

Data Annotation and Ontology Provisioning for

Semantic Applications in Virtualized Wireless

Sensor Networks

Rifat Jafrin

A Thesis in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

at Concordia University

Montréal, Québec, Canada

November 2015

©Rifat Jafrin, 2015

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Rifat Jafrin

Entitled: “Data Annotation and Ontology Provisioning for Semantic Applications in

Virtualized Wireless Sensor Networks” and submitted in partial fulfillment of the requirements

for the degree of

Master of Computer Science

Complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 ___ Chair

 Dr. Tiberiu Popa

 ___ Examiner

 Dr. Juergen Rilling

 ___ Examiner

 Dr. Joey Paquet

 ___ Supervisor

 Dr. Roch Glitho

Approved by: __

 Chair of Department or Graduate Program Director

____________2015 __________________________

 Dr. Amir Asif, Dean

 Faculty of Engineering and Computer Science

iii

ABSTRACT

Data Annotation and Ontology Provisioning for

Semantic Applications in Virtualized Wireless

Sensor Networks

Rifat Jafrin

In recent years, virtualization in Wireless Sensor Networks (WSNs) has become very popular for

many reasons including efficient resource management, proper sharing and using the same WSN

physical infrastructure by multiple applications and services. Semantic applications are very much

pertinent to provide situational awareness to the end-users. Incorporating semantic applications in

the virtualized WSNs can play a crucial role in providing contextual information to understand the

situation, increase usability and interoperability. However, provisioning of semantic applications in

virtualized WSNs remains as a big challenge. The reason is the data collected by the virtual sensors

needs to be annotated in-network, and the pre-requisite of the data annotation process is to have an

ontology that needs to be provisioned, i.e., developed, deployed and managed. Unfortunately,

annotating sensor data and ontology provisioning in virtualized WSNs is not straightforward

because of limited resources of sensors, on-demand creation of virtual sensors, and unpredictable

lifetime. As the existing researches do not consider data annotation in virtualized WSN

infrastructure level, these solutions are domain specific and lack of providing support for multiple

applications. Moreover, the major drawback of the current ontology provisioning mechanisms

requires domain experts to develop, deploy, and manage the ontologies in WSNs. This thesis aims

to propose a solution for provisioning of multiple semantic applications in the virtualized WSNs.

iv

The main contribution of this thesis is twofold. First, we have proposed an architecture to annotate

sensor data in the virtualized WSN infrastructure and defined an ontology in sensor domain to

perform data annotation. Second, we have proposed an architecture for provisioning ontology in

the virtualized WSNs that consists of an ontology provisioning center, an ontology-enabled

virtualized WSN, and an ontology deployment protocol. The proposed architectures use overlay

network as a foundation. We have built a proof-of-concept prototype for a semantic wildfire

monitoring application in the cloud environment using the Google App Engine. In order to evaluate

the viability of the proposed architecture, we have made performance measurement of the

implemented prototype. We ran a simulation to justify our proposed ontology provisioning

protocol.

v

Acknowledgments

Alhamdulillah, all praises be to almighty Allah, who guided me throughout this research and

beyond. Only due to his blessings I could finish my thesis.

I am deeply indebted to my supervisor, Dr. Roch Glitho, for the continuous support of my master’s

study and research. I thank Dr. Glitho for his continuous guidance, friendly advice during the

project, motivation, immense knowledge and for always being fair. I could not have imagined

having a better supervisor and mentor for my master study.

I would also like to express my gratitude and appreciations to Dr. Juergen Rilling and Dr. Joey

Paquet for their insightful comments and constructive criticisms of this work. I am also grateful to

Dr. Tiberiu Popa for chairing the thesis defense session.

I would like to take this opportunity to thank my colleagues at Concordia’s lab for their help,

cooperation, and encouragement. First, I am thankful to Dr. Imran Khan for his essential advice and

suggestions on different aspects of my project. I would like to express my deepest appreciation to

Carla Mouradian and Dr. Jagruti Sahoo for their continual supports and helping me on this journey.

I am grateful to Dr. Roch Glitho and Concordia University for their financial supports.

Last but not the least, my deepest thanks to my dear husband for his unconditional love, unfailing

support, continuous encouragement, and sacrifice throughout my years of study. Finally, my

deepest thanks and greatest love to my parents for always encouraging me, believing on my

potentials, and keeping me in their prayers.

vi

Contents

List of Figures ... x

List of Tables ... xii

Acronyms and Abbreviations ... xiii

1 Introduction ... 1

1.1 Definitions ... 1

1.1.1 Virtualized Wireless Sensor Network ... 1

1.1.1.1 Cloud Computing .. 1

1.1.1.2 Virtualization .. 2

1.1.2 Semantic Applications .. 2

1.1.2.1 Semantic Web ... 3

1.1.2.2 Semantic Data Annotation .. 3

1.1.2.3 Ontology ... 4

1.1.3 Sensor Data Annotation .. 4

1.2 Motivation and Problem Statement ... 5

1.3 Thesis Contributions ... 7

1.4 Thesis Organization .. 8

2 Background ... 9

2.1 Virtualized Wireless Sensor Network ... 9

2.1.1 Cloud Computing .. 9

2.1.1.1 Definition of Cloud Computing .. 9

2.1.1.2 Cloud Layers ... 10

2.1.1.3 Types of Clouds .. 11

2.1.2 Virtualization .. 11

2.1.2.1 Definition of Virtualization ... 11

2.1.2.2 Advantages of Virtualization .. 12

2.1.3 Virtualized WSNs ... 13

2.1.4 Benefits of Virtualized WSNs ... 14

2.1.5 Types of WSN Virtualization ... 15

vii

2.1.5.1 Node-Level Virtualization .. 15

2.1.5.2 Network-Level Virtualization ... 16

2.1.6 Applications of Virtualized WSNs.. 17

2.2 Semantic Applications .. 18

2.2.1 Semantic Web ... 19

2.2.2 Ontology ... 20

2.2.3 SPARQL Query Language .. 21

2.2.4 Semantic Reasoning .. 22

2.2.5 Benefits of Semantic Web ... 23

2.3 Data Annotation .. 23

2.4 Chapter Summary ... 25

3 Scenario, Requirements, and State-of-the-Art Evaluation .. 26

3.1 Motivating Scenario .. 26

3.1.1 Assumptions .. 26

3.1.2 Actors .. 27

3.1.3 Virtualized Wireless Sensor Network Application Domain ... 28

3.1.4 Interactions among Actors .. 30

3.1.5 Wildfire Monitoring Application .. 33

3.2 The Requirements ... 34

3.2.1 Basic requirements .. 35

3.2.2 General Requirements ... 38

3.2.3 Requirements for Virtualized WSNs IaaS .. 39

3.2.4 Requirements for Ontology Provisioning ... 39

3.3 The State-of-the-Art Review and Evaluation .. 40

3.3.1 Data Annotation Frameworks ... 40

3.3.2 Ontology Development, Deployment and Management Framework 48

3.4 Chapter Summary ... 51

4 Data Annotation Architecture and Base ontology .. 52

4.1 Overall Architecture .. 53

4.1.1 Assumptions .. 53

viii

4.1.2 Architectural Principles ... 53

4.1.3 Layers and Functional Entities .. 54

4.1.4 Interfaces ... 60

4.2 Base Ontology ... 61

4.3 Procedures for Data Annotation .. 64

4.4 Wildfire Monitoring Use case ... 66

4.4.1 Base Ontology ... 66

4.4.2 Procedures for Data Annotation .. 68

4.5 How the Architecture meet the Requirements .. 72

4.6 Chapter Summary ... 73

5 Ontology Provisioning Architecture ... 74

5.1 Ontology Provisioning Architecture ... 75

5.2 Ontology Provisioning Center .. 78

5.3 Ontology Deployment Protocol .. 80

5.4 Base Ontology Discovery ... 85

5.5 Wildfire Monitoring Use case ... 87

5.5.1 Base Ontology Development .. 88

5.5.2 Base Ontology Deployment .. 92

5.6 How the Architecture meet the Requirements .. 94

5.7 Chapter Summary ... 95

6 Validation: Prototype, Simulation, and Evaluation ... 96

6.1 Validation of Data Annotation Architecture .. 96

6.1.1 Implemented Scenario ... 97

6.1.2 Prototype High-Level Description .. 98

6.1.3 Prototype Setup ... 100

6.1.4 Performance Metrics and Results ... 105

6.2 Validation of Ontology Provisioning Architecture ... 110

6.2.1 Implemented Scenario ... 110

ix

6.2.2 Prototype High-Level Description .. 110

6.2.3 Prototype Implementation Architecture .. 112

6.2.4 Performance Metrics and Results ... 114

6.2.5 Simulation Setup and Performance Result .. 115

6.2.5.1 Simulation Setup ... 116

6.2.5.2 Performance Matrices and Results .. 117

6.3 Chapter Summary ... 120

7 Conclusion and Future Work .. 121

7.1 Summary of Contributions .. 121

7.2 Future Work .. 123

Bibliography ... 125

x

List of Figures

Figure 2-1 Before and after virtualization [17] ... 13

Figure 2-2 Multiple application tasks running in a general purpose sensor node [19] 15

Figure 2-3 VSN formation options [19].. 16

Figure 2-4 Semantic Web architecture [28] .. 19

Figure 2-5 Metadata referring to world knowledge [34] .. 24

Figure 2-6 Graph representation of RDF triple... 25

Figure 3-1 Different roles of the actors and the Interactions .. 30

Figure 3-2 Interactions among the actors and end-to-end execution of the Wildfire Monitoring

scenario ... 33

Figure 3-3 Semantic Sensor Observation Service (S-SOS) architecture [5] 41

Figure 3-4 Semantic-based architecture for sensor data fusion [40] .. 42

Figure 3-5 Architecture proposed in [41] ... 43

Figure 3-6 Implementation architecture of SPLITFIRE [44] .. 44

Figure 3-7 Data annotation architecture proposed in [45] .. 45

Figure 3-8 M2M architecture [46] .. 46

Figure 4-1 Data annotation architecture ... 55

Figure 4-2 Partial base ontology for Temperature Sensor .. 62

Figure 4-3 Data annotation procedure ... 64

Figure 4-4 Pseudo code for data annotation ... 65

Figure 4-5 Concepts of base ontology .. 67

Figure 4-6 Example of sensor data before semantic data annotation ... 69

Figure 4-7 Extracted sensor data... 70

Figure 4-8 Annotated sensor data ... 71

Figure 4-9 Annotated data received from Spot1 Sensor ... 72

Figure 5-1 Ontology provisioning architecture in a virtualized WSN .. 76

Figure 5-2 Components of the ontology provisioning center .. 78

Figure 5-3 Steps for Base ontology development ... 80

Figure 5-4 Base ontology discovery in proactive approach .. 86

xi

Figure 5-5 Base ontology discovery in the Reactive approach ... 87

Figure 5-6 Sequence diagram for base ontology development ... 89

Figure 6-1 Sequence diagram of the implemented scenario ... 97

Figure 6-2 A user interface for the semantic wildfire monitoring application 99

Figure 6-3 Few concepts of the fire domain ontology .. 101

Figure 6-4 Example of Reasoning rules.. 102

Figure 6-5 Example of SPARQL query .. 102

Figure 6-6 Implementation architecture of the semantic wildfire monitoring application 104

Figure 6-7 End-to-End Delay.. 107

Figure 6-8 Average End-to-End Delay ... 107

Figure 6-9 Ontology Download Time ... 108

Figure 6-10 OA discovery time when AAs increase .. 108

Figure 6-11 Expected operation time of Java SunSpots (always on) ... 109

Figure 6-12 User interface for ontology provisioning center application..................................... 112

Figure 6-13 Prototype implementation architecture for ontology provisioning 113

Figure 6-14 Overlay creation time .. 114

Figure 6-15 Base ontology distribution time .. 115

Figure 6-16 Total convergence time in Grid and Gaussian topologies .. 118

Figure 6-17 Total response message in Grid & Gaussian topologies ... 119

xii

List of Tables

Table 3-1 Summary evaluation of the state-of-the-art solutions for data annotation frameworks . 48

Table 3-2 Summary evaluation of the state-of-the-art solutions regarding ontology development,

deployment, and management framework .. 50

Table 5-1 New functional entities introduced in the ontology provisioning architecture 77

Table 5-2 Message exchanges for the deployment of ontology ... 81

Table 5-3 Content of the discovery request message .. 83

xiii

Acronyms and Abbreviations

WSN Wireless Sensor Networks

NIST National Institute of Standards and Technology

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

W3C World Wide Web Consortium

RDF Resource Description Framework

RDFS Resource Description Framework Schema

VM Virtual Machines

OS Operating System

VSN Virtual Sensor Network

OWL Web Ontology Language

BBC British Broadcasting Corporation

SPARQL Simple Protocol and RDF Query Language

SQL Structured Query Language

URI Uniform Resource Identifier

xiv

HTML Hyper Text Markup Language

XML Extensible Markup Language

CO2 Carbon dioxide

SSW Semantic Sensor Web

SWE Sensor Web Enablement

OGC Open Geospatial Consortium

SWRL Semantic Web Rule Language

S-SOS Semantic Sensor Observation Service

O&M Observation and Measurement

SML Sensor Model Language

LOD Linked Open Data cloud

SOA Service Oriented Architectures

SenML Sensor Markup Language

KB Knowledge Base

IoT Internet of Things

SNMP Simple Network Management Protocol

ANMP Ad Hoc Network Management Protocol

xv

HTTP Hypertext Transfer Protocol

GA Genetic Algorithm

P2P Peer-to-Peer

REST REpresentational State Transfer

JSON JavaScript Object Notation

API Application Programming Interface

HTML Hyper Text Mark-up Language

GAE Google Apps Engine

URL Uniform Resource Locator

1 | P a g e

Chapter 1

1 Introduction

In this chapter, we define the key concepts related to our research domain including Virtualized

Wireless Sensor Network, Semantic Applications, and Data Annotations in the first section. The

second section presents the motivation of our research and states the problem we have solved.

Thesis contributions are summarized in the third section. Finally, we introduce the thesis

organization in the fourth section.

1.1 Definitions

In this section, we discuss few key concepts related to this thesis.

1.1.1 Virtualized Wireless Sensor Network

We first introduce two important concepts to define virtualized Wireless Sensor Network: Cloud

Computing and Virtualization.

1.1.1.1 Cloud Computing

There are several well-known definitions for cloud computing. According to the definition proposed

in [1] clouds are “large pool of easily usable and accessible virtualized resources that can be

dynamically reconfigured to adjust to a variable load (scale), allowing for an optimum resources

utilization.”

Another definition from National Institute of Standards and Technology (NIST), “Cloud computing

is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources that can be rapidly provisioned and released with minimal

2 | P a g e

management effort or service provider interaction”. These resources can be networks, servers,

storage, applications, and services [2].

Cloud computing consists of three layers: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). The IaaS is the lowest layer comprising of physical and

virtualized computing resources. The PaaS is the second layer constructed over the infrastructure

layer which offers a software platform to develop and manage applications. The third layer is SaaS

which offers applications residing in the cloud.

1.1.1.2 Virtualization

Virtualization is a process of generating abstraction of the physical computing resources into the

logical units for better resource utilization by multiple users [3]. System virtualization encapsulates

the software layer by covering underline physical operating system and provides the same

functionalities and behaviors like the actual physical hardware could provide [4].

Wireless Sensor Network (WSN) consists of sensors that have the ability to sense environmental

phenomena. However, traditional WSNs are domain specific and dedicated for a particular

application. Virtualized WSNs can be considered as an infrastructure (IaaS) that consists of virtual

sensors. Virtual sensors are created on top of physical sensors by applying virtualization technique.

As a result, multiple application tasks can run concurrently on top of the physical sensor without

interfering each other.

1.1.2 Semantic Applications

Semantic applications are mostly web based applications and developed using the technologies of

the W3C Semantic Web. Semantic Web technologies are being used in various application domains

3 | P a g e

because of their usability and usefulness. One of the application domain where Semantic Web

technologies used in WSN. The main benefit of incorporating Semantic Web in WSN applications

is that it provides more powerful representation, advanced access, and formal analysis of sensor

data [5]. As a result, those applications get the high-level details of the events monitored by the

sensors and infer additional knowledge to gain situational awareness. In this thesis, our focus is to

provision semantic applications in a virtualized WSNs. We introduce Semantic Web and few

related concepts for the better understanding of the semantic applications.

1.1.2.1 Semantic Web

Second generation World Wide Web (Web 2.0) depends on the human capability to pool resources

and shares information online. The semantic web is an extension of the current Web 2.0 which

provides an easier way to find, share, reuse, and combine information. According to the W3C, "The

Semantic Web provides a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries" [6].

The Semantic Web offers a common format of data of various combinations or different formats

which are drawn from diverse sources. This common format helps to manipulate data regarding the

real world objects and allows a machine to understand the data format, search, and aggregate those

data without taking any help from the human operator. We define two important key concepts

(Semantic data annotation and Ontology) of Semantic Web in next sections.

1.1.2.2 Semantic Data Annotation

Semantic Web puts metadata (additional data) to the existing data to process them automatically by

the machines. The mechanism of generating metadata with the actual data is called annotation, and

4 | P a g e

the procedure of creating semantic metadata is called Semantic Data Annotation. It allows users to

get the high-level details and expand the existing data by tagging with semantic descriptions [7].

RDF (Resource Description Framework) is a flexible approach for representing basic data into a

structured data.

1.1.2.3 Ontology

Ontology is one of the most important attributes of the Semantic Web technology. Ontology can be

defined as a vocabulary which describes a set of concepts and explains the relationships between

the concepts in a particular area of concern. There are many formal definitions of ontology. The

most cited definition is given in [8] and according to the author " An ontology is an explicit

specification of a conceptualization".

Ontology offers a standard mechanism to understand some particular domains. It represents a real

world phenomenon in a machine-understandable format. A set of concepts, ideas, and information

from a particular field is classified with a defined relationship by an ontology that helps to

understand the field better.

1.1.3 Sensor Data Annotation

Sensors are becoming very popular and adopted by many different domains, especially in those

applications which are dedicated to providing real-time services [7]. In some real-time monitoring

applications, it is critical to understand the analogous situations. However, raw sensor data are

simply not enough to provide knowledge on the particular situation. We need additional metadata

along with the sensor data to understand the situations properly. Metadata provides additional data

such as description, contextual information related to the actual data. Sensor data can be enriched

5 | P a g e

by annotating them with semantic concepts. The process of annotating sensor data is called sensor

data annotation.

1.2 Motivation and Problem Statement

Wireless Sensor Networks (WSN) are becoming ubiquitous and being used by many applications

to monitor different events. WSNs consist of tiny devices that allow applications to observe various

physical phenomena. However, traditional WSN deployments are usually tailored for predefined

applications with no possibility for new applications to use them concurrently. For this reason,

WSN virtualization which uses the concept of concurrent application tasks running on a sensor

node and combines such nodes together to work for multiple applications simultaneously has gained

considerable attention [11]–[13].

However, classical virtualized WSNs provide sensor data in raw format. As a result, these

application cannot interpret the sensor data or understand its context completely. For example, a

traditional fire monitoring application can only receive a simple fire notification without additional

details which could help its user understand the meanings and context of the fire event (e.g., event

status and the location of the fire event). On the other hand, semantic applications are becoming

very popular in the WSN domain as they provide high-level details of the events monitored by

sensors with additional knowledge. For example, a semantic fire monitoring application allows its

users making queries such as "what is the current status of the fire?" and "what is the current

location of the fire?” Virtualized WSNs typically monitor several real-time events simultaneously

for different applications. Few end-users of these applications may wish to know the context of the

6 | P a g e

specific events. These requests bring us to the need for a mechanism that annotates the sensor data

semantically in a virtualized WSN.

