
Computing. ACM, 2008. 49-54.

[9] Navarro, Monica, et al. "VITRO architecture: Bringing Virtualization to
WSN world." Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE
8th International Conference on. IEEE, 2011. 831-836.

[10] Bandara, H. M. N., Anura P. Jayasumana, and Tissa H. Illangasekare.
"Cluster tree based self organization of virtual sensor networks."
GLOBECOM Workshops, 2008 IEEE. IEEE, 2008. 1-6.

[11] Bhatti, Shah, et al. "MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms." Mobile Networks
and Applications 10.4 (2005): 563-579.

[12] Smith, Randall B. "SPOTWorld and the Sun SPOT." Information

Processing in Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on. IEEE, 2007. 565-566.

[13] Dunkels, Adam, Bjorn Gronvall, and Thiemo Voigt. "Contiki-a
lightweight and flexible operating system for tiny networked sensors."
Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. IEEE, 2004. 455-462.

[14] Simon, Doug, et al. "Java™ on the bare metal of wireless sensor
devices: the squawk Java virtual machine." Proceedings of the 2nd

international conference on Virtual execution environments. ACM,
2006. 78-88.

[15] Lua, Eng Keong, et al. "A survey and comparison of peer-to-peer
overlay network schemes." IEEE Communications Surveys and
Tutorials 7.2 (2005): 72-93.

[16] Shelby, et al., “Constraint Application Protocol (CoAP)”, IETF,
Internet-Draft, draft-ietf-core-coap-13.txt (work in progress), 2012

[17] Ali, Muneeb, and Koen Langendoen. "A case for peer-to-peer network
overlays in sensor networks." International Workshop on Wireless
Sensor Network Architecture (WWSNA’07), 2007. 56-61.

[18] Al-Mamou, AA-B., and Houda Labiod. "ScatterPastry: An overlay
routing using a DHT over wireless sensor networks." Intelligent

Pervasive Computing, 2007. IPC. The 2007 International Conference
on. IEEE, 2007. 274-279.

[19] Gong, Li. "JXTA: A network programming environment." Internet
Computing, IEEE 5.3 (2001): 88-95.