Semantic annotation of heterogeneous sensor data generates a standard data format. It allows

multiple semantic applications to share, reuse, search, and exploration of sensor data without any

prior knowledge of the data source. However, semantic data annotation requires the domain

concepts and the relationships among them. An ontology is used to represent a domain formally

with its concepts, and the relationships among the concepts. The main advantage of data annotation

in the virtualized WSN is that it allows the same virtualized WSN infrastructure to be used by

several applications and enables users to understand the context of the event captured by the

sensors.

Semantic data annotation in IaaS depends on an ontology provisioning in the network level. During

the operation stage, it is natural that sensors with new capabilities are added to the network. This

mandates an update to the underlying ontology in the network. These throw several research

challenges including (a) how the ontology will be developed, (b) how the ontology will be deployed,

and (c) how the ontology will be managed. We need a mechanism for ontology provisioning to

address these challenges.

7 | P a g e

1.3 Thesis Contributions

The contributions of this thesis are as stated below:

 A set of requirements on the data annotation architecture for semantic applications and

ontology provisioning in the virtualized WSNs are defined.

 A review of the state-of-the-art solutions for sensor data annotation and ontology

provisioning mechanism in WSN with respect to the defined requirements is presented.

 A Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensors

Networks is proposed to allow standard representation of raw sensor data by annotating

them with semantic concepts.

 An ontology is defined for sensor data annotation which can be extended based on the

application domains in the SaaS layer.

 An architecture for ontology provisioning in virtualized WSNs is proposed which allows

ontology development, deployment, and management with ease without the requirement of

a domain expert. An ontology provisioning center and an ontology provisioning protocol

are also defined as part of the architecture.

 A prototype of the proposed architecture is implemented and evaluated using different

performance metrics. A simulation is run to justify the proposed approaches for the ontology

provisioning protocol.

8 | P a g e

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides the background knowledge about the key concepts related to our research

domain.

Chapter 3 presents the scenario and a set of requirements derived from the scenario. The state-of-

the-art solutions are reviewed and evaluated on the set of defined requirements.

Chapter 4 describes the proposed data annotation architecture for semantic applications in

Virtualized WSN and proposes a new ontology (we refer to 'base ontology') for sensor data

annotation.

Chapter 5 proposes an ontology provisioning architecture that contains (a) an ontology

provisioning center for the development and management of the base ontology in the virtualized

WSN, and (b) an ontology deployment protocol for the interaction between the ontology

provisioning center and virtualized WSN.

Chapter 6 describes the implementation architecture and prototype solution as a proof-of-concept.

This chapter also includes performance measurement of the implemented prototype and simulation

results.

Chapter 7 concludes the thesis by highlighting the summary of the overall contributions and

identifying the future research directions.

9 | P a g e

Chapter 2

2 Background

This chapter describes the background information related to our research domain. The topics which

are covered in this chapter are Virtualized Wireless Sensor Network, Semantic Applications, and

Data Annotation.

2.1 Virtualized Wireless Sensor Network

This section presents a basic overview of the virtualized WSN. There are two important concepts

regarding the virtualized WSN: Cloud Computing and Virtualization. We first describe the concepts

of Cloud Computing and Virtualization. We define virtualized WSN based on these two concepts.

2.1.1 Cloud Computing

This section illustrates a basic overview of cloud computing by defining a brief definition of the

cloud computing, cloud layers, and different cloud types.

2.1.1.1 Definition of Cloud Computing

Cloud computing is the outcome of the progression and implementation of existing technologies

and standards. One of the main advantages of cloud computing is that it permits users to take

advantages of the existing technologies without having in-depth knowledge or expertise related to

these fields [12].

10 | P a g e

Several definitions have been discussed in [1]. After analyzing all those definitions and considering

the cloud features, the authors propose an integrative definition. They define cloud as:

“Large pool of easily usable and accessible virtualized resources (such as hardware, development

platforms, and/or services). These resources can be dynamically reconfigured to adjust to a

variable load (scale), allowing also for an optimum resource utilization. This pool of resources is

typically exploited by a pay per-use model in which guarantees are offered by the Infrastructure

Provider by means of customized SLAs”.

2.1.1.2 Cloud Layers

Cloud computing services are divided into three layers: Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).

 Infrastructure-as-a-Service (IaaS) provides infrastructural resources on demand such as

servers, computation, storage, network, and communication [13]. Examples of IaaS include

Amazon Web Services EC2, GoGrid, Flexiscale.

 Platform as a Service (PaaS) provides a platform (operating system, software framework)

to create, manage, and deploy applications and services. Examples of PaaS are Google App

Engine, Microsoft Windows Azure.

 Software-as-a-Service (SaaS) provides on-demand application to the end user through the

internet. Users do not need to install the applications on their local machine as they can

access those services through a web portal. Examples of SaaS are Salesforce.com,

Rackspace.

11 | P a g e

2.1.1.3 Types of Clouds

Cloud can be classified into the following categories based on their usabilities such as public cloud,

private cloud, community cloud, or hybrid cloud [14], [15], [25].

 Private Cloud is designed for a single organization. It can be developed and managed by

the same organization that uses it or by any third-party organization [14].

 Public Cloud provides services to the general public as pay-per-use manner. No initial

capital investment in infrastructure is required for the public cloud.

 Community Cloud is a multi-tenant infrastructure shared by several organizations from a

particular community and set up for their specific requirements [15].

 Hybrid Cloud is a combination of private and public clouds. It handles the limitations of

both cloud by utilizing the advantages of both public and private clouds. [14].

2.1.2 Virtualization

We describe virtualization by defining the concept as well as discussing the advantages of

virtualization in this section.

2.1.2.1 Definition of Virtualization

Virtualization is a process of creating a virtual resource from physical resources such as a server,

storage device, network or an operating system. It separates the virtual resources from the

underlying physical resources by creating an abstract layer in between the computing hardware and

12 | P a g e

the applications running on it [17]. Virtualization permits efficient physical resource utilization by

creating several logical instances on a single hardware that can be used by multiple independent

users. As a result, virtualization reduces cost and complexity in order to manage the physical

resources [3]. For example, in virtualized computing environment, several operating systems can

be installed on a single hardware. In such situation, virtualization creates multiple Virtual Machines

(VM) on the physical machine. Each of the virtual machines ran on different operating systems

isolated from each other. These operating systems are called Guest operating systems. The software

layer which is responsible for creating VM is called Hypervisor or Virtual Machine Monitor. The

physical device where virtualization takes place is known as host machine while the virtual machine

is known as Guest machine.

2.1.2.2 Advantages of Virtualization

The advantages of virtualization are methodically explained [26] by differentiating the scenario of

before virtualization and after virtualization.

Without virtualization:

 Each machine holds a single OS image.

 Software and hardware are strongly coupled.

 If several applications are run on the same machine, often it creates conflict.

 Resources are not utilized properly.

 Inflexible and costly infrastructure.

13 | P a g e

Figure 2-1 Before and after virtualization [17]

After Virtualization:

 Operating system and applications become hardware-independent.

 Virtual machines can be provisioned to any system.

 Become easier to manage the OS and application as a single unit by encapsulating them into

virtual machines.

2.1.3 Virtualized WSNs

The Wireless Sensor Networks (WSNs) are now ubiquitous and using in the diverse application

domains. A WSN can be considered as an Infrastructure-as-a-Service which consists of a vast

number of sensor nodes deployed in a geographical area to detect various kinds of phenomena. The

main limitation of traditional WSNs is that they are domain specific and devoted for a particular

application. Virtualized WSN consists of virtual sensors as virtualization creates multiple virtual

sensors on top of the physical sensor. Incorporating virtualization in the traditional WSNs allows

14 | P a g e

proper resource utilization of WSN deployment. As a result, multiple applications can be

provisioned over the same virtualized WSN.

In the next subsections, we describe some benefits of virtualized WSNs and categories of WSNs

virtualization. Finally, we discuss some applications that can utilize virtualized WSNs.

2.1.4 Benefits of Virtualized WSNs

Virtualized WSNs have several benefits over the traditional WSNs [18] [19]. A summary of the

benefits of using virtualized WSNs is mentioned below:

 Virtualized WSNs allow multiple applications to share the same physical WSN

infrastructure.

 As multiple applications can be provisioned over the same deployed WSN infrastructure,

virtualized WSNs reduce the cost and complexity of redundant deployment [18].

 As virtualization in traditional WSNs creates an abstract layer over the physical network,

virtualized WSNs eliminate the tight coupling between the WSN services and WSN

deployments [19].

 Infrastructure provider of virtualized WSNs can resell the physical infrastructure to the third

party to reuse the physical infrastructure [18].

 Virtualized WSNs offer scalability and flexibility to the network infrastructure.

 Virtualized WSNs increase business profitability as the same physical infrastructure is used

by multiple applications and services [18].

15 | P a g e

2.1.5 Types of WSN Virtualization

WSN virtualization can be categorized into two types: Node-level virtualization and Network-level

virtualization. In the following subsections, we describe each of them.

2.1.5.1 Node-Level Virtualization

Node level virtualization is attained by isolating and partitioning the physical resources. The

hardware resources of a physical node are partitioned into slices and allocated for a virtual node

[20]. In WSN domain, node-level virtualization creates virtual nodes on a single physical sensor

node. As a result, multiple applications can run their tasks simultaneously on different virtual nodes

over the same sensor node [21]. Figure 2-2 shows the idea of WSN node-level virtualization.

Figure 2-2 Multiple application tasks running in a general purpose sensor node [19]

16 | P a g e

Node-level virtualization can be attained by sequential or simultaneous execution. In sequential

execution, application tasks execute in sequence basis (first come first serve). However, in

simultaneous execution, there is a fixed time slot for each application task's execution process

resulting the frequent switching of execution of tasks from one application to another one [19].

2.1.5.2 Network-Level Virtualization

WSN network-level virtualization can be achieved by creating Virtual Sensor Network (VSN). A

VSN can be created by establishing a logical connection among a subset of WSN’s nodes. The

subset of sensor nodes that create VSN is devoted to a certain task or an application at a given time

[22]. In traditional WSN deployment, the whole network is dedicated to one application or service

with little possibility to reuse the physical resource. However, in VSN, only a subset of physical

nodes is committed to a certain task whereas the remaining nodes are available for other

applications. As a result, physical resources are properly utilized and the overall cost and

complexity of physical WSN deployment are reduced. There are two options to form WSN

network-level virtualization [19].

Figure 2-3 VSN formation options [19]

17 | P a g e

First, multiple VSNs can be formed on top of the same underlying WSN infrastructure (Figure 2-

3:a). In the second choice, a single VSN can be formed by combining a subset of physical sensor

nodes belonging to different physical WSNs (Figure 2-3: b).

2.1.6 Applications of Virtualized WSNs

The WSNs are now used in various application domains such as military, environment monitoring,

smart home application, medical science and health care, traffic control, and car parking

applications. WSN virtualization concept can be applied to these application areas.

The application of battlefield surveillance [23] uses various wireless sensors to detect and classify

target objects (for example, civilians, enemies, soldiers, tanks, and animal). In this application,

virtualized WSNs can play a crucial role by executing multiple tasks and detecting different objects

by creating multiple VSNs on the same WSN infrastructure.

Recently WSNs are widely used to several real-time environmental monitoring applications such

as weather monitoring, environmental disaster detection, wildfire detection, early flood detection,

early earthquake warning applications. Instead of redundant WSN deployments, virtualized WSNs

can be used where each sensor node can run multiple tasks on it and provides services to multiple

applications. As a result, both cost and complexity are reduced in virtualized WSN approach.

Several promising scenarios are presented in Sensing-as-a-Service (SaaS) model [24] where

virtualized WSN can enrich the SaaS model by proper physical resource utilization. In a smart home

automation system [18], virtualized WSN allows to monitor and control different services of smart

home remotely through the internet.

18 | P a g e

2.2 Semantic Applications

Applications integrating the tools and technologies of the W3C Semantic Web such as RDF, OWL,

and other metadata standards are defined as Semantic Applications. Semantic applications are

becoming very popular and using in different domains such as life Science, Sensor Domain, Supply

Chain Management, Media Management, Data Integration in Oil and Gas, Web Search, and

Ecommerce [25].

Medical and life science domain deals with diverse types of data about drugs, patients, diseases,

proteins, cells, and pathways. Incorporating semantic technology in this domain facilitates proper

data aggregation on different medicines and illnesses that have multiple names in various parts of

the world. Semantic Web Health Care and Life Sciences Interest Group (HCLS IG) [26] provides

support in Bioinformatics such as health care, life sciences, clinical research, and translational

medicine.

Semantic Sensor Web is the outcome of combining Sensor applications and Semantic Web

technologies. Sensors description and observation are encoded using Semantic Web languages.

This allows more meaningful representation, advanced access, and formal analysis of sensors

resources and data. A semantically enrich sensor network permits the sensor data to be structured,

managed, queried, understood and controlled by adding semantics to the sensor data.

A well-known pharmaceutical producer Biogen Idec. manages its global supply chain by using

Semantic Web technologies [27]. Many media companies such as British Broadcasting Corporation

(BBC), Time Inc., Elsevier, and the Library of Congress use Semantic Web technology to manage

their media contents. In 2010, BBC managed its World Cup website by utilizing the Semantic

19 | P a g e

Web technologies which were reported on SemanticWeb.com [25]. Joost online television service

uses Semantic Web service to enable Joost users to understand the relationships between media

contents and allow them to find their favorite media content.

For a better understanding of Semantic Application, we describe Semantic Web and some other

related key concepts in the next subsection. We first discuss Semantic Web and then we describe

ontology. Next, we describe SPARQL query language and semantic reasoning. Finally, we discuss

the benefits of the Semantic Web.

2.2.1 Semantic Web

The Idea of Semantic Web (also known as Web 3.0) was invented by Tim Berners-Lee, the inventor

of the World Wide Web and the director of the World Wide Web Consortium ("W3C"). According

to Berners-Lee, the Semantic Web is "A web of data that can be processed directly and indirectly

by machines" [28].

Figure 2-4 Semantic Web architecture [28]

20 | P a g e

The Semantic Web can be considered as a network of information linked up in such a way that it

can be easily processed by machines. It is then considered as a web of data that enables data to be

linked from an originating source to any other sources and understood by computers [29]. The main

difference between Semantic Web technologies and other data related technologies (e.g., relational

databases or the World Wide Web) is that the Semantic Web is concerned with the meaning of data

whereas other technologies are concerned with the structure of data. Semantic Web provides a

common format of data drawn from different sources. It also provides a common language that

relates data on real world phenomena.

2.2.2 Ontology

The word 'ontology' originates from the Greek word onto (being) and logia (written or spoken

discourse). In Semantic Web, ontology can be considered as a vocabulary that represents the

concepts and corresponding relationships between those concepts in an area of concern. Ontology

is one of the basic building blocks of inference technique on the Semantic Web. Precisely, ontology

is a key enabling technique that annotates data with semantic description and provides a common,

understandable foundation for describing resources [30].

Ontologies are becoming popular in many research areas such as Knowledge Engineering,

Electronic Commerce, Knowledge Management, Artificial Intelligence, and Natural Language

Processing. The primary objective of ontology is to attain a common and shared knowledge that

can be reused in several application systems.

Ontology has four main components: concepts, instances, relations, and axioms [30].

21 | P a g e

 Concepts- A 'concept' is an abstract representation of a real-world object. It is one of the

essential elements of a particular domain. In ontology, concepts can be defined as a group

or class whose members share common properties. This component is similar to object-

oriented systems. The highest level concepts are represented by “parent class” and under

the “parent class”, the subordinates can be represented using “child class”. For example,

"Sensor" could be represented as a class with many subclasses, such as "Temperature

Sensor", "Humidity Sensor", and "Light Sensor".

 Instances- An 'instance' is also known as an individual. It describes the lowest level

component of an ontology by representing a specific object of a concept. For example, “Java

SunSpot” could be an instance of the class “Temperature Sensor” or simply “Sensor”.

 Relations- A 'relation' is used to describe the relationships between different concepts in a

given domain. The relation between two concepts can be expressed using domain and range.

For example, “measures” could be represented as a relationship between the concept

“sensor” (which is a concept in the domain) and “temperature” or “humidity” (which is a

concept in the range).

 Axioms- An 'axiom' sets constraints on the values of classes or instances. Axioms are

expressed using general rules, logic-based languages such as first-order logic.

2.2.3 SPARQL Query Language

SPARQL (Simple Protocol and RDF Query Language) is a standard semantic query language

recommended by W3C World Wide Web Consortium for exploring and manipulating data stored

22 | P a g e

in Resource Description Framework (RDF) format [31]. Data in RDF statements are characterized

in RDF triple format (Subject-predicate-object). We can consider RDF triples as an SQL relational

database containing a table with three columns –subject column, predicate column, and object

column. The object column can be different (e.g., another resource or data type value). SPARQL

allows querying over the RDF triples.

2.2.4 Semantic Reasoning

The reasoning is necessary for the situation where we need to find out implicit information.

Semantic Reasoning is also known as reasoning engine, rules engine, or simply a reasoner. It infers

implicit knowledge using inference rules or formal logics. Semantic reasoning identifies the

subtyping and some other relationships between concepts in some particular areas of concern [32].

In WSN application domain, semantic reasoning plays a crucial role by providing new and implicit

knowledge from the semantically annotated sensor data. In the following, we give an example to

illustrate the importance of semantic reasoning.

Let us consider that a virtualized WSN is sending sensor measurement to a wildfire monitoring

application. The end-user of this application is interested to know the context or the situation of the

fire event. However, semantically annotated sensor data contains the temporal (time) and thematic

(location) information along with the sensor measurements. Knowledge inference such as "No fire

event", "Initial fire stage", and "Huge fire blaze" requires semantic reasoning and a fire domain

ontology. Semantic reasoning uses formal logic to derive this implicit knowledge from the

annotated sensor data and able to answer end-users complex queries such as (a) What is the current

fire situation? or (b) Is the fire event an initial stage or huge fire blaze?

23 | P a g e

2.2.5 Benefits of Semantic Web

Semantic Web technologies have several advantages as mentioned below:

 Offers flexible data and information integration from diverse sources.

 Generates machine readable data by adding metadata with the actual data.

 Infers implicit knowledge of the data by applying semantic reasoning and ontology

concepts.

 Resolves the ambiguity problem of the data or information that has the same name.

 Refines information retrieval and reduces information overload.

 Identifies relevant information for a given domain [33].

 Provides support for decision-making.

2.3 Data Annotation

Semantic Web enriches data models by adding semantics (metadata and knowledge) to the contents

for the purpose of more efficient data management. Data annotation is a metadata generation

process aiming towards more enriched and structured representation of the actual data. It provides

additional information (metadata) about an existing data. Semantic data annotation is applicable for

different types of data such as web pages, non-web documents, text fields in databases. [34]

24 | P a g e

Figure 2-5 Metadata referring to world knowledge [34]

In Semantic Computing, every data is considered as a resource and represented by a uniform

resource identifier (URI). Resource Description Framework (RDF) is a standard approach for

processing metadata which specifies the semantics of the actual data in a standardized manner [35].

The main objective of RDF is to implement a mechanism to describe a resource in a way that the

mechanism can describe information. RDF data model consists of the following components:

 Resources – Every component described by RDF expressions is called a resource. A

resource can be anything such as object (e.g., a Sensor), data (e.g., sensor measurement), an

entire Web page (e.g., HTML document). A resource can be a part of a web page (e.g., a

specific HTML or XML element within the document source). Resources are always

expressed by URIs.

 Properties - A property can be considered as a characteristic or a relation which is used to

describe a resource.

25 | P a g e

 Statements- A RDF statement, also known as RDF triple, consists of three components:

subject, predicate, and object. The subject of a statement should be a resource. However,

the object can be another resource, or it can be a literal; (i.e., a resource specified by a URI

or any data type such as string, double).

Figure 2-6 shows the graph representation of an RDF statement in a form of RDF triple (subject,

predicate, and object)

Figure 2-6 Graph representation of RDF triple

2.4 Chapter Summary

In this chapter, we have discussed the background concepts related to this thesis. First, we

introduced the concept of virtualized WSNs along with cloud computing and virtualization. Second,

we have provided few example applications that can be built on the virtualized WSNs. Third,

semantic applications are defined by describing Semantic Web and its technologies including

ontology, SPARQL query language, and semantic reasoning. Finally, we concluded this chapter by

presenting the concept of data annotation.

26 | P a g e

Chapter 3

3 Scenario, Requirements, and State-of-the-Art Evaluation

This chapter consists of three sections. In the first section, we present a motivating scenario. In the

second section, we derive a set of requirements based on the scenario. Next, we review the state-

of-the-art solutions and evaluate them based on our sets of requirements. Finally, we summarize

the chapter.

3.1 Motivating Scenario

This section presents a motivating scenario in the virtualized WSN domain and shows how WSN

applications can be provisioned in a cloud environment. We start this section by stating the early

assumptions that we have made. The actors are identified in the next subsection. The third section

presents a scenario in the virtualized WSN application domain. We describe the interactions

between different actors in the fourth section. Finally, we apply the scenario in a wildfire monitoring

application.

3.1.1 Assumptions

Let us consider the case of a cloud environment where there is a virtualized WSN infrastructure

provided by a WSN IaaS provider. Let assume that there are WSN application developers who

develop and provide different WSN applications by using the infrastructure according to their

requirements. Our proposed scenario is based on the following two assumptions:

27 | P a g e

 The first assumption is that all the WSN applications are offered as a Software-as-a-Service

(SaaS) in the cloud platform. The key benefit is that it allows easy access to the WSN

applications from anywhere and anytime.

 The second assumption is that the same virtualized WSN infrastructure serves multiple

WSN applications residing in the cloud platform. This means that several WSN applications

will share and re-use the same WSN infrastructure.

3.1.2 Actors

In our motivating scenario, we have identified four types of actors: the end-user, WSN SaaS

provider, WSN PaaS provider, and WSN IaaS provider. Each actor may play several roles through

interactions. In the following, we describe each of them.

1) The End-User

 The end-user plays the role of discovering and using the WSN applications.

2) WSN SaaS Provider

 The WSN SaaS provider is the WSN application developer who offers WSN

 applications to the end-users to discover and use the applications.

3) WSN PaaS Provider

 The WSN PaaS provider allows the development and deployment of WSN applications by

providing a platform that consists of the necessary development frameworks, libraries,

 and tools. After developing a WSN application, WSN SaaS provider deploys and manages

the applications in the cloud PaaS.

28 | P a g e

4) WSN IaaS Provider

 The WSN IaaS provider is responsible for deploying, installing, and managing

 heterogeneous sensors in different locations.

3.1.3 Virtualized Wireless Sensor Network Application Domain

Wireless sensors are becoming very popular in various application domains and being used all

around the world to collect various data about the different environmental phenomenon. Wireless

sensors play a crucial role in the environmental monitoring applications as it is crucial to recognize

the context of the sensor data and understand the event or situation in such applications. We

consider a virtualized wireless sensor network to resolve heterogeneity issues of the physical

resources (e.g., sensors) as well as eliminate the tight coupling between WSN services and WSN

deployments. The applications that use wireless sensors are named as WSN applications. In the

following, we describe a motivating scenario in a virtualized wireless sensor network domain.

Let us consider a city administrator who is interested in monitoring wildfire in the forest in the

nearby countryside for the early detection of the brush fire eruption. Wildfire monitoring is very

crucial since late detection of fire leads to a rapid destruction. Status of a wildfire can be categorized

into different states including No fire, Tends to fire, Beginning of fire and Huge fire blaze based on

the fire size, spreading speed, and direction [36].

Let us assume that the city administrator informs the WSN IaaS provider who then deploys different

brands of sensors having different sensing capabilities all around the city as well as the nearby

forests to detect different physical phenomena to monitor fire situations. Examples of deployed

29 | P a g e

sensors can be Java SunSpot, TelosB, DHT11, AdaFruit, HTU21D-F, and ADXL335. These

sensors have several sensing capabilities including temperature, humidity, light intensity, CO2, CO,

and accelerometer.

Let us consider that the same city administrator wants to monitor a weather condition to generate

alarms in the worst weather situation. In the weather monitoring application, the weather situations

can be categorized into different groups such as Heat warning, Sunny, Blizzard, Haze, Cold, Hot,

Partial cloudy and Snow. So, the city administrator again informs the WSN IaaS provider. As both

the fire monitoring and weather monitoring applications use sensor data, we can refer them as WSN

applications. Later, we categorize the WSN applications into two groups: (a) Semantic applications,

and (b) Non-Semantic applications.

a) Semantic Applications

This group of WSN applications uses semantically annotated sensor data for better

understanding of the observed phenomenon. Semantically annotated data also provides

contextual information and allows end-users to understand different complex events or

situations. Examples of semantic applications are wildfire monitoring application and

weather monitoring application. These applications use semantically annotated data to

determine several complex events or situations. For example, a traditional fire monitoring

application allows its users to detect the fire event. On the other hand, semantic fire

monitoring application not only just detects the fire event but also can identify the spreading

direction of the fire event and allow the end user to know the contexts of fire situations such

as Tends to fire, Beginning of fire.

30 | P a g e

b) Non-Semantic Applications

This group of applications is traditional WSN applications that use raw sensor data

according to their requirements. For example, a smart home application has several features

including smoke detection, temperature monitoring feature. The smoke detector application

is quite simple and straightforward application. In this application, if a smoke detector

sensor detects smoke, it generates an alarm. Similarly, in temperature monitoring

application, a temperature sensor senses temperature event and display it.

3.1.4 Interactions among Actors

This section describes the interactions between the different actors in the proposed scenario.

Interactions among the actors are categorized into three groups: end-user interactions, WSN SaaS

provider interactions, and WSN PaaS provider interactions.

Figure 3-1 shows the interactions that happen among the actors.

Figure 3-1 Different roles of the actors and the Interactions

31 | P a g e

A. End-user Interaction

In the proposed scenario, the end user interactions can be defined into two types that happen

between the end-user and the WSN SaaS provider.

 "Discover" WSN Application Interaction

This interaction permits the end-users to discover the appropriate WSN application that is

offered in the cloud SaaS. There can be an intermediate agent that bridge the gap between

the end-users and the WSN application provider.

 "Use" WSN Application Interaction

End-user uses the WSN application through this interaction. The use of the WSN application

involves monitoring, detecting events, and taking appropriate courses of actions.

B. WSN SaaS Interactions

This group of interactions occurs between the WSN SaaS and the WSN PaaS. We define three types

of interactions which are as follows:

 "Develop" WSN Application Interaction

 The WSN SaaS provider or the WSN application developer is responsible for developing

the applications. Upon being developed, the WSN application is offered by the WSN SaaS

provider to the end-users. This interaction consists of different steps such as analyzing the

requirements, designing the proposed solution, implementing it, and finally testing the

developed application.

 "Deploy" WSN Application Interaction

After developing the WSN application, WSN SaaS provider deploys it in the cloud platform.

32 | P a g e

Deployment interaction consists of installing, configuring, and activating the WSN

application.

 "Manage" WSN Application Interaction

This interaction is used to manage the WSN application by WSN SaaS Provider.

C. WSN PaaS Interactions

These interactions occur between the WSN PaaS provider and the WSN IaaS provider.

 "Publish" WSN infrastructure Interaction

WSN IaaS may consist of heterogeneous sensors having different sensing capabilities and

serves several WSN applications. However, some of those applications may not need all the

deployed sensor measurements. This interaction involves publishing different sensor

capabilities to the cloud PaaS and allows WSN applications residing in PaaS to discover

them.

 "Discover" WSN infrastructure Interaction

As the WSN applications rely on sensor data, these applications need to discover the WSN

infrastructure. This interaction allows the WSN PaaS provider to find the deployed sensors

and their capabilities.

 "Execute" WSN Application Interaction

This interaction describes the execution, utilization, and run-time management of the WSN

IaaS. The WSN IaaS executes the sensing tasks by sensing different events, generating

sensor measurements, and sending same sensor data to multiple WSN applications residing

in the cloud PaaS.

33 | P a g e

3.1.5 Wildfire Monitoring Application

We now apply the described scenario in the wildfire monitoring use case. The actors are the WSN

SaaS provider, WSN PaaS provider, WSN IaaS provider, and end-user is the city administrator.

Figure 3-2 shows the sequence of steps that occur among the actors and end-to-end execution of

the fire monitoring scenario. We describe each of the interaction step by step in the following.

Figure 3-2 Interactions among the actors and end-to-end execution of the Wildfire

Monitoring scenario

(1) The WSN SaaS provider develops a wildfire monitoring application in order to allow the

city administrator to monitor the fire situation of the forest.

34 | P a g e

(2) The WSN SaaS provider deploys the wildfire monitoring application in the cloud PaaS

which is offered by the WSN PaaS provider.

(3) The different capabilities of sensors are published in the cloud platform by the WSN IaaS

Provider to allow WSN applications to use the sensor measurements.

(4) The wildfire monitoring application residing in cloud PaaS discovers sensors with different

capabilities from the deployed area.

(5) When the wildfire monitoring application is in operation stage, the city administrator

discovers it using discover interaction as the cloud platform contains several WSN

applications.

(6) City administrator uses the wildfire monitoring application and monitors the fire situation.

(7) The SaaS provider manages the fire monitoring application.

(8) At the operation stages, WSN PaaS provider operates with the WSN IaaS by making proper

setup and configurations of WSNs. As a result, sensors belonging to the WSN IaaS, execute

the sensing tasks and send sensor data to the fire monitoring application. Fire monitoring

application further processes these data to detect the fire events and understand the context

of the fire situation.

3.2 The Requirements

In this section, we derive the requirements based on the motivating scenario described in the

previous section. The first section describes the basic requirements and explains the importance of

semantic data annotation and ontology requirements. Based on the basic requirements, we

35 | P a g e

categorize the requirements further into three different groups: (a) general requirements, (b)

requirements for the virtualized WSNs IaaS, and (c) ontology provisioning requirements.

3.2.1 Basic requirements

We have identified two basic requirements: (a) Semantic data annotation requirement, and (b)

Ontology requirement. In the following, we explain these requirements regarding the scenario

described in the previous section.

a) Semantic Data Annotation Requirement

The first basic requirement is semantic data annotation. According to our assumption, data from the

same virtualized WSN IaaS is sent to several WSN applications. Usually, the sensor produces low-

level data either in the binary or plain text. However, the end-user is interested in the context or the

situation of the detected event. For example, in the case of wildfire monitoring application, the end-

user may be interested in the following queries:

(a) What events are being observed near Lucille Forest currently?

(b) Find the temperature sensor reading near Lucille Forest?

(c) What is the current fire situation?

 (d) Is it initial stage or huge fire blaze?

(e) What is the current CO2 level in the fire affected area?

(f) Which areas have been affected by the fire event?

If the sensors send raw data in plain text or binary format (for example, data is "40"), these

applications will not understand the context and meaning of the raw data (for example, it might be

temperature, humidity or wind speed which is not clear from the data "40"). This ambiguity is

36 | P a g e

eliminated by data annotation which is a process of metadata generation that can be added to the

raw data by labeling or tagging (for example, <temp>40</temp>) [37].

XML and JSON are popular approaches for data annotation. However, these data representations

lack to provide the contexts and situations of the data. For example, the data ‘<temp>40</temp>’

does not provide intuition whether this temperature represents a situation like Tends to fire or No

fire [38]. These representations also lack more complex contexts involving multiple sensor

measurements. In the scenario, we stated that the weather situations could be categorized into

different groups such as snow alert, heat warning, partially cloudy. These situations depend on not

only temperature measurement but also humidity, wind speed, etc. measurements. Now, the

question is how to build knowledge from the low-level sensor data? This problem can be solved by

performing semantic data annotation. Data annotation using semantic metadata provides contextual

information. Using semantic data annotation, sensor observation can be expressed in terms of the

sensing time, location and measurement unit.

b) Ontology Requirement

Since our focus is to create an abstraction of the heterogeneous sensor data that come from the

WSN IaaS, hence we need an ontology that will hold the concepts related to the WSN IaaS sensors

capabilities and observations. As a result, the second basic requirement is the use of ontology for

semantic data annotation. There are several reasons for using an ontology for data annotation.

First, data annotation using ontology provides more powerful and enrich representation of the

observations having temporal and geographic contexts [39]. For example, a Java SunSpot sensor in

37 | P a g e

location X sent temperature output 40 degrees celsius on 09/02/2015 02:03:56 am. It is possible to

annotate the raw data with respect to sensor type, location, measurement type, measurement value,

unit of measurement, and measurement time. The fire monitoring application can determine a fire

situation using the measurement value and unit of measurement (e.g., 50 C). It can also determine

the direction of the fire using the sensor location and time.

Second, using an ontology at IaaS level allows the domain applications applying reasoning and

extracting implicit knowledge from the captured information. For example, in the fire monitoring

application, different fire situations (e.g., Tends to fire) and other fire domain-related concepts (such

as High temperature, Low humidity) can be expressed with a fire domain ontology. If this

application receives the semantically annotated data from the IaaS level, it can inherit additional

knowledge or context of the environment by further annotating the data using reasoning and the

fire domain ontology. Let us consider the case of Tends to fire situation (when Very high

temperature, Low humidity, High CO2, High CO). The fire monitoring application receives the

annotated data (temperature, humidity, CO2, CO) from the WSN IaaS and applies reasoning rules

to determine knowledge such as Very high temperature, Low humidity, High CO2, High CO. After

applying further reasoning using the domain ontology, it determines the situation Tend to fire.

However, applying ontology to annotate sensor data at WSN IaaS level is not straightforward. Since

the ontology in the WSN IaaS domain contains concepts related to the deployed infrastructure,

hence if any change happens to the WSN IaaS, the corresponding changes should be made to the

ontology as well. After that, the ontology should be again deployed in the WSN IaaS. This situation

arises the ontology provisioning requirement (explained in Section 3.2.4).

38 | P a g e

Based on the basic requirements, we identify several requirements and categorize them into three

different sets which are described in the next sections.

3.2.2 General Requirements

In addition to the basic requirement of semantic data annotation, the first general requirement

should be the real-time in-network annotation. As the same virtualized WSN would be used by

several semantic applications, the sensor data should be annotated real-time before leaving the

network. This requirement eliminates the costs and efforts of redundant annotations performed by

the SaaS application developers.

The second requirement implies the need for an interface that allows proper interaction between

WSN IaaS and WSN PaaS. The interface should be based on the standard technologies. For example,

if we consider the scenario described in the previous section, WSN IaaS should be able to interact

with the cloud PaaS through an interface which is based on standard technology.

The third requirement is that the proposed solution should be domain and application independent.

For the scenarios (Fire monitoring application and Weather Monitoring application) described in

the previous section, both applications require temperature and humidity sensor reading. In order

to reuse the same infrastructure by both applications, the proposed framework should generate a

standard data format that can be re-used and enhanced by multiple real-time applications.

The fourth requirement is scalability. The WSN Infrastructure should maintain the performance

when the number of sensors increases at a large scale in the network.

39 | P a g e

The fifth requirement is that the annotation should be done in a distributed manner without relying

on a central node. This ensures that single point of failure will not occur in the annotation process.

When the number of nodes in the network increases, distributed annotation process can accelerate

the annotation and handle the scalability issue.

3.2.3 Requirements for Virtualized WSNs IaaS

The proposed solution should consider the infrastructure heterogeneity to ensure interoperability.

Any large scale WSN infrastructure will contain different sensor nodes having different sensing

capabilities, data formats, and other properties. The proposed solution should be able to deal with

the sensor heterogeneity issue.

3.2.4 Requirements for Ontology Provisioning

The first requirement is that a standard ontology is needed at the WSN IaaS level to perform data

annotation and handle sensor heterogeneity issue. Using ontology at an IaaS level for data

annotation eliminates the cost and effort of redundant annotations performed by several end-user

applications. In this thesis, we refer our standard ontology as base ontology. Another benefit of

using ontology at WSN IaaS is that the end-user application can extend the base ontology for the

development of domain ontology by re-using the base ontology concepts.

The second requirement implies that the base ontology needs to be provisioned at WSN IaaS in the

initial stage to enable semantic applications provisioning. Base ontology provisioning includes the

development, deployment, and management of the base ontology. This requirement raises the need

for an ontology provisioning center.

40 | P a g e

The third requirement is that it should be easy for the WSN IaaS provider or any novice user to

interact with the ontology provisioning center without knowing technical knowledge or protocol

details.

The final requirement is that the proposed solution should be technology independent and can be

implemented using any standard technology.

3.3 The State-of-the-Art Review and Evaluation

Recent researches on the sensor data annotation focus on annotating the sensor measurements

outside the network or at the gateway node. However, based on our knowledge, none of these

solutions can provide in-network real-time sensor data annotation. Current solutions are domain

specific, and there is a very little possibility for other applications to reuse the infrastructure.

In this section, we present current state-of-the-art solutions similar to our research area and evaluate

them critically. We classify the state-of-the-art solutions into two groups: The first group is the

existing frameworks for annotating sensor data for semantic applications, and the second group

involves the research work related to the ontology development, deployment, and management.

After reviewing the state-of-the-art solutions, we evaluate them based on our requirements.

3.3.1 Data Annotation Frameworks

There are a number of applications available in the literature that presents the semantic enhancement

of sensor data. The first effort to generate the idea of annotating sensor data with semantic metadata

has been proposed in Semantic Sensor Web (SSW) framework [5]. It is based on the Sensor Web

41 | P a g e

Enablement (SWE) effort by W3C Open Geospatial Consortium (OGC) Semantic Web. SWE

annotates the sensor data using temporal, spatial and thematic concepts. OGC SWE languages are

used for temporal and spatial annotation of sensor data. The authors use the RDF for the semantic

annotation of the sensor data and domain ontologies for providing concepts and relationships.

Semantic Web Rule Language (SWRL) is used to reason over the annotated data and infer

knowledge. The authors develop two proof-of-concept prototype applications using their proposed

architecture.

Figure 3-3 Semantic Sensor Observation Service (S-SOS) architecture [5]

Figure 3-1 is an implementation architecture named Sensor Observation Service (S-SOS) which is

involved in requesting, filtering, and retrieving observations over the weather data. S-SOS collects

weather reading (such as temperatures, wind speed, wind direction, and precipitation) from the

website named BuckeyeTraffic.org that provides traffic and weather reading collected from 200

sensors. They convert those reading in O&M and SML formats. They use various domain

42 | P a g e

ontologies to annotate O&M and SML formatted document. In this work, no performance result is

presented and the solution is domain specific. Moreover, the provided solution does not allow real-

time sensor data annotation and uses a centralized approach to perform the annotation tasks. Finally,

there is no discussion on the interface between the semantic annotation service and the knowledge

base that contains ontologies.

Figure 3-4 Semantic-based architecture for sensor data fusion [40]

A three layer architecture based on OGC SWE and the Semantic Web is presented in [40], that

assists the gathering, processing, and exploiting sensor data in real-time. It uses Observations and

Measurements (O&M), and SensorML specifications for semantic specification of the sensors,

properties, and raw data. The first layer (data) involves in collecting raw data from heterogeneous

sensors. The second layer (processing) aggregates those raw measurements, transforms into XML

and forwards to the next layer. The third layer (semantic) processes those aggregated data by

mapping them into ontology model contained in a database. The annotations are created on the third

43 | P a g e

layer and stored in a knowledge base. However, their proposed framework is domain specific that

conflicts our third general requirement. The proposed annotation mechanism is centralized.

Moreover, there is no discussion regarding the scalability issue. In this framework, ontology files

are stored in a database, but there is no such discussion regarding ontology provisioning

(development, deployment, and management).

A sensor data annotation architecture is presented in [41] which is similar to [40].

Figure 3-5 Architecture proposed in [41]

In the proposed architecture, sensors description, physical location, and data are published in XML

format in Sensor Web by their publishers. The ontology concepts are stored in a knowledge base

which is used to annotate sensor data by using the description provided by their publishers.

However, there is no discussion how the ontology concepts are developed, managed, and deployed

in that knowledge base. Work from Cyc project [42] is used in this framework by reusing the

44 | P a g e

existing concepts of the Cyc ontology to describe the sensors. A case study illustrating participatory

sensing from Pachube [43] is presented. Each Pachube sensor provides its XML file containing the

properties, measurements, and details of the events. Finally, user queries are answered using the

Cyc inference engine.

A large-scale European project SPITFIRE is proposed in [44] to allow transition from Semantic

Sensor Web to Semantic Web-of-Things.

Figure 3-6 Implementation architecture of SPLITFIRE [44]

The work provides three main contributions: (a) A new sensor description mechanism that easily

integrates with the Linked Open Data cloud (LOD). The data from the LOD can be used by different

applications or services. (b) A semi-automatic creation process for semantic sensor descriptions.

The sensor data is collected in a pattern dictionary to generate patterns along with the semantic

45 | P a g e

annotations. The patterns help to determine the type of a new sensor and automate annotation of its

data, (c) An efficient search mechanism to find the sensors and things based on their current state.

A crawler is used to retrieve the sensor data from multiple sources (sensors and web pages). The

gathered data is stored in an RDF triple store and later queried SPARQL query engine. A reference

implementation architecture is presented as a proof-of-concept but performance measurement for

validation is absent in this paper. In this architecture, there is no discussion regarding the scalability.

Moreover, the annotation process is centralized that raise the problem of single point of failure.

Figure 3-7 Data annotation architecture proposed in [45]

The architecture proposed in [45] is based on the Service-Oriented Architecture (SOA) and consists

of three horizontal layers. The first layer is the Data Collection Service Layer that provides a

homogenous view of different networks to the second layer. Authors use the ontological modeling

technique to enrich sensor data by converting the raw sensor measurement into a common

46 | P a g e

XML/RDF data format using ontology technique. The second layer is responsible for aggregating

the dataset of the same event observed by different networks and forwarding it to the third layer for

a better understanding of the complex situation. The third layer consists of different types of real-

time monitoring applications which utilize the lower layers and common formatted sensor data to

implement a decision support system. The proposed architecture uses various ontologies (Sensor

data ontology, Sensor observation Ontology, and domain ontology) but there is no such discussion

how these ontologies are managed and deployed.

Authors propose a new ontology SenMESO for sensor data annotation in [46] which is a

combination of various domain ontologies covering sensor data and features of interest.

Figure 3-8 M2M architecture [46]

The gateway nodes receive sensor data in different formats and convert the data into an XML format

to support interoperability. The aggregation gateways incorporate semantics to XML sensor data

using RDF, RDFS, OWL, and domain ontologies. In this work, after creating the annotation, the

47 | P a g e

sensor measurements are linked to the LOD (Link Open Data) Cloud where additional information

can be inferred using various domain ontology.This architecture does not use node-level or

network-level virtualization. As a result, the proposed solution requires redundant sensor

deployments for multiple applications. The scalability has not been discussed in this work. Since

the annotation process is done at the aggregation gateway in this architecture, hence there is no

discussion regarding standard interface through which ontology can be deployed in the WSN IaaS.

An approach to convert the sensor data in SenML format to RDF format is provided in [47]. A basic

mapping of SenML elements to RDF types is provided. A SenML reading from a sensor is first

transformed into RDF elements, which are used to generate an array of RDF triples. Finally, these

RDF triples are serialized in different formats. A prototype implementation for monitoring water

quality of fish farms is presented. The sensor data collected by an aggregation gateway is forwarded

to a knowledge-based (KB) system. The KB system converts SenML data to RDF and applies

domain ontology concepts in a centralized fashion to generate alerts for the client application. The

implementation results show the performance gains while using SenML as compared to other data

formats including RDF, N-triple, and N3. Only the data from IoT devices (sensors) that send data

in SenML can be transformed in RDF which is the main limitation of this work. Instead of using a

standard ontology, SenML is converted to RDF format that conflicts our requirement. Finally, the

proposed solution is domain specific.

Table 3-1 shows a summary evaluation of the state-of-the-art solution for data annotation

frameworks. The following table shows none of the solutions fully satisfies our derived

requirements.

48 | P a g e

Requirements

State-of-the-Arts

General Requirement IaaS

Requirement

Real-time

annotation

Standard

Interface

Domain

independent

Scalability Annotation

Mechanism

Infrastructure

Heterogeneity

[5] No
Not

Discussed
No Yes Centralized Yes

[40] Yes
Not

Discussed
No

Not

discussed
Centralized Yes

[41] No
Not

Discussed
Yes Yes Centralized Not Applicable

[44] Yes Yes Yes
Not

discussed
Centralized Yes

[45] Yes Yes Yes
Not

discussed
Centralized Yes

[46] Yes
Not

Discussed
Yes

Not

discussed
Decentralized Yes

[47] Yes
Not

Discussed
No

Not

discussed
Decentralized Yes

Our Work Yes Yes Yes Yes Decentralized Yes

Table 3-1 Summary evaluation of the state-of-the-art solutions for data annotation

frameworks

3.3.2 Ontology Development, Deployment and Management Framework

In this section, we describe existing related works for ontology development, deployment, and

management.

Several knowledge management systems have been proposed for the development and management

of ontologies. Authors in [48] propose a framework ONKI for the collaborative development and

management of ontologies. According to this framework, a domain expert first develops an

ontology using existing ontology editor and then publishes it to the ONKI Library. User applications

can access those ontologies using web service. This framework does not address our requirements:

(a) a domain expert is needed for the development and management of ontology, and (b) ontology

deployment process is not discussed.

49 | P a g e

An ontology management framework proposed in [49] allows ontology developers to manage

multiple ontologies as well as create new ontologies reusing the concepts of existing ontologies.

However, there is no mechanism proposed for ontology deployment. Moreover, domain experts or

ontology developers are required to interact with the framework which does not satisfy our ontology

provisioning requirements.

Another ontology development framework named SOFA has been proposed in [50] which is a Java

API for representing concepts and developing an ontology. This is a technology-dependent solution

and discusses only the ontology development process. However, the ontology management and

deployment process are not addressed in this work.

Authors in [51] propose a tool for ontology generation which uses reverse engineering technique to

develop an ontology. First, they extract database metadata information and then analyze the

relationship between those data. Authors develop a prototype implementation using Apache Jena

API. This framework does not meet our requirements as the proposed framework is technology

dependent. As there is no easy way for the novice user to interact with the system, a domain expert

is needed to process the data stored in the database and develop an ontology. Finally, ontology

management and deployment procedures are not addressed in this work.

There are few protocols exist for managing network Infrastructures. Simple Network Management

Protocol [52] is the most widely used management protocol that runs over TCP/IP protocol stack

and applicable for wired networks. This protocol allows managing network performance, finding,

and solving network problems. Ad Hoc Network Management Protocol (ANMP) [53] is mainly

designed for managing mobile wireless ad hoc networks. This protocol is compatible with SNMPv3

50 | P a g e

and uses similar protocol data unit structure and management information base as in SNMP. Both

the SNMP and ANMP have been designed for managing the network but according to our

requirement, we need an ontology management mechanism in WSNs. These protocols do not fulfill

our ontology management requirement. Also, SNMP and ANMP do not cater to develop and deploy

ontology in WSNs. As a result, our requirements are not fulfilled by these protocols

Table 3-2 shows a summary evaluation of the state-of-the-art solution for Ontology development,

management, and deployment frameworks. We find none of these solutions satisfy all the ontology

provisioning requirements.

 Requirements

State-of-the-Arts

Ontology Provisioning Requirement

Standard

Ontology

Ontology

Development and

Management

Ontology

Deployment

User-friendly

Solution

Technology

Independence

[48] Yes Yes
Not

Discussed
No No

[49] Yes Yes
Not

Discussed
No Yes

[50] Not Applicable
Partially

Discussed
No Not discussed No

[51] Not Applicable
Partially

Discussed
No No Yes

[52] Not Applicable No No No
Not

Applicable

[53] Not Applicable No No No
Not

Applicable

Our Work Yes Yes Yes Yes Yes

Table 3-2 Summary evaluation of the state-of-the-art solutions regarding ontology

development, deployment, and management framework

51 | P a g e

3.4 Chapter Summary

In this chapter, first, we presented the motivating scenario. Then we derived the basic requirements

based on the scenario and demonstrated the need for semantic data annotation and using ontology.

Based on the basic requirements we derived some other requirements and classified them into three

groups: general requirements, requirements on the virtualized WSN Infrastructure and requirements

on the ontology provisioning. The state-of-the-art solutions related to our research domain are

evaluated based on the requirements described in section 3.2. We found that none of the state-of-

the-art solutions satisfies our requirements fully.

52 | P a g e

Chapter 4

4 Data Annotation Architecture and Base ontology1

We derived our precise requirements for sensor data annotation in virtualized WSNs in Chapter 3.

This chapter presents the data annotation architecture for semantic applications in the virtualized

WSNs. In this regard, we have utilized a recently proposed WSN virtualization architecture [54]

by our research team as a basis. Since semantic data annotation process requires an ontology to

represent the corresponding domain concepts and the semantic relationships among the observed

concepts, hence we define the required ontology (we refer it 'base ontology') for the sensor domain.

This chapter consists of the following sections: We explain the overall architecture for data

annotation and describe the components of the architecture including layers and functional entities

in the first section. In the second section, we present our base ontology that contains the concepts

related to common sensing phenomena. Data annotation procedures are discussed in the third

section. A wildfire monitoring use case is presented in the fourth section. We discuss how the

requirements are met by the architecture in the fifth section. Finally, a summary of the chapter is

presented in the sixth section.

1 This chapter extends the architecture presented in the paper “ I. Khan, R. Jafrin, F. Errounda, R. Glitho, N Crespi,

M Morrow, P Polakos, A Data Annotation Architecture for Semantic Applications in Wireless Sensor Networks,

IFIP/IEE International Symposium on Integrated Management (IM 2015), vol., no., pp. 27, 35, 11-15 May 2015,

Ottawa, Canada” (acceptance rate: 27.2%)

53 | P a g e

4.1 Overall Architecture

In this section, we begin with stating the assumptions and describing the architectural principles

that we adopted for designing the architecture. We explain the layers and functional entities of the

overall architecture based on these assumptions and principles.

4.1.1 Assumptions

The proposed architecture is based on several assumptions which are stated below:

 The virtualized WSN consists of heterogeneous sensors and it is offered as a WSN

infrastructure (IaaS) in cloud paradigm.

 We assume that the sensors have already been discovered and are stored in a registration

server. For sensor discovery, there are existing works including [55], [56] can be reused

for this purpose.

 Our proposed solution does not have storage to store the sensor data. Since it is an

application specific requirement, hence we leave it for end-user applications to decide on

the sensor data storage.

 We assume that the base ontology is already provisioned in the WSNs.

4.1.2 Architectural Principles

The first architectural principle is that a standard ontology is used to annotate the sensor data and

stored in WSNs. We named it as base ontology because it holds a minimal set of concepts of sensor

observations that can be used as a basis to build an application domain ontology. The base ontology

consists of concepts related to the deployed sensors and their capabilities. However, annotated

54 | P a g e

sensor data can further be annotated in semantic applications using domain ontology. A domain

ontology consists of a domain and application-specific concepts. This fundamental principle allows

the solution to become independent of any application domain.

The second architectural principle is that we use two separate overlays: one for data annotation and

the other for storing the base ontology. Overlays have several advantages: they are distributed, they

do not rely on centralized control, and they allow resource sharing [57].

The third architectural principle is that every virtual sensor created for semantic applications is

represented in the annotation overlay by a corresponding entity that annotates sensor data. This

means that every sensor sending data to semantic applications will have a dedicated entity for

annotation purpose.

The fourth principle is that the annotations will be performed by capable sensors and other powerful

nodes (e.g., gateways).

4.1.3 Layers and Functional Entities

The overall data annotation architecture is represented in the Figure 4-1. It is based on the WSN

virtualization architecture [54] proposed by our research team. The virtualization architecture

contained four layers (physical, virtual sensor, virtual sensor access, and application overlay). In

the data annotation architecture, the physical layer remains the same as in the virtualization

architecture. The rest of the layers are enhanced by adding different functional entities. The

virtualization architecture only supported traditional sensor applications (non-semantic

applications) whereas our proposed data annotation architecture supports both semantic and non-

semantic applications.

55 | P a g e

Figure 4-1 Data annotation architecture

56 | P a g e

We describe each component of the data annotation architecture in the following:

A. Physical Layer

This is the first layer which contains the physical WSN infrastructure and consists of different types

of sensors. Based on the processing capability, energy, and storage capacity, we categorized them

into the following three groups:

1. Type A sensors

This kind of sensor is resource constraint device that has very limited processing and storage

capabilities (e.g., TelosB motes). Since Type A sensors may not be capable enough to work

together with other sensors in the overlay, they rely on more powerful nodes such as Gate-

to-Overlay (GTO) nodes or Type B sensors.

2. Type B sensors

This type of sensors is a new generation powerful sensor node (e.g., Java SunSpots) and

capable of executing multiple tasks.

3. GTO Node

In order to facilitate type A sensors to work along with capable nodes, WSN infrastructure

has specialized node called Gate-to-Overlay (GTO) node (e.g., base station, sink node).

GTO nodes are more powerful than type B sensors. Figure 4-1 shows that Type A1 and Type

A2 sensors are connected to the GTO node. However, Type A3 sensor is connected to the

Type B2 sensor as Type B sensors are also capable nodes.

57 | P a g e

B. Virtual Sensor layer

This is the second layer which contains virtual sensors. Virtual sensors are the logical representation

of the physical sensors that execute different application tasks simultaneously. For example, in

Figure 4-1, Type B1 nodes have two virtual sensors that execute two application tasks (AA and SA

which are explained in the next section). However, without virtualization, a physical sensor can

execute single application task. Figure 4-1 also shows that Type B2 sensor has no virtual sensor and

execute only one application task (AA).

We categorize the virtual sensors into two groups:

1. Semantic virtual sensors

Semantic virtual sensors are created for semantic applications (marked as the green box in

the Figure 4-1) which execute different semantic tasks such as annotating sensor data or

storing ontology.

2. Non-semantic virtual sensors

 Non-semantic sensors are marked as the orange box in the Figure 4-1 which execute non-

 semantic tasks. For example, these sensors directly send raw data to the non-semantic

applications or annotated data to the semantic applications.

C. Virtual Sensor Access Layer

The sensor data annotation is performed in the virtual sensor access layer. This layer has three

functional entities and two overlays.

58 | P a g e

Functional entities are pieces of software codes which define different application tasks and run

either on virtual sensors or physical sensors. Following are the functional entities:

1. Annotation Agent (AA)

Nodes acting as Annotation Agent are primarily responsible for annotating sensor raw data

and sending the annotated data to the nodes acting as Sensor Agent.

2. Ontology Agent (OA)

Nodes acting as Ontology Agent hold the base ontology and serve ontology request that

comes from Annotation Agents.

3. Sensor Agent (SA)

Nodes acting as Sensor Agent send annotated or raw sensor data to the semantic and non-

semantic applications, respectively.

It is important to mention that a powerful node can play the role of multiple functional entities. For

example, in the Figure 4-1, a GTO node acts as both AA and SA while a Type B sensor may act

either AA or OA. The reason behind is that GTO nodes are much more resourceful with compared

to Type B sensors.

We have adopted two overlays instead of one for two major reasons. First, if all the functional

entities reside in the one overlay, it would be hard to manage tasks between them. Second, the

solution becomes less scalable with one overlay when the network size (e.g., the number of sensors)

increases. The overlays with their tasks are described below:

59 | P a g e

1. Annotation Overlay

The annotation overlay is dedicated for sensor data annotation. This layer consists of

Annotation Agents (AAs) and Sensor Agents (SAs). The semantic virtual sensors send raw

data to the AAs. Then, AAs annotate the received data using the base ontology. The detailed

procedure of sensor data annotation is described later in Section 4.3. AA communicates with

the SAs to send the annotated data to the semantic applications. SAs also send the raw data

received from the non-semantic virtual sensors to the non-semantic applications. For this

reason, SAs can be considered as the exit gates of the virtual sensor access layer.

2. Ontology overlay

The ontology overlay is responsible for storing the base ontology in a distributed manner

and serving ontology when a request comes from the annotation overlay. This overlay

consists of Ontology Agents (OAs). OAs act as super-peers which are responsible for

storing the base ontology and providing the requested ontology to the AAs. The OAs require

sufficient storage space and an efficient request/response mechanism. There are two types

of nodes which can act as OAs: (a) GTO nodes, and (b) Type B sensors. As GTO node is

more powerful, it stores the complete base ontology. On the other hand, Type B sensors

store a part of the base ontology. The functional entities belonging to ontology overlay are

not involved in processing sensor data.

D. Application Overlay Layer

The final and fourth layer, Application Overlay Layer comprises with multiple applications

including semantic and non-semantic applications and shares the same virtualized WSN

60 | P a g e

deployment. Semantic applications receive annotated data while non-semantic applications receive

raw data from the SA in the Virtual Sensor Access Layer.

Apart from the four layers, there is an Operations & Management (O&M) entity which is usually

the WSN IaaS provider and responsible for providing the base ontology. Since O&M entity is aware

of the type of sensors deployed in the WSN, it can easily develop and deploy the base ontology to

the ontology overlay.

4.1.4 Interfaces

The proposed architecture provides two standardized interfaces (Pdi and Di) for the interactions

between the end-user applications (both semantic and non-semantic applications) and with the

different functional entities in the overlay network.

1. Proprietary Data interface (Pdi)

 It is used by the virtual sensors to send the sensor data to the functional entities (AA, SA)

 in the annotation overlay.

2. Data interface (Di)

 It is used by Sensor Agent (SA) to send the raw data received from the virtual sensors to the

non-semantic applications. The same Di interface is also used by SA to send the annotated

data received from the Annotation Agent (AA) to the semantic applications.

Pdi and Di use RESTful interface for the interaction. The reason behind choosing RESTful web

services are as follows: (a) lightweight, standards-based, supports different data formats (e.g., plain

text, JavaScript, JSON, and XML), (b) provides a uniform interface as the REST resources can be

accessed and manipulated in a standard way.

61 | P a g e

4.2 Base Ontology

In order to provision semantic applications, we need to send additional metadata along with the raw

sensor data. For example, the raw sensor data for a fire monitoring application can be annotated

with concepts such as observed property and location (e.g., temperature, longitude, and latitude in

this case). Semantic data annotation has been a popular approach for this purpose. However, the

data annotation process requires domain concepts and the relationships that exist between them to

annotate data. An ontology is used to represent formally a domain, its concepts and the relationships

that exist between them [5]. Within sensor domain, there are several efforts to develop ontologies.

For example, the Semantic Sensor Network (SSN) Ontology developed by the W3C Semantic

Sensor Network Incubator Group [58] and SensorML from the Open Geospatial Consortium (OGC)

[59]. SSN ontology is more general purpose because it is application domain independent.

We develop our ‘base ontology’ by extending the SSN ontology since it is a well-known, standard,

and widely used to describe sensors descriptions and their observations. The base ontology contains

the concepts of different capabilities and types of sensors deployed in the WSN infrastructure. Since

a single physical sensor may have multiple sensing capabilities (e.g., JAVA SunSpot sensor has

both light and temperature capabilities), we need to add all the related concepts in the base ontology.

If WSN infrastructure consists of temperature, humidity, light, and carbon sensors, then the base

ontology contains the concepts of these types of sensors and their observations. Figure 4-2 shows

part of the base ontology associated with the temperature sensors. Some of these concepts and

properties are reused directly from the SSN ontology as these concepts already exist. We created

the rest of the concepts based on our data annotation requirement.

62 | P a g e

Figure 4-2 Partial base ontology for Temperature Sensor

A base ontology consists of six main parent classes: Sensor, ObservedProperty, SensorOutput,

MeasurementUnit, ObservationTime, and Sensor location. We define each class below:

 Sensor

This class defines information about the sensors having various capabilities. When a sensor

with new capability is added in the WSNs, the corresponding concept is added as a subclass

of the Sensor class. In Figure 4-2, TemperatureSensor is a subclass of the Sensor class. If

the network size grows with the different capability sensors, sensor classes for new

capabilities are added to the Sensor class.

63 | P a g e

 ObservedProperty

This class defines the physical event that is observed by sensors. Sensor observes various

events based on its sensing capability. If we consider the example of a temperature sensor,

then the physical event would be the temperature that is observed by TemperatureSensor.

In our base ontology, Temperature class is added as a subclass of the ObservedProperty.

 SensorOutput

This class defines the sensor output. As WSNs consist of sensors having different

capabilities, this class is introduced to distinguish different sensor output. For example,

TemperatureSensorOutput and HumiditySensorOutput are the two concepts added under

SensorOutput class to differentiate between the temperature and humidity sensor output.

 MeasurementUnit

This class contains information about unit of measure of the sensor data. For example, if

temperature sensor gives temperature reading in degree celsius, then the DegreeCelcius

class is added as a subclass of MeasurementUnit in the base ontology.

 ObservationTime

This class defines the time when a sensor senses an event.

 SensorLocation

This class indicates sensor's position. As a sensor's position is determined by the longitude

and latitude, these two concepts are added under the SensorLocation class.

64 | P a g e

4.3 Procedures for Data Annotation

Data annotation process starts in the operating phase after the deployment of WSNs with all

necessary configurations are completed. Figure 4.3 shows the sequence diagram of the data

annotation procedure in an abstract way.

Figure 4-3 Data annotation procedure

First, when a physical sensor (e.g., Java Sunspot, AdvanticSys sensor) senses a phenomenon (e.g.,

temperature), it sends the data (Raw Sensor Data) to the Annotation Agent (AA).

Second, Annotation Agent (AA) determines (SensorCapabilityCheck) the type of phenomenon

(e.g., temperature) recorded in the received Raw Sensor Data.

65 | P a g e

Annotation Agent (AA) checks whether it has the corresponding partial base ontology (e.g.,

temperature ontology) or not. If it does not have the partial ontology, it initiates the ontology

discovery process which is explained in Section 5.4. In brief, it sends an OntologyDiscoveryRequest

to the Ontology Agent (OA) and receives the required partial ontology.

Third, Annotation Agent (AA) annotates the data using the partial ontology which is explained later

in this section. It then sends the annotated data to the Sensor Agent (SA).

Finally, Sensor Agent (SA) sends the annotated data to the Semantic Applications.

Algorithm 1 represents the pseudo code of the data annotation procedure that is executed in the

Annotation Agent (AA).

Figure 4-4 Pseudo code for data annotation

66 | P a g e

This algorithm takes raw data, a partial ontology as inputs and produces annotated data as output.

However, the raw data can be plain text or any standard formatted data. In Line 1, raw data is

parsed and stored as key-value pairs. Line 2 determines the concepts from the given partial

ontology. The ontology will be used to create semantic relationship among the observed data. A

model (represents the ontology concepts and holds their values) is initialized which represents the

annotated data in Line 3. In Line 4, each key-value from the key-value pairs (Line 1) is mapped to

the corresponding ontology concept (extracted in Line 2) to create the semantically annotated data.

Finally, the annotated data is returned in Line 5. Section 4.4.2 presents an example to illustrate the

algorithm step by step.

4.4 Wildfire Monitoring Use case

In this section, we describe the wildfire monitoring application based on the proposed architecture.

Let us assume that the WSN IaaS providers deploy sensors of brands Java SunSpot (e.g.,

temperature & light sensors) and AdvanticSys Kit (humidity sensors) in a large geographic area

including nearby forest, public streets, and private homes, respectively. These sensors run multiple

application tasks concurrently using virtual sensors and semantic virtual sensors. In the following

subsections, we describe the base ontology and data annotation procedure.

4.4.1 Base Ontology

As WSN IaaS provider is aware of the deployed sensors, he develops a base ontology. The base

ontology development mechanism is discussed in the next chapter. In the current sensor

67 | P a g e

deployment, a base ontology contains concepts related to the temperature, humidity and light

sensors. Figure 4-3 shows the concepts of the base ontology.

Figure 4-5 Concepts of base ontology

As we mentioned earlier, we extended SSN ontology by re-using some of the concepts. Figure 4-5

shows the parent-child class hierarchy relationships among different concepts. While developing

an ontology, all the concepts should be under the concept of Thing. In our base ontology, we have

five parent classes (Sensor, ObservedProperty, SensorOutput, MeasurementUnit, and

SensorLocation). As WSN IaaS contains sensors of three different capabilities (e.g., temperature,

light, humidity) we have three subclasses (TemperatureSensor, LightSensor, and HumiditySensor)

under the parent class Sensor. Concepts of various sensing capabilities (e.g., Temperature, light,

68 | P a g e

and Humidity) are presented as subclass under the ObservedPropoerty class. In order to distinguish

the sensor outputs, TemperatureOutput, HumiditySensorOutput, and LightSensorOutput subclasses

are incorporated in the parent class SensorOutput. Java Sunspot temperature sensors produce output

in degree Celsius, and light sensors produce output in lux unit. However, AdvanticSys Kit humidity

sensors provide relativity measure of humidity. concepts for these measurement units

(DegreeCelcius, Lux, and Percentage) are presented as a subclass of the MeasurementUnit class.

As a sensor's physical position is determined by longitude and latitude value, longitude and latitude

concepts are presented under the class SensorLocation. It is very critical to know the sensing time

of an event in any WSN application. ObservationTime class defines the timestamp when a sensor

senses an event.

In our proposed architecture, we assumed that the base ontology has already been provisioned in

the WSNs after deploying the sensors. However, the detail description of the ontology provisioning

in WSN can be found in Section 5.3. According to this assumption, the OAs in the ontology overlay

already holds the base ontology. This means that the GTO node has the full base ontology and the

Type B (Java Sunspot) sensors have part of the base ontology. As AdvanticSys Kits are more

resource-constrained sensors, these are connected to the GTO node and send sensor reading to the

AAs in virtual sensor access layer. GTO node can be the gateway or a sink node.

4.4.2 Procedures for Data Annotation

After the deployment of the WSNs and all other setup, Java Sunspot, and AdvanticSys sensors start

giving their reading and send their raw data in a standard format to the AAs in the virtual sensor

access layer. Let consider a JAVA Sunspot temperature sensor (Spot1) is giving the reading in the

69 | P a g e

SenML format [60] and an AdvanticSys humidity sensor (TlosB2) is giving the reading in the plain

text. Figure 4-6 shows the different type of input data received by the AA from the virtual sensors

of Spot1 and TlosB2.

Figure 4-6 Example of sensor data before semantic data annotation

For each sensor reading, the following steps are executed by the AA. We consider the example of

SenML data receiving from the Spot1 sensor.

First, AA determines the sensing capability (e.g., temperature or humidity reading) and finds it as

a temperature reading. Sensor capability check depends on the configuration setup of the WSNs

performed by the WSN provider. In our implementation, we used sensor id to determine the

capability of the sensor.

Second, AA looks for the temperature part of the base ontology in its local storage. If the ontology

is not found, AA sends an ontology discovery request for the required base ontology (temperature

70 | P a g e

sensor related concepts) to the OA in the ontology overlay. OA replies back with the requested

temperature ontology.

Third, AA executes the data annotation algorithm by performing the following steps:

Step 1: The input data is parsed and stored as key-value pairs. Figure 4-7 shows how the input data

can be extracted and stored as a key value pair.

Key Value

SensorName Spot1

OutputValue 25.15034

Longitude E 48.609086

Latitude N 2.479171

SensorId 1409693334925

UnitofMeasure C

Sensor data in SenML
{"e":[{"n": "Spot1",

"v:"25.15034"},

{"sv":"E 48.609086",

"u":"lon"},

{"sv":"N 2.479171",

"u":"lat"}]

"bt":"1409693334925",

"bu":"C"}'

Extracting sensor data

Figure 4-7 Extracted sensor data

Step 2: AA extracts the concepts of the temperature part of the base ontology as these concepts

would be used to add the metadata to the actual data. The temperature part of base ontology has

already been shown in the Figure 4-2.

Step 3: A new data model is initialized in which the annotated data would be stored. The new data

format of the data model depends on the implementation choice. There are several data formats

(e.g., RDF/XML, OWL/XML, Turtle, and so forth) which can be used to represent semantically

enriched annotated data. In this implementation, we have chosen the RDF/XML format as this is

the most popular and widely used all around the world.

71 | P a g e

Step 4: Each key-value pair is taken out and mapped with the corresponding concepts of the

ontology. Properties are used to create a semantic relationship between the concepts and observed

data. For example, AA receives temperature data from the sensor named 'Spot1' located in X(E

48.609086, N 2.479171) position. The partial ontology has related concepts including

'TemperatureSensor', 'Temperature' as well as properties including 'observes', 'hasLongitude', and

'hasLatitude'. Using semantic annotation, AA can represent the sensor data similar to the following

set of information;

 Spot1 is a type of TemperatureSensor

 Spot1 observes Temperature

 Spot1 has longitude E 48.609086

 Spot1 has latitude N 2.479171

This piece of information can be expressed in the RDF/XML format presented in the Figure 4-8.

As we mentioned earlier, data can be simply tagged using existing standards (e.g., XML, JSON)

but that representation cannot create semantic relationship among the observed data.

Figure 4-8 Annotated sensor data

There are several open source APIs (e.g., Apache Jena, OWL API) that can be used to create

semantically annotated data. Figure 4-9 shows the annotated data in RDF/XML generated by the

AA using base ontology.

<rdf:Description rdf:about="http://BaseOntology.owl#Spot1">

<rdf:type rdf:resource="http://BaseOntology.owl#TemperatureSensor"/>

<ssn:observes rdf:resource="http://BaseOntology.owl#Temperature"/>

<base:hasLongitude> E 48.609086 E 48.609086</base:hasLongitude>

 <base:hasLatitude> N 2.479171</base:hasLatitude>

 </rdf:Description>

http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureSensor
http://baseontology.owl/#Temperature

72 | P a g e

Step 5: After generating the annotated data, AA forwards it to the Sensor Agent (SA) in the same

overlay.

Step 6: Finally, SA sends the annotated data to the wildfire monitoring semantic application.

Figure 4-9 Annotated data received from Spot1 Sensor

The wildfire monitoring application can further infer implicit knowledge from the received

annotated data. The type of knowledge inference depends on the application domain and end-user

requirements. In this thesis, we have created a fire domain ontology along with a set of reasoning

rules to infer the knowledge like "No fire", "Tends to fire" or “huge fire". The details can be found

in Section 6.1 where we present our prototype implementation.

4.5 How the Architecture meet the Requirements

The proposed architecture fulfills all the data annotation requirements that we mentioned in Chapter

3. First, our proposed data annotation architecture can support near real time in-network annotation

in the virtualized WSNs. We have used two overlays: (a) base ontology is deployed among the

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:base="http://BaseOntology.owl#"

 xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#"

 <rdf:Description rdf:about="http://BaseOntology.owl#SpotOutput1">

 <base:hasUnit rdf:resource="http://BaseOntology.owl#DegreeCelsius"/>

 <base:hasSensingTime rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#dateTime">2014/09/01T09:12:55</base:hasSensingTime>

 <ssn:hasValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#double">25.15034</ssn:hasValue>

 <ssn:observedBy rdf:resource="http://BaseOntology.owl#Spot1"/>

 <rdf:type rdf:resource="http://BaseOntology.owl#TemperatureOutput"/>

 </rdf:Description><rdf:Description rdf:about="http://BaseOntology.owl#Spot1">

 <rdf:type rdf:resource="http://BaseOntology.owl#TemperatureSensor"/>

 <ssn:observes rdf:resource="http://BaseOntology.owl#Temperature"/>

 <base:hasLongitude> E 48.609086 E 48.609086</base:hasLongitude>

 <base:hasLatitude> N 2.479171</base:hasLatitude>

 </rdf:Description>

</rdf:RDF>

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://baseontology.owl/
http://purl.oclc.org/NET/ssnx/ssn
http://baseontology.owl/#SunSpotOutput1
http://baseontology.owl/#DegreeCelsius
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#double
http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureOutput
http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureSensor
http://baseontology.owl/#Temperature

73 | P a g e

nodes in the ontology overlay, and (b) sensor data annotation is performed by the nodes in the

annotation overlay. In both cases, we use distributed approaches for storing the base ontology and

performing sensor data annotation. Our proposed architecture allows the node-level-virtualization

of the sensor nodes. As a result, multiple application tasks can be run concurrently on top of a

physical node. For the standard representation of the sensor data and management of the sensor

heterogeneity issue, we have proposed base ontology following the existing standards. We extend

the SSN ontology to develop our base ontology. The virtualized WSNs send the annotated data to

the semantic applications through a standard interface. We have used REST interface to establish a

connection between the WSN infrastructure and Semantic Wildfire Monitoring Application. The

architecture is platform independent and supports both semantic and non-semantic applications.

Our proposed architecture is applicable for a large-scale sensor deployment while the physical layer

can support heterogeneous sensors. In this way, the scalability and sensor heterogeneity

requirements are satisfied.

4.6 Chapter Summary

In this chapter, we described our proposed data annotation architecture which is based on the

virtualization and network overlay concepts. We first presented the architectural principles and then

we explained the architecture in detail including the layers and functionalities. We explained the

base ontology and sensor data annotation procedure. We described the use case of the wildfire

monitoring application and showed the concepts of the base ontology and data annotation

procedures step-by-step. Finally, we explained how our proposed architecture meets and satisfy all

the requirements presented in Chapter 3.

74 | P a g e

Chapter 5

5 Ontology Provisioning Architecture

We presented data annotation architecture for provisioning semantic applications in virtualized

WSNs in Chapter 4. We explained about base ontology which was used to annotate the sensor data.

However, in-network sensor data annotation requires base ontology provisioning in the virtualized

WSNs. Ontology provisioning includes ontology development, deployment, and management in

virtualized WSNs.

In Chapter 4, we assumed that the base ontology was provisioned in the virtualized WSNs. This

chapter tackles the challenge of ontology provisioning. We extend the architecture presented in

Chapter 4 for ontology provisioning and refer it as ontology provisioning architecture. We have

introduced "ontology provisioning center" as a part of the ontology provisioning architecture and

proposed a protocol for deploying base ontology in the virtualized WSNs.

This chapter consists of the following items: first, we present the ontology provisioning architecture

which is an extension of our data annotation architecture described in the previous chapter to allow

ontology provisioning in WSNs. The "ontology provisioning center" for base ontology

development and management is outlined in the second section. In the third section, we propose a

new protocol for ontology deployment in the virtualized WSNs which is used in several procedures

for base ontology provisioning. A wildfire monitoring use case is presented to show the overall

workflow of the ontology provisioning. Finally, we discuss how the requirements mentioned in

Chapter 3 are met by the architecture.

75 | P a g e

5.1 Ontology Provisioning Architecture

In Chapter 4, we proposed an in-network data annotation architecture assuming that base ontology

was provisioned. We have utilized our previous architecture as a foundation and extended it for

provisioning base ontology in the virtualized WSNs. The virtual sensor layer and application

overlay layer remain unchanged as in the data annotation architecture. We have introduced new

functional entities in the physical layer and virtual sensor access layer. The overall architecture is

presented in the Figure 5-1 which is the final architecture for supporting both ontology provisioning

and data annotation in the virtualized WSNs.

In this section, we describe only the new components of the architecture which are summarized in

the Table 5-1.

 WSN IaaS Manager

 This entity is a powerful physical node (e.g., server) with the overall knowledge of the

deployed WSN IaaS, which belongs to the physical layer. It represents the WSN

 Infrastructure Manager (WIM) in the virtual sensor access layer. In our architecture, the

functional entity WIM is very crucial as it executes the most important tasks related to the

ontology deployment. In general, sensors are not reliable since they are resource constraint

devices with limited battery life. In this regard, we chose WSN IaaS manager as a powerful

node. The primary responsibility of this component is to provide 24/7 reliability to the WIM.

 Ontology Manager (OM)

 This entity belongs to the ontology overlay in the virtual sensor access layer. The primary

responsibility of OM is to store the complete base ontology and send it to the OAs upon

request from them. However, OAs store the partial base ontology. In order to ensure

76 | P a g e

availability of the ontology in the case of node failures, we replicate the base ontology

among multiple OMs in this architecture. Powerful nodes such as GTO nodes can act as

OMs.

Figure 5-1 Ontology provisioning architecture in a virtualized WSN

77 | P a g e

 WSN Infrastructure Manager (WIM)

 The WSN Infrastructure Manager (WIM) is another new functional entity added in the

ontology overlay. The WIM is the logical entity of WSN IaaS Manager belonging to the

physical layer as a centralized entity. Deployed WSNs may contain both resource constraint

and resourceful (we use the term 'capable') sensor nodes. In our architecture, only capable

nodes can act as OM or OA, which store the base ontology. It is very crucial to find the

capable nodes among the different types of the nodes belongs to the deployed WSNs. WIM

performs the following two tasks:

 (i) Selects the capable nodes to act as either OM or OA.

In this regard, we have adopted a genetic algorithm recently proposed by our

research team [61]. WIM executes the algorithm to find out the most appropriate

nodes which can play the role of OM and OA.

 (ii) Deploys the ontology concepts on the selected node.

 We have explained the ontology deployment protocol in Section 5.3 which is

executed by WIM.

Functional Entity Position Responsibility

WSN IaaS Manager Physical Layer Provide reliability support to WIM

Ontology Manager (OM)
Virtual Sensor

Access Layer
Holds the full base ontology

WSN Infrastructure

Manager (WIM)

Virtual Sensor

Access Layer

i) Selects the capable nodes that can act as

OMs or OAs ii) Deploy entire base ontology

to OMs and partial base ontology to OAs

Table 5-1 New functional entities introduced in the ontology provisioning architecture

78 | P a g e

5.2 Ontology Provisioning Center

Base ontology can be considered as an abstract image of the physical sensors deployed in the WSNs

because it holds all the related concepts of the physical infrastructure. For this reason, it is very

necessary to develop, deploy, and manage the base ontology after deploying WSN infrastructure.

We have proposed an ontology provisioning center to develop and manage the base ontology.

Figure 5-2 shows the components of the ontology provisioning center.

Figure 5-2 Components of the ontology provisioning center

WSN IaaS provider interacts with the ontology provisioning center through a user interface. Figure

6-10 shows a user interface for the implemented prototype. WSN IaaS provider adds new concepts

after deploying the sensors in the WSN IaaS. The ontology creation module is responsible for

generating the base ontology by taking the concepts stored in the data repository. We develop a set

of mapping rules and use the ontology development language to create the base ontology. Finally,

79 | P a g e

the base ontology is stored in an ontology repository. IaaS provider can store, modify or remove

concepts of the base ontology. In the case of removing some of the existing sensors from the

network, WSN IaaS provider can remove the concepts related to those sensors.

The process of creating base ontology using the ontology provisioning center is described in Figure

5-3 (illustrated in Figure 5-6 and 5-7 in Section 5.5) involving the following steps:

 Add Concept

Infrastructure Provider defines the concepts according to the sensor domain. For each

capability, a small piece of information needs to be specified including sensor type, output

type, output unit and observed property.

 Add Sensor Details

In the case of deployment of a new kind of sensor, its information can be easily added to

the ontology. For example, its name, sensor id, sensor type, the number of attached sensors,

and the domain & range values it supports.

 Load Default Ontology

Once the new concepts are included in the system, a default ontology is used to incorporate

these new concepts in this step. We use some of the concepts directly from standard SSN

ontology [58] in the default ontology.

 Apply Mapping Rules

The new concepts (we refer these as 'child concepts') are included with the existing concepts

by applying mapping rules.

80 | P a g e

Figure 5-3 Steps for Base ontology development

 Update Property, Domain, and Range values

The values of the properties, domains, and ranges are updated to reflect the new additions

or modifications to the concept.

 Create base ontology

The base ontology is created from the updated concepts, properties, domains, and ranges.

The base ontology can be expressed as the collection of all the added concepts as below:

 Base ontology = concept_temperature + concept_humidity + … + concept_k

5.3 Ontology Deployment Protocol

This section discusses our proposed protocol for deploying the base ontology in the overlay

network. The proposed protocol exchanges messages:

81 | P a g e

a) From the ontology provisioning center to the WIM belonging to the ontology overlay

(Deploy Ontology and Ontology Deploy Request), and

b) WIM to other nodes in the ontology overlay

The ontology provisioning center uses the Deploy Ontology message to deploy a base ontology to

the WIM. This situation might happen when the base ontology is created, or WIM requests the most

updated version of the base ontology.

As the ontology overlay is responsible for holding the base ontology, the rest of the messages are

exchanged between nodes of the ontology overlay. Table 5-2 summarizes the messages exchanged

for the proper deployment of the base ontology.

Message Name Message Description
Message

Address

Deploy Ontology A full base ontology is deployed by the ontology provisioning

center to WIM upon being developed.

Unicast

Ontology Deploy

Request

A request message is sent from WIM to the ontology

provisioning center to get the most updated version of the base

ontology

Unicast

Discover Request Discover the capable nodes that form the ontology overlay. Send

the message by WIM to the nodes in the ontology overlay

Broadcast

Discover Response Send the response to WIM by individual capable nodes and

include the node ID in the response message.

Unicast

Notification WIM notifies the selected OAs and OMs by sending the

notification message.

Multicast

Acknowledgement Send an acknowledge message to WIM by individual nodes. Unicast

Ontology Request A request message is sent from OM to WIM to get the ontology. Unicast

Set full Base

Ontology

WIM sets an entire base ontology to OM. Unicast

Set Partial

Ontology

WIM sets a partial base ontology to OA Unicast

Table 5-2 Message exchanges for the deployment of ontology

82 | P a g e

Sensors are tiny devices with low battery life to serve a set of specific tasks including detecting

events, sending data, and maintaining communication in the WSN. These tasks require a large

amount of energy which minimizes the battery lifetime. We find the average battery lifetime of the

Java SunSpot sensors is around 10 hours (experimental results are shown in the Figure 6-11). Most

of the deployed sensors in a WSN do not have a facility for battery recharging or replacement. Once

a battery life finishes for a sensor, it cannot participate in the network anymore. For this reason,

extensive research works are done on the efficient use of sensors' energy consumption. For the same

reason, developing routing protocol, defining topology and designing every other context of a WSN

need to consider the battery life of the sensors in the beginning.

In our architecture, we assume the sensors in the WSNs have different levels of battery life,

processing power, and hardware ability. The intuition behind this is the sensors with the higher

abilities perform more tasks including computation, routing, communication, and reporting.

Ontology provisioning requires holding the ontology and serving to other nodes in case of ontology

request. For this reason, we need to select a set of sensors which meet certain requirements. We

refer these sensors as 'capable nodes'. These sensors meet pre-defined requirements such as battery

life should be greater than X days, storage capacity should be greater than Y KB, processing

abilities (such as memory, operating system, hardware) should be higher than a certain threshold.

We assume that only these capable nodes can act as OM or OA in our architecture and hold the

ontology completely or partially.

We have introduced following procedures that rely on our proposed ontology deployment protocol:

a) Discover potential candidates as capable nodes

83 | P a g e

b) Select the capable nodes

c) Notify the capable nodes

d) Deploy base ontology to the selected nodes

a) Discover potential candidates as capable nodes

In large-scale WSN deployments, we select the potential candidates first in this procedure then

finalize the capable nodes in the next procedure. The intuition behind this is to filter out a large

number of sensors which can't meet the requirements to become capable nodes. The mechanism for

candidate discovery uses the third and fourth messages presented in the Table 5-2. At the initial

stage, WIM broadcasts the discovery request message to its neighbors. Table 5-3 summarizes the

contents of the discovery request message. The first field, broadcast_id, defines the broadcast

message ID, which is set by WIM. The source_address holds the ID of the sender of the discovery

request message. The third and fourth fields (node_storage_capcity and node_battery_life) are used

to discover the potential candidates.

broadcast_id

source_address

node_storage_capcity

node_battery_life

Table 5-3 Content of the discovery request message

Each overlay node maintains a small cache consisting of <source_address, broadcast_id> pairs to

identify and reject the duplicate messages upon receipt. When a node receives a discovery request

message, it inspects the message using broadcast_id to determine the duplicate messages. If the

received message is not duplicate, it updates the cache and disseminates it to its neighbors. As a

84 | P a g e

result, each node may receive a discovery request message from its neighbors multiple times but

broadcasts the message once. In this way, broadcast_id filters redundant messages to avoid

'broadcast storm' problem. A node also compares its storage capacity and energy level with the

condition specified in the discovery request message. If it satisfies the requirements, it forwards a

discovery response message with its ID to the immediate source node from which the discovery

request message was received. Upon receipt of a discovery response message from a neighbor node,

the immediate source nodes also perform a similar task. If an immediate source node meets the

energy and storage requirements, it adds its ID to the ID list found in the receipt message. It also

forwards the updated message to its immediate source node. On the other hand, if it does not meet

the energy and storage requirements, it simply forwards the message to the immediate source node.

This process continues until the response message is reached to the WIM. WIM can receive multiple

response messages from the same neighbor nodes. However, it will consider the messages with the

highest number of node IDs. In this way, WIM will get the aggregated response messages with the

node ID of potential candidates. There will be the very low probability of an 'ACK explosion'

problem as the message aggregation technique reduces the number of messages in the network.

b) Select capable nodes

WIM executes the heuristic-based Genetic Algorithm (GA) recently proposed by our research team

[61] to select the capable nodes from the potential candidate nodes discovered in the previous

procedure. GA provides an optimal solution for selecting capable nodes that can hold ontology in

the virtualized WSNs. GA takes the node ID of the potential candidates as input and produces a list

of the capable node IDs that can act as OA and OM. GA starts with a random population of

individuals (i.e., the solutions). The individuals are evaluated using a fitness function, and the fitted

85 | P a g e

ones are selected to undergo crossover and mutation operations to produce a new generation of

individuals. This procedure is repeated for many generations until a terminating condition (e.g.,

maximum number of generations) is reached.

c) Notify capable nodes

WIM sends the Notification message to the selected capable nodes. The message indicates that the

targeted node defined in the content is chosen to act as OA and/or OM. Each OA and OM node send

an Acknowledgement message to the WIM stating that it is ready to act as OA and/or OM upon

reception of the notification message.

d) Deploy ontology to the selected nodes

WIM sets the complete ontology to the OMs after receiving the Acknowledgement messages from

the OMs and OAs. Since OAs are resource-constraint devices and may not need all concepts, WIM

divides the base ontology into multiple parts in a way that each section contains partial ontology

for one capability. Each of these parts is randomly sent to the selected OAs.

5.4 Base Ontology Discovery

In our architecture, OM nodes hold the complete base ontology and OA nodes hold the partial base

ontology where AA nodes annotate data it receives from the semantic virtual sensors. As AA nodes

annotate data, these nodes require partial ontology. In the previous section, we have presented the

procedures for ontology deployment to OM and OA nodes. AA nodes receive the necessary partial

base ontology from the OA nodes through the base ontology discovery which can be either

proactive or reactive. We describe the procedures for base ontology discovery below:

86 | P a g e

1. Proactive Base Ontology Discovery

Figure 5-4 shows the sequence diagram of ontology discovery procedure in the proactive approach.

Send partial base ontology

Annotation Agent

(AA)

Request Ontology

Ontology Overlay Annotation Overlay

WSN IaaS Manager

(WIM)

Ontology Agent

(OA)

Advertise ontology

Reply ontology

Figure 5-4 Base ontology discovery in proactive approach

In the previous section, we showed how the WIM deployed partial base ontology to the selected

OAs. Each OA periodically advertises the partial base ontology it holds so that the AA nodes get

the information. Each AA in the annotation overlay sends an ontology discovery requests in

response to the advertisement. OAs reply back the requested ontology after receiving the request.

2. Reactive Base Ontology Discovery

The reactive approach is needed when an AA does not have the required part of the base ontology

for annotation. The base ontology discovery procedure is illustrated in the Figure 5-5.

87 | P a g e

Ontology Agent

(OA)

Ontology Manager

(OM)
Annotation Agent

(AA)

Request ontology

Reply ontology

Check ontology

Request Ontology

Check ontology

Reply ontology

Ontology OverlayAnnotation Overlay

Figure 5-5 Base ontology discovery in the Reactive approach

The AA node sends an ontology discovery request message for the required part of the base

ontology to an OA known from its cached advertisement. If the OA does not have the requested

part of the base ontology, it sends an ontology discovery request to the OMs in the same ontology

overlay as OMs contain the complete base ontology. Finally, OM replies back the request partial

base ontology (such as ontology for temperature sensor) to the OA, which is then forwarded to the

requesting AA.

5.5 Wildfire Monitoring Use case

We presented the wildfire monitoring use case to illustrate the semantic data annotation architecture

in Chapter 4. We have extended the architecture in this chapter to allow ontology provisioning in

the virtualized WSNs. In this section, we present the wildfire monitoring use case again to illustrate

the new architecture focusing on the ontology development and deployment.

88 | P a g e

As we mentioned before, initially the WSN IaaS provider deploys sensors of brands Java SunSpot

(temperature and light sensors) and AdvanticSys Kit (humidity sensors) on a large geographic area.

WSN IaaS developer may not be an ontology developer or domain expert to develop base ontology

by himself. He can develop the base ontology using our proposed ontology provisioning center by

adding few information. Then he deploys the base ontology in the virtualized WSNs using ontology

provisioning protocol.

Based on the scenario, we describe the ontology provisioning process. We divide the work process

into two sections:

(i) Ontology development process using ontology provisioning center, and

(ii) Ontology deployment procedure from ontology provisioning center to the

virtualized WSNs.

5.5.1 Base Ontology Development

The first step of the base ontology provisioning is to develop a base ontology. The base ontology

development using ontology provisioning center is illustrated in the Figure 5-6.

In this scenario, we show the steps performed by the IaaS provider to develop a base ontology by

adding concepts related to the Java Sunspot temperature sensors:

1. IaaS provider adds the concepts related to the temperature sensor (e.g., sensor type:

TemperatureSensor, observed property: Temperature, output type: TemperatureOutput, unit:

DegreCelcius) using the user interface.

89 | P a g e

Figure 5-6 Sequence diagram for base ontology development

2. In the user interface of the ontology provisioning center, there is a process for checking

duplicate concepts. When the IaaS provider wants to add new concepts, the system first

checks whether the concepts are unique or not. If a duplicate concept is found, IaaS provider

is notified that duplicate concept cannot be added to the system. For example, if there are

already some existing concepts related to the temperature sensor in the data repository, the

IaaS provider would not be allowed to add the redundant concepts. We have not addressed

the issue when relevant concepts already exist in the data repository using different names.

WSN IaaS

Provider
Data Repository

Ontology

Creation Module
User Interface

Ontology

Storage

Add Concepts

Send concepts

Response with

Ontology File

Create Base Ontology

[Concepts, Default Ontology]

Create base ontology

mapping rules and ontology

development language

Check duplicate concepts

Ontology Provisioning Center

Request concepts

Reply concepts

Request Default

Ontology

Send Base Ontology

Check Default Ontology

90 | P a g e

Because it requires human effort to match and identify relevant concepts having different

names (e.g., location: washroom, restroom). We believe that this type of situation will less

likely happen in the sensor domain as most of the sensing phenomena are well-known.

3. The newly added concepts related to the temperature sensor are stored in the data repository.

Following concepts are added for this use case:

 Temperature

 TemperatureSensor

 TemperatureSensorOutput

 DegreeCelcius

4. Ontology creation module requests for the concepts related to the temperature sensor in the

data repository for creating a base ontology and checks its local storage for the default

ontology. If the default ontology is not found, a request message is sent to the ontology

storage.

5. Ontology storage replies back the requested ontology. The default SSN ontology already

contains some core classes (e.g., Sensor, ObservedPropoerty, SensingUnit) and properties

(e.g., observes, hasUnit) that create semantic links between the classes.

91 | P a g e

Figure 5-7: Ontology development for temperature sensor

6. The ontology creation module incorporates the new concepts in the ontology by creating a

parent-child relationship between the concepts from SSN ontology and the new concepts.

92 | P a g e

Figure 5-7 shows the default ontology, newly added concepts and generated ontology for

the temperature sensor. We see that the "TemperatureSensor" is added as a subclass of the

"Sensor" class whereas the "Temperature" class is added to the "ObservedProperty" class.

In order to create a semantic link (for example, "TemperatureSensor observes Temperature")

between the TemperatureSensor and Temperature class, domain and range values of the

property "observers" are updated. An Ontology development language (such as OWL,

Apache Jena) is used to create a base ontology when all the newly added concepts are

mapped to the corresponding parent classes and properties are updated for domain and range

values.

7. Finally, the base ontology is sent to the ontology storage which is used to deploy in the

ontology overlay.

5.5.2 Base Ontology Deployment

Once the base ontology development is completed, base ontology deployment is performed. Figure

5-8 shows the sequence diagram of base ontology deployment. We describe the deployment process

for the wildfire monitoring use case below.

At the initial stage, the WSN IaaS provider adds the concepts related to the Java SunSpot

(temperature and light) and AdvanticSys Kit (humidity) sensors and develops the base ontology

using the ontology provisioning center that we have discussed in the previous subsection.

As the developed base ontology contains concepts of sensors having three different capabilities, the

ontology provisioning center splits the complete base ontology into the following three parts in such

a way that each portion contains all the related, capability-specific concepts:

93 | P a g e

a) Ontology for only Temperature Sensor

b) Ontology for Light Sensor

c) Ontology for Humidity Sensor

Figure 5-8 Sequence diagram for ontology deployment process

The common concepts and properties (e.g., "sensor", "observedProperty", "sensorOutput",

"observes") are present in all the three parts. The ontology provisioning center deploys the full and

parts of the base ontology to WIM belonging to the ontology overlay through deploy ontology

94 | P a g e

message. A discovery request message is sent from WIM to the neighboring nodes residing in the

ontology overlay. Only the potential candidates, i.e., those with the higher energy and storage

capacity, give the response messages along with their IDs to WIM. In the next step, WIM selects

capable nodes that can act as OM or OA by executing a genetic algorithm. WIM notifies the selected

OM and OA nodes. Upon receiving the notification message, OM and OA nodes send an

acknowledgment message to WIM, stating their readiness to work accordingly. Finally, WIM sends

the complete base ontology to the selected OMs and the partial base ontology to the selected OAs.

5.6 How the Architecture meet the Requirements

The refined architecture fulfills all the ontology provisioning requirements that we mentioned in

Chapter 3. First, our proposed ontology provisioning center allows WSN IaaS provider to easily

develop and manage the base ontology. It can be implemented using any standard technology. We

use distributed approach to deploy the base ontology in order to avoid a single point of failure. We

propose an ontology deployment protocol that allows the interaction between the ontology

provisioning center and the virtualized WSNs. Our proposed protocol re-uses the genetic algorithm

to find a set of capable nodes and deploy the base ontology among those nodes. It results in efficient

resource utilization of the WSN IaaS. Base ontology is replicated among the selected capable nodes

to ensure fault tolerance. Our proposed solution is applicable to the large-scale sensor deployments,

thus, the scalability requirement is also satisfied.

95 | P a g e

5.7 Chapter Summary

In this chapter, we have described an ontology provisioning architecture in the virtualized WSNs,

which was built upon the data annotation architecture presented in Chapter 4. We first described

the enhanced architecture focusing on the new components and functionalities, then presented the

ontology provisioning center. We discussed the ontology provisioning protocol to deploy the base

ontology in the virtualized WSNs. An illustrative scenario showing the workflow of different

components of the architecture was presented based on the wildfire monitoring use case. Finally,

we explained how our proposed architecture satisfied all the ontology provisioning requirements

presented in Chapter 3.

96 | P a g e

Chapter 6

6 Validation: Prototype, Simulation, and Evaluation

We presented an architecture for data annotation in Chapter 4 which was extended in Chapter 5 for

ontology provisioning. In this chapter, we describe the implemented prototype and simulation to

evaluate them based on the different performance metrics. We implemented a semantic wildfire

monitoring application that uses the annotated data from sensors. We also implemented an

application for ontology provisioning which was used for developing and managing the base

ontology. This chapter consists of two main sections. The first section validates the data annotation

architecture. The second section validates the ontology provisioning architecture. Finally, we

summarize the chapter.

6.1 Validation of Data Annotation Architecture 2

We begin this section by representing the implementation scenario. The scope of the prototype

application is defined in the second subsection. We discuss the prototype setup and different

configurations that we used to implement our prototype in the third subsection. The fourth

subsection describes the performance matrices along with the performance result of the

implemented prototype.

2 This section is an extended version of the validation presented in the paper “ I. Khan, R. Jafrin, F. Errounda, R.

Glitho, N Crespi, M Morrow, P Polakos, A Data Annotation Architecture for Semantic Applications in Wireless Sensor

Networks, IFIP/IEE International Symposium on Integrated Management (IM 2015), pp. 27, 35, 11-15 May 2015,

Ottawa, Canada” (acceptance rate: 27.2%)

97 | P a g e

6.1.1 Implemented Scenario

We have implemented a semantic wildfire monitoring application inspired by the scenario

presented in Chapter 3. In this implementation, we consider that the base ontology has already been

provisioned into the WSNs. Figure 6-1 depicts the workflow of the implementation scenario.

Figure 6-1 Sequence diagram of the implemented scenario

Semantic virtual sensors send their raw data to the AA. Once an AA receives the raw sensor data, it

first checks locally to determine whether it has the required ontology to annotate the data. If AA

does not have the necessary ontology, it sends a request message to an OA for the ontology. The

Sensor
Ontology

Agent
End User

Semantic

Application

Annotation

Agent

Sensor

Agent

Ontology Check

Raw Sensor

 Data

Ontology Discovery

Request

Response with

Ontology File

Data Annotation

[Raw data, base ontology]
Annotate raw data using
base ontology

Send Annotated Data
Send Annotated

Data

Knowledge Inference

Annotation with

Fire Domain Ontology

Send Fire

Notification

Sensor Capability Check

Ontology Check

Query:

"What is fire status"

SPARQL Query

Execution

Query Response:

"Initial Fire"

98 | P a g e

OA sends the requested ontology to the AA. The AA annotates the raw sensor data using the

ontology and sends the annotated data to the SA. The SA sends the annotated data to the semantic

wildfire monitoring application.

Wildfire monitoring application receives annotated data and applies a set of reasoning rules along

with domain ontology to infer additional knowledge. If the application detects any fire event, it

immediately sends a fire notification message to the end user. The user can ask for some detail

information such as where the fire event has occurred? Or what is the current fire situation?

Semantic wildfire monitoring application has an SPARQL query execution engine that finds the

required information from the annotated data and replies back to the end-user.

6.1.2 Prototype High-Level Description

Figure 6-2 is a snapshot of the user interface of the semantic wildfire monitoring application that

enables the end-user to monitor fire situation.

99 | P a g e

Figure 6-2 A user interface for the semantic wildfire monitoring application

There are two buttons in the user interface. The prototype application continuously checks the fire

status by taking sensor measurement from virtualized WSN. If any fire situation occurs, then the

application immediately triggers a fire notification message to the user. After getting the fire

notification message, the user can query for additional information by pressing the button "Status"

to understand the context of the fire situation such as is it initial fire or massive fire in that place.

The user can also get the detail information such as time, location, and the current temperature of

the fire-eruption area by clicking the next button "FireDetail".

100 | P a g e

6.1.3 Prototype Setup

We used the following software and technologies to implement the prototype:

1) Google App Engine [62] was used as the PaaS Layer for implementing and hosting the

semantic wildfire monitoring application.

2) Apache Jena [63] was used for annotating sensor data, reasoning, and executing SPQRQL

queries.

3) RESTlet framework [64] was used for the interaction between the WSN IaaS and semantic

wildfire monitoring application in PaaS.

4) JXTA protocol [65] was used to implement the annotation and ontology overlays.

We used two different sensor kits for the prototype: Java SunSpot and TelosB motes from

AdvanticSys Kit. In total, we used 6 SunSpots (two of them as base stations), 4 TelosB motes (one

of them as border router) running Contiki OS [66]. All these sensors have multiple on-board sensing

capabilities but differ in their processing and storage abilities. In our implementation, TelosB motes

are Type A sensors and Java SunSpots are Type B sensors. All of the sensors were running multiple

application tasks. The Java SunSpots had three application tasks running concurrently and

periodically measured the temperature, light and blinking LEDs. The TelosB motes had the

temperature, light, and humidity tasks running concurrently. Type B sensors send their data in

SenML [60] format which is a lightweight standard data model and suitable for sending sensor data.

Type A sensors send their data in a simple string format.

101 | P a g e

The wildfire monitoring semantic application is a RESTful web service that uses the following

components:

1) Fire domain ontology:

We developed a fire domain ontology. Figure 6-3 shows few concepts of the fire domain

ontology. Fire domain ontology contains the concepts related to the fire event situations,

states of the sensing events, and location (city, area). Examples of the fire event situations

include "no fire", "initial fire", and "fire blaze". States of the sensing events might be "low

temperature" or "high temperature, "low humidity" or "high humidity", etc.

Figure 6-3 Few concepts of the fire domain ontology

2) Jena Inference API:

 We used Jena inference API to reason over the annotated data and infer implicit

knowledge using a set of rules. We developed several rules for our wildfire monitoring

102 | P a g e

application to provide information to the end-users about the fire events. Two examples of

the rules are given in the Figure 6-4.

Figure 6-4 Example of Reasoning rules

The first rule states that if the sensing temperature is more than 80-degree celsius, then it

is a high temperature. The second rule states that if the temperature is high, relative

humidity is low, and the CO2 level is high then there is a fire blaze situation.

3) Query Engine:

SPARQL query engine is used to query the annotated data. An example query is shown in

the Figure 6-5 to get the event information like fire event's occurrence time, current

temperature value, location and the status (fire blaze in this case).

Figure 6-5 Example of SPARQL query

[Rule1: (?output ssn:hasValue ?Value) greaterThan(?Value,80),

 (?output rdf:type base:TemperatureOutput),

 (?output base:hasUnit base:DegreeCelsius) ->

 (?output fda:hasTemperatureType: fda:HighTemperature)

]

[Rule2: (?output fda:hasTemperatureType fda:HighTemperature),

 (?output fda:hasHumidityLevel fda:LowHumidity),

 (?output fda:hasCO2Level fda:HighCO2) ->

 (? output fda:hasFireSituation fda: fireBlaze)

]

SELECT ?Time ?Temperature ?Longitude ?Latitude ?Firesituation

WHERE {

 ?SunSpotOutput base:hasSensingTime ?Time.

 ?SunSpotOutput ssn:hasValue ?Temperature.

 ?Sunspot base:hasLongitude ?Longitude.

 ?Sunspot base:hasLatitude ?Latitude.

 ?SunSpotOutput fda:hasFireSituation ?Firesituation.

FILTER (regex(str(?Firesituation),

 ’http://www.semanticweb.org/WirelessSensor/FireApplication#FireBlaze’, ’i’)

 }

103 | P a g e

The functional entity AA belongs to the annotation overlay and has the following components:

 Web Server: receives the sensor data

 JXTA Edge Peer: participates in the overlay and requests the required parts of the base

ontology

 RDF Generator: annotates sensor data using the base ontology

 Web Client: sends annotated data to the semantic wildfire monitoring application

The functional entity OA in the ontology overlay has the following components:

 JXTA Rendezvous Peer: stores the base ontology and sends it to the requesting AA. We

used the JXTA Content Management System (CMS) to advertise the base ontology

available in each OA and send it to the requesting AAs.

The proposed architecture is implemented as Infrastructure as a Service (IaaS) which allows us to

link our solution to the IaaS, PaaS, and SaaS aspects of the cloud computing paradigm. Figure 6-6

shows the three implementation configurations we used for evaluation purpose. The details of these

configurations are as follows:

1) Configuration A

We used Type A sensors (TelosB) at the infrastructure level. The semantic virtual sensors

sent their raw data to a GTO node. The GTO node (acting as an AA) downloaded the

required ontology from an OA and annotated the raw sensor data. Finally, the annotated

data was sent to the semantic wildfire monitoring application via SA.

104 | P a g e

Figure 6-6 Implementation architecture of the semantic wildfire monitoring application

105 | P a g e

2) Configuration B

We used Type B sensors (Java SunSpots). The ontology used to annotate the data was stored

locally in the Type B sensors as there was no ontology overlay. We implemented the AA in

the Type B sensors using μJena library [67]. In this way, those AAs did not need any GTO

node to perform annotation. Each semantic virtual sensor sensed and generated the raw data,

annotated it and sent it to the semantic wildfire monitoring application via SA.

3) Configuration C

We used both Type A and Type B sensors. All of the sensors sent their raw data over the

internet. For Type A sensors, we used a Contiki border router to allow them directly

communicate with the wildfire monitoring application. For Type B sensors, we used Java

Socket-Proxy, which communicates with the wildfire monitoring application on their

behalf. In this configuration, the wildfire monitoring application performed the annotation

itself. This allowed us to measure the extra delay introduced by our approach.

6.1.4 Performance Metrics and Results

We evaluated the performance of the implemented prototype with the following metrics:

1) End-to-End Delay (E2ED)

 E2ED is defined as the duration of sending the raw data by virtual sensors and receiving

acknowledgment by SA from the wildfire monitoring application. It includes the time taken

by all the following intermediate steps:

 A semantic virtual sensor sends raw data to AA

106 | P a g e

 Discover ontology (for configuration A) when ontology is not present in AA

 Annotation performed by AA

 AA sends annotated data to the semantic wildfire monitoring application

 SA receives acknowledgment from the application

2) Ontology Download Time (ODT)

ODT is the duration between the request for an ontology by AA and reception of the required

ontology from an OA.

3) Scalability of AAs

The number of AAs are varied to observe the ontology discovery time and ODT.

4) Expected Operation Time (EOT)

 EOT is the duration a sensor can execute tasks (semantic and non-semantic) and its battery

lifetime.

The delays were measured in milliseconds. The experiments were repeated 50 times.

Figure 6-7 shows the individual E2ED of the three configurations. Configuration A had an average

E2ED of 3566ms. The actual annotation delay was negligible (less than 10ms) since the AA was

implemented on a laptop computer. The E2ED of configuration B was the highest, at 4575ms. The

average annotation delay was 525ms since the Java SunSpots were annotating data themselves. We

found that this longer time was due to the low RAM size, only 1MB. Despite this, SunSpots were

able to annotate sensor data and run other tasks concurrently without any other issues. The E2ED

of configuration C was 3187ms. As expected, the wildfire monitoring application was able to

annotate the sensor data quickly but at the expense of developing the base ontology and then

implementing it in addition to the application logic.

107 | P a g e

Figure 6-7 End-to-End Delay

Figure 6-8 shows their average E2ED of all configurations after 50 repetitions.

Figure 6-8 Average End-to-End Delay

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
el

ay
 i

n
 m

il
li

se
co

n
d

s

Experiment Number

End-to-End Delay

Config. A Config. B Config. C

3566.54

4575.24

3187.36

0

1000

2000

3000

4000

5000

D
el

ay
 i

n
 m

il
li

se
co

n
d

s

Average End-to-End Delay

Config. A Config. B Config. C

108 | P a g e

Figure 6-9 Ontology Download Time

Figure 6-9 shows the ODT when a particular AA requests for the required part of the base ontology

and received the corresponding OWL file. The average ODT found from 50 experiments was 94ms

which was typically found in private LAN settings using JXTA protocol.

The results in Figure 6-10 show how the OA discovery time increases when the number of AAs

increases.

Figure 6-10 OA discovery time when AAs increase

0

20

40

60

80

100

120

140

160

1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 4345 47 49

D
el

ay
 i

n
 m

il
li

se
co

n
d

s

Experiment Number

Ontology Download Time

Ontology Download Delay Average

3242.3

4754.3
5510.8

7104.7

8752.6

0

2000

4000

6000

8000

10000

10 20 30 40 50

D
el

ay
 i

n
 M

il
li

se
co

n
d

s

Number of Annotation Agents

Impact on the Discovery of an OA

109 | P a g e

Since JXTA was used for implementation, it had a direct impact on the scalability. JXTA is known

to perform poorly when peers in the network increase which is also found in this work. However,

the increase in AAs does not impact the ODT mainly because OA is already discovered. Here, the

average ODT was around 100ms, which is almost similar to the one shown in the Figure 6-9.

Figure 6-11 Expected operation time of Java SunSpots (always on)

Figure 6-11 shows the EOT of the Java SunSpots while running a semantic and a non-semantic task

without using any sleep mechanism. Without considering normal battery discharge, SunSpots lasted

around 571 and 603 minutes operation time for the semantic and non-semantic tasks, respectively.

Using 0.8 as a constant multiplier for normal battery discharge reduced the operation time to 456

and 482 minutes, respectively

For all the three configurations, we have experienced delay due to the circumstances beyond our

control. For example, from time to time, GAE would start a new process for the wildfire monitoring

application and reload it thereby incurring an unnecessary delay. We determined this from the log

files of our wildfire monitoring application.

571
603

456 482

0

100

200

300

400

500

600

700

Semantic Task Non-semantic TaskO
p

er
at

io
n

 T
im

e
in

 M
in

u
te

s

Expected Operation Time of SunSpot in Minutes

Estimated SunSpot Operation Time Without Considering Battery Discharge

Estimated SunSpot Operation Time Considering Battery Discharge

110 | P a g e

6.2 Validation of Ontology Provisioning Architecture

In this section, we discuss how we validate our ontology provisioning architecture. The first section

states implementation scenario. In the second section, we give a high-level description of the

prototype. The prototype setup for ontology provisioning center and the implementation

architecture is presented in the third section. The fourth section describes the performance matrices

and performance results of the implemented prototype. The fifth section presents the simulation

setup and performance matrices to validate our ontology deployment protocol.

6.2.1 Implemented Scenario

In the data annotation implementation scenario, we assumed that the base was already provisioned.

Our scope of this implementation is to develop, manage, and deploy base ontology to the WSNs.

We extended the same implementation scenario discussed in the Section 6.1.1. After deploying the

sensors, WSN IaaS owner needs to create the corresponding base ontology. In this regard, we built

a prototype application named ontology provisioning center that allows WSN IaaS owner or any

novice user to interact with the system and develop a base ontology without knowing any technical

knowledge or protocol details. Finally, the base ontology is provisioned using the ontology

deployment protocol to the virtualized WSNs.

6.2.2 Prototype High-Level Description

We need a user-friendly application that permits WSN IaaS provider to create, manage, and deploy

the base ontology to the virtualized WSNs to accelerate the automatic annotation process. In this

thesis, we have implemented an ontology provisioning center which is a web-based application.

111 | P a g e

This application allows base ontology development and management which can also be used by a

novice user.

Figure 6-12 represents the user interface of the ontology provisioning center application. From the

figure on the left side, there is a list of buttons dedicated to performing some specialized tasks.

 The button "Add Concept" is used to create new concepts when a new type of sensors is

deployed in the WSN infrastructure.

 WSN IaaS provider can add new sensor information by using the button "Add Sensor".

Existing concepts can be updated or deleted by using the button "Update Concept".

 The button "Base Concepts" simply shows the current list of the concepts that forms the

base ontology.

 Ontology can be developed by using the button "Create Ontology". The button "Ontologies"

presents a list of already created ontologies by WSN IaaS provider.

 WSN IaaS provider can view the existing sensors information residing in the WSN

infrastructure by clicking the button "Sensor Repository".

 WSN IaaS provider can also download the base ontology to his local machine with the help

of "Download" button.

112 | P a g e

Figure 6-12 User interface for ontology provisioning center application

6.2.3 Prototype Implementation Architecture

The ontology provisioning center was developed by using the following software and technologies:

1) Java was used to develop the whole application using JAX-WS web services API

2) MySQL Database was used to store the base ontology concepts

3) Apache Tomcat web server was used to host the application

113 | P a g e

4) In order to generate the base ontology using the stored concepts in the database, we used

Protégé 3.8 API which is an open-source Java-based library for OWL and RDFS.

To implement the annotation and ontology overlay, we used the Java-based JXSE implementation

of JXTA protocol. The WSN IaaS Manager, OM, and OA were implemented by the JXTA

Rendezvous Peer functionality to store the base ontology. We used the JXTA Content Management

System (CMS) to send the base ontology from WIM to OM, then from OM to OA and finally, from

OA to AA.

Figure 6-13 shows the implementation architecture for provisioning base ontology. We extended

the data annotation implementation architecture and added the ontology provisioning center

application in this new architecture.

Figure 6-13 Prototype implementation architecture for ontology provisioning

114 | P a g e

6.2.4 Performance Metrics and Results

We used the following two metrics to evaluate the performance of the prototype:

1) Overlay Creation Delay (OCD)

OCD is the time to create JXTA overlay from a non-existent state to a ready state when it

is ready to accept join requests. We measured this delay inside the Java code to ensure that

the OCD does not include the JVM start-up delay.

2) Ontology Distribution Time (ODisT)

ODisT is the combination of the following delays:

 The delay from ontology provisioning center application to WSN IaaS Manager,

 The delay from WSN IaaS Manager to OM and Delay from OM to OA.

All these experiments were repeated 50 times with 95% confidence interval.

Figure 6-14 Overlay creation time

Figure 6-14 presents the OCD of 50 experiments and its average value. We figured out that the

average OCD was 1906ms, based on the 50 experiments. It is important to note that the OCD

depends on the configurations of the machines acting as JXTA peers and is unavoidable. As it was

115 | P a g e

experienced only during the overlay initiation phase, it did not make much impact on the sensor

data annotation process.

Figure 6-15 shows the ODisT. Since the ontology provisioning center and WIM were implemented

on the same laptop, hence the delay between this two entities was minor. For this reason, we did

not include this delay in the result. The average delay from WIM to OM was ~56ms. The average

delay from OM to OA was about 54ms. In total, the average ODisT from 50 experiments was

around 109ms.

Figure 6-15 Base ontology distribution time

6.2.5 Simulation Setup and Performance Result

We developed a discrete event simulator [68] to validate our ontology deployment protocol. The

primary objective was to compare our proposed protocol with the simple flooding protocol. In this

116 | P a g e

section, we first present the simulation setup and then describe the performance metrics. Finally,

we will show the simulation results.

6.2.5.1 Simulation Setup

We developed a discrete event simulator [68] to select the proper protocol for finding OA and OM

nodes that create the ontology overlay.

We considered following two protocols to discover the OA and OM nodes:

 (i) No Delay Simple Flooding

 (ii) Delayed Aggregation Flooding

We selected following two types of network topologies:

 (i) Grid topology

 (ii) Random topology

In both protocols, upon receiving a message for the first time, a node updated its cache and sent it

to its neighbors. If the received message was duplicate, it was discarded. In the No Delay Simple

Flooding approach, the capable node sent a reply message immediately upon receipt of a discovery

request message. On the other hand, each node waited for a while and then sent the discovery

response message to have the opportunity to aggregate responses from neighbor nodes in the

Delayed Aggregation approach.

In the Grid topology, we assumed that the nodes were in a fixed distance rectangular area, which

represented a planned deployment. The positions of the nodes were determined by the Gaussian

distributions [69] in the Random topology representing the ad hoc deployment of a vast number of

sensors.

117 | P a g e

6.2.5.2 Performance Matrices and Results

We evaluated our protocol using the following two performance matrices:

 Convergence Time (CT)

Convergence time is the total number of discrete events required to discover all the potential

candidates that can act as OM or OA.

 Discover Response Messages (DRM)

Discover Response Messages (DRM) is the total number of response message received by

the WIM node from the potential candidate nodes.

CT and DRM were calculated for both No Delay Simple Flooding and Delayed Aggregation

Flooding protocols. While calculating CT and DRM, several factors were considered. We varied

the network size, the number of directly connected neighbors of the nodes by changing the

connection range R, and the percentage of capable nodes C. We observed how the values of CT and

DRM changed on these factors. We varied the network size from 1000 to 5000, set the connection

ranges (R) 18 or 25 to change the directly connected neighbors, and fixed the percentage of capable

nodes (C) 40% or 60%. In Grid topology, we considered the node distance was 10. The mean and

standard deviation of the Gaussian distribution were
2

_ sizenetwork and
4

_ sizenetwork , respectively.

Figure 6-16 shows the convergence time of the Grid and Gaussian topologies using both the No

Delay Simple Flooding and Delayed Aggregation approaches. As the figure makes it clear, for both

topologies, the network convergence time is higher in the Delayed Aggregation approach, where

each node waits a certain time before sending a response message. In the No Delay Simple Flooding

approach, the potential nodes instantly reply back with the response message results in less delay

118 | P a g e

compared to the aggregation approach. Since this discovering process will run single time during

the network initial setup phase, we can ignore that the Delayed Aggregated approach needs more

time to converge, compared to the other approach, to reduce the number of response messages in

the network, which will, in turn, resolve the ACK explosion problem.

Figure 6-16 Total convergence time in Grid and Gaussian topologies

0

50

100

150

200

250

1000 2000 3000 4000 5000

C
o

n
ve

rg
e

n
ce

 T
im

e

Network Size

Convergence Time of Grid Topology

Simple R=18 C=40%

Simple R=18 C=60%

Simple R=25 C=40%

Simple R=25 C=60%

Aggregation R=18 C=40%

Aggregation R=18 C=60%

Aggregation R=25 C=40%

Aggregation R=25 C=60%

0

50

100

150

200

250

300

1000 2000 3000 4000 5000

C
o

n
ve

rg
e

n
ce

 T
im

e

Network Size

Convergence Time of Gaussian Topology

Simple R=18 C=40%

Simple R=18 C=60%

Simple R=25 C=40%

Simple R=25 C=60%

Aggregation R=18 C=40%

Aggregation R=18 C=60%

Aggregation R=25 C=40%

Aggregation R=25 C=60%

119 | P a g e

Figure 6-17 shows the total Discovery Response messages in the Grid and Gaussian topologies.

From the figure, it is clear that the Delayed Aggregation approach has lower Discovery Response

messages in both topologies. The reason behind the better performance of Delayed Aggregated

approach is that each node gets the opportunities to aggregate response messages from the huge

number of neighbors.

3 Figure 6-17 Total response message in Grid & Gaussian topologies

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1000 2000 3000 4000 5000

To
ta

l R
e

sp
o

n
se

 M
e

ss
ag

e

Network Size

Total Response Message of Grid Topology

Simple R=18 C=40%

Simple R=18 C=60%

Simple R=25 C=40%

Simple R=25 C=60%

Aggregation R=18 C=40%

Aggregation R=18 C=60%

Aggregation R=25 C=40%

Aggregation R=25 C=60%

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 2000 3000 4000 5000

To
ta

l R
e

sp
o

n
se

 M
e

ss
ag

e

Network Size

Total Response Message of Gaussian Topology

Simple R=18 C=40%

Simple R=18 C=60%

Simple R=25 C=40%

Simple R=25 C=60%

Aggregation R=18 C=40%

Aggregation R=18 C=60%

Aggregation R=25 C=40%

Aggregation R=25 C=60%

120 | P a g e

6.3 Chapter Summary

In this chapter, we validated both of the proposed architectures presented in Chapter 4 and 5. In

order to validate the data annotation architecture, we presented an implementation scenario, the

scope of the prototype, prototype setup including different configuration settings and the

performance measurements. After that, we validated the ontology provisioning architecture by

describing the high-level prototype description, implementation architecture, and performance

measurements. Finally, we presented the simulation setup and performance measurements to justify

our proposed ontology deployment protocol.

121 | P a g e

Chapter 7

7 Conclusion and Future Work

In this chapter, first we summarize the overall contributions we made and then give some research

directions for future work.

7.1 Summary of Contributions

Wireless sensor networks (WSN) are ubiquities. Virtualization in WSNs allows an efficient

resource usage through the sharing of the same WSN physical infrastructure by multiple

applications. Semantic applications are very much momentous to provide situational awareness to

the end-users. Incorporating semantic applications in the virtualized WSN can potentially play a

critical role as these applications are situation aware. However, provisioning semantic applications

in virtualized WSNs remains big challenges. The first challenge is the data collected by the virtual

sensors need to be annotated semantically in-network so that multiple semantic applications can

use those data. The pre-requisite of semantic data annotation is to have an ontology to a particular

area of interest. The second challenge is that the defined ontology needs to be provisioned (i.e.,

developed, deployed, and managed) in the virtualized WSNs to enable the in-network data

annotation.

This thesis tackles the semantic application provisioning challenges. At first, we identify the user

requirements and show that none of the existing research works meet all the user requirements. Our

122 | P a g e

proposed solutions overcome the challenges and satisfy all the user requirements including platform

and technology independence.

We identified appropriate user requirements. At first, we define two basic requirements: (a)

semantic data annotation requirement, and (b) ontology requirement. In the basic requirements, we

define the motivation for using semantically annotated data and the need for an ontology to perform

the sensor data annotation. Based on the basic requirements we defined three different sets of

requirements: general requirements, requirements on the virtualized WSN Infrastructure, and

requirements for ontology provisioning. We have reviewed the existing related works in our

research domain. We have classified these related works into two broad categories: sensor data

annotation framework and ontology provisioning in WSNs. Afterward, We have evaluated these

related works based on our defined requirements. We found that none of them satisfied all of our

requirements.

In order to address the first challenge, we have proposed a data annotation architecture that allows

in-network, distributed, real-time annotation of sensor data at the WSN IaaS level. We have

proposed an ontology in sensor domain and referred it as “base ontology”. This ontology contains

concepts related to the basic sensing phenomena. Moreover, the proposed architecture is built upon

the notions of overlay and super peer to store the base ontology and annotate data at the IaaS level.

A proof-of-concept prototype has been implemented based on the wildfire monitoring scenario.

The wildfire monitoring application uses annotated data receiving from Java SunSpot and

AdvanticSys kit. We have evaluated this application based on the defined metrics.

123 | P a g e

In order to address the second challenge, we have extended our data annotation architecture for

provisioning base ontology to the virtualized WSN. The new architecture consists of an ontology

provisioning center for base ontology provisioning and an ontology deployment protocol for

interactions between the provisioning center and the WSN. We have implemented a proof-of-

concept prototype along with an ontology provisioning center application for developing and

deploying the base ontology. Some measurements have been presented to validate the proposed

architecture. Finally, we performed a simulation to justify our proposed ontology provisioning

protocol.

7.2 Future Work

This section presents some key research issues and some new work items as a future work of this

thesis.

 Publication and Discovery of VWSN capabilities

In this thesis, we have focused on the sensor data annotation and ontology provisioning in the

virtualized WSNs. It would be interesting to find whether semantic web can help in publishing and

discovering sensors and their services from a virtualized WSN IaaS or not. This will provide a

standard way of advertising the capabilities and services of sensor deployments and make it easier

for interested applications to discover easily sensors according to their requirements.

 Libraries for semantic annotations in resource constraint environment

There are limited libraries for semantic annotation that can be used by resource-constraint devices.

We found an old J2ME-based μJena library.After several modifications, we managed to use the

library with the Java SunSpots. However, it only annotates data in the N-Triple format whereas

124 | P a g e

standard Apache Jena Framework supports multiple formats. Developing new libraries to allow

suitable data annotation in resource constraint environment can be an interesting future work.

 Propose a new PaaS for provisioning WSN applications

Another interesting research would be the possible integration of our proposed architecture with

PaaS for the rapid provisioning of WSN applications. As a future work, we plan to design and

implement a new PaaS, which will raise the level of abstraction of the virtualized WSN and include

specialized features for the provisioning of semantic applications.

 Algorithmic Extension

We can also evaluate the performance of our proposed architecture by comparing the used GA

algorithm with other existing algorithms. We can adopt a Round-Robin algorithm for scheduling

the role of OM and OA nodes among the selected capable nodes to consider the availability and

energy efficiency of the sensors.

125 | P a g e

Bibliography

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break in the Clouds: Towards a

Cloud Definition,” ACM SIGCOMM Computer Communications review, vol. 39, no. 1, pp. 50–55, Dec.

2008.

[2] P. Mell and T. Grance, "The NIST Definition of Cloud Computing", NIST Special Publication 800-145

(Draft), US National Institute of Standards and Technology, Gaithersburg, Maryland, 2011.

[3] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Leveraging virtualization to optimize

high-availability system configurations,” IBM Systems Journal, vol. 47, no. 4, pp. 591–604, 2008.

[4] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, Security Threats, and Solutions,” ACM

Computing Surveys (CSUR), vol. 45, no. 2, pp. 17:1–17:39, Mar. 2013.

[5] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic Sensor Web,” IEEE Internet Computing, vol. 12, no.

4, pp. 78–83, Jul. 2008; ISSN:1089-7801.

[6] Koivunen, Marja-Riitta, and Eric Miller. “W3C Semantic Web Activity,” in Proceedings of the Semantic

Web Kick-off Seminar, Helsinki, Finland, pp. 27–44, Nov. 2001.

[7] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic annotation, indexing, and

retrieval,” Web Semantics: Science, Services, and Agents on the World Wide Web, vol. 2, no. 1, pp. 49–79,

Dec. 2004.

[8] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge Acquisition, vol.

5, no. 2, pp. 199–220, 1993.

[9] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling Smart Cloud Services Through

Remote Sensing: An Internet of Everything Enabler,” IEEE Internet Things Journal, vol. 1, no. 3, pp. 276–

288, Jun. 2014.

[10] A. Merentitis, F. Zeiger, M. Huber, N. Frangiadakis, K. Mathioudakis, K. Sasloglou, G. Mazarakis, V.

Gazis, and Z. Boufidis, “Wsn trends: Sensor infrastructure virtualization as a driver towards the evolution

of the internet of things,” presented at the UBICOMM 2013, The Seventh International Conference on

Mobile Ubiquitous Computing, Systems, Services and Technologies, Porto, Portugal, 2013, pp. 113-118.

[11] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architecture for wireless sensor network

virtualization,” in Wireless and Mobile Networking Conference (WMNC), 6th Joint IFIP, 2013, pp. 1–4.

[12] M. Hamdaqa, and L. Tahvildari, “Cloud Computing Uncovered: A research landscape”. Advances in

Computers, Elsevier, 2012, vol. 86, pp. 41-85, ISSN 0065-2458.

126 | P a g e

[13] R. Buyya, J. Broberg, and A. M. Goscinski, “Cloud Computing: Principles and Paradigms”, John Wiley

& Sons publications, vol. 87, 2011.

[14] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research challenges,”

Journal of Internet Services and Applications., vol. 1, no. 1, pp. 7–18, Apr. 2010.

[15] I. Sriram and A. Khajeh-Hosseini, “Research agenda in cloud technologies,” In Proceedings of the 1st

ACM Symposium on Cloud Computing, SOCC 2010, Indianapolis, IN, USA, pp. 10–11, Jun. 2010.

[16] S. Kuyoro, F.Ibikunle, and O.Awodele, "Cloud Computing Security Issues and Challenges,"

International Journal of Computer Networks (IJCN), Vol. 3, No. 5, pp. 247-255, Dec. 2011.

[17] VMWare,“Virtualization Overview”. White Paper: http://www.vmware.com/pdf/virtualization.pdf.

[18] M. M. Islam, M. M. Hassan, G.-W. Lee, and E.-N. Huh, “A Survey on Virtualization of Wireless Sensor

Networks,” Sensors Journal, vol. 12, no. 2, pp. 2175–2207, Feb. 2012.

[19] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless Sensor Network

Virtualization: A Survey,” I EEE Communications Surveys & Tutorials, vol.PP, no. 99, pp. 1–1, 2015.

[20] J. Carapinha and J. Jiménez, “Network virtualization: a view from the bottom,” in Proceedings of the

1st ACM workshop on Virtualized infrastructure systems and architectures, New York, NY, USA, 2009, pp.

73–80.

[21] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting Concurrent Applications in Wireless

Sensor Networks,” in Proceedings of the 4th International Conference on Embedded Networked Sensor

Systems, New York, NY, USA, 2006, pp. 139–152.

[22] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual Sensor Networks - A Resource Efficient

Approach for Concurrent Applications,” in Fourth International Conference on Information Technology,

2007. ITNG ’07, 2007, pp. 111–115.

[23] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, N. Gordon, T. Bessell, M. Rutten, and S. Jha, “Wireless

Sensor Networks for Battlefield Surveillance,” in Proceedings of the Land Warfare Conference 2006 (LWC

2006), Brisbane, Australia, Oct. 2006.

 [24] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service model for smart

cities supported by Internet of Things,” Transactions on Emerging Telecommunications Technologies, vol.

25, no. 1, pp. 81–93, Jan. 2014.doi: 10.1002/ett.2704

[25] Example Semantic Web Applications,

http://www.cambridgesemantics.com/semanticuniversity/example-semantic-web-applications.

127 | P a g e

[26] Semantic Web Health Care and Life Sciences (HCLS) Interest Group,

http://www.w3.org/2011/09/HCLSIGCharter.

[27] Pharmaceutical Supply Chain Management Using Semantic Web Technology: Case Study,

http://www.americanlaboratory.com/914-Application-Notes/35621-Pharmaceutical-Supply-Chain-

Management-Using-Semantic-Web-Technology-Case-Study/

[28] T. Berners-Lee, J. Hendler, and O. Lassila, ‘The Semantic Web’, Scientific American., vol. 284, no. 5,

pp. 28–37, May 2001.

[29] Introduction to the Semantic Web, http://www.cambridgesemantics.com/semantic-

university/introduction-semantic-web.

[30] M. M. Taye, “Understanding Semantic Web and Ontologies: Theory and Applications,” Journal of

Computing, vol. 2, no. 6, June 2010, ISSN 2151-9617.

[31] T. Segaran, C. Evans, J. Taylor, "Programming the Semantic Web". O’Reilly Media, Inc., 2009, ISBN

978-0-596-15381-6.

[32] J. Rao, P. Kungas, and M. Matskin, “Logic-based Web services composition: from service description

to process model,” in Proceeding of IEEE International Conference on Web Services, 2004, pp. 446–453.

[33] J. Kuriakose, "Understanding and Adopting Semantic Web Technology," Cutter IT Journal (Cutter

Information Corporation.) white paper, vol. 22, no. 9, pp. 10–18, September 2009.

[34] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic annotation, indexing, and

retrieval,” Web Semantics: Science, Services, and Agents on the World Wide Web, vol. 2, no. 1, pp. 49–79,

Dec. 2004.

[35] O. Lassila and R. Swick, "Resource Description Framework (RDF) Model and Syntax Specification,"

W3C Recommendation, World Wide Web Consortium, Feb. 1999; www.w3.org/TR/REC-rdf-syntax

[36] National Interagency Fire Center, http://www.nifc.gov/fireInfo/fireInfo_main.html.

[37] A. Sheth and K. Thirunarayan, “Semantics empowered Web 3.0: managing enterprise, social, sensor,

and cloud-based data and services for advanced applications,” Synthesis Lectures on Data Management, vol.

4, no. 6, pp. 1–175, 2012.

[38] W. Wei and P. Barnaghi, “Semantic Annotation and Reasoning for Sensor Data,” in Proceedings of the

4th European Conference on Smart Sensing and Context, Berlin, Heidelberg, 2009, pp. 66–76.

[39] K. Thirunarayan and J. Pschorr, “Semantic information and sensor networks,” in Proceedings of the

2009 ACM Symposium on Applied Computing, 2009, pp. 1273–1274.

128 | P a g e

[40] A. Zafeiropoulos, N. Konstantinou, S. Arkoulis, D.-E. Spanos, and N. Mitrou, “A Semantic-Based

Architecture for Sensor Data Fusion,” in The Second International Conference on Mobile Ubiquitous

Computing, Systems, Services and Technologies, 2008. UBICOMM ’08, 2008, pp. 116–121.

[41] A. Moraru, C. Fortuna, and D. Mladenić, ‘Using semantic annotation for knowledge extraction from

geographically distributed and heterogeneous sensor data’, 4th SensorKDD, ACM, 2010.

[42] D. B. Lenat, “CYC: A Large-scale Investment in Knowledge Infrastructure,” Communications of the

ACM, vol. 38, no. 11, pp. 33–38, Nov. 1995.

[43] U. Haque, "Pachube," http://www.pachube.com

[44] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann, A. Kröller, M.

Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and R. Richardson, “SPITFIRE: toward a

semantic web of things,” IEEE Communication Magazine, vol. 49, no. 11, pp. 40–48, Nov. 2011.

[45] F. Amato, V. Casola, A. Gaglione, and A. Mazzeo, “A semantic enriched data model for sensor network

interoperability,” Simulation Modeling Practice and Theory, vol. 19, no. 8, pp. 1745–1757, Sep. 2011.

[46] A. Gyrard, “A Machine-to-machine Architecture to Merge Semantic Sensor Measurements,” in

Proceedings of the 22Nd International Conference on World Wide Web, Republic and Canton of Geneva,

Switzerland, 2013, pp. 371–376.

[47] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L. Du, “Connecting IoT Sensors to

Knowledge-based Systems by Transforming SenML to RDF,” Procedia Computer Science, vol. 32, pp. 215–

222, 2014.

[48] V. Komulainen, A. Valo, and E. Hyvönen, “A collaborative ontology development and service

framework ONKI,” Paper, Helsinki University of Technology, Laboratory for Media Technology,2005.

[49] N. F. Noy and M. A. Musen, “Ontology versioning in an ontology management framework,” IEEE

Intelligent Systems, vol. 19, no. 4, pp. 6–13, Jul. 2004.

[50] A. Alishevskikh and G. Subbiah, "Simple Ontology Framework API",

http://sofa.projects.semwebcentral.org

[51] S. Zhou, H. Ling, M. Han, and H. Zhang, “Ontology Generator from Relational Database Based on

Jena”, Computer and Information Science, vol. 3, no. 2, Apr. 2010

[52] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple Network Management Protocol

(SNMP),” RFC Editor, RFC1157, May 1990; DOI: http://dx.doi.org/10.17487/RFC1157

[53] W. Chen, N. Jain, and S. Singh, “ANMP: ad hoc network management protocol,” IEEE Journal on

Selected Areas in Communications, vol. 17, no. 8, pp. 1506–1531, Aug. 1999; ISSN: 0733-8716

129 | P a g e

[54] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, “Wireless Sensor Network

Virtualization: Early Architecture and Research Perspectives,” IEEE Network Magazine, vol. 29, pp. 104–

112, 2015.

[55] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila, and T. Ojala, “Distributed

resource directory architecture in Machine-to-Machine communications,” in 2013 IEEE 9th International

Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2013, pp. 319–

324.

[56] J. Mäenpää, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for wide area sensor and actuator

networking,” EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1, pp. 1–22,

Mar. 2012.

[57] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-to-peer

overlay network schemes,” IEEE Communications Surveys & Tutorials, vol.7, no.2, pp.72,93, Second

Quarter 2005.

[58] M. Compton, P. Barnaghi, L. Bermudez, R. GarcíA-Castro, O. Corcho, S. Cox, J. Graybeal, M.

Hauswirth, C. Henson, and A. Herzog, “The SSN ontology of the W3C semantic sensor network incubator

group,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[59] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC® sensor web enablement: Overview and high

level architecture,” in GeoSensor Networks, Springer, 2008, pp. 175–190.

[60] C. Jennings, Z. Shelby, and J. Arkko, "Media types for sensor markup language (SenML)," IETF

Network Working Group, Internet-Draft, Jan. 2012; https://tools.ietf.org/html/draft-jennings-core-senml-00.

[61] I. Khan, S. Sahoo, R. Glitho, and N. Crespi, “A genetic algorithm-based solution for efficient in-network

sensor data annotation in virtualized wireless sensor networks,” presented at the 13th IEEE Annual

Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2016.

[62] A. Zahariev, “Google App Engine,” in TKK T-110.5190 Seminar on Internetworking, pp. 1-5, Apr 27,

2009.

[63] Apache Jena, “A free and open source Java framework for building Semantic Web and Linked Data

applications,” 2011; http://jena.apache.org/

[64] H. Li, “RESTful Web service frameworks in Java,” in Signal Processing, Communications and

Computing (ICSPCC), 2011 IEEE International Conference on 14-16 Sept. 2011, pp. 1–4.

[65] L. Gong, “JXTA: A network programming environment,” IEEE Internet Computing, vol. 5, no. 3, pp.

88–95, 2001.

130 | P a g e

[66] A. Dunkels, B. Gronvall, and T. Voigt, "Contiki - a lightweight and flexible operating system for tiny

networked sensors," in 29th Annual IEEE International Conference on Local Computer Networks, 2004,

pp. 455-462, 16-18 Nov. 2004; doi: 10.1109/LCN.2004.38

[67] F. Crivellaro, “µ Jena: Gestione di ontologie sui dispositivi mobile,” Thesis, M.Sc., Politecnico di

Milano, Milan, Italy, 2007.

[68] R. Hoare, J. Ahn, and J. Graves, "Discrete event simulator", Google Patents, 2002.

[69] Weisstein, W. Eric, "Normal Distribution." From MathWorld A Wolfram Web Resource.

http://mathworld.wolfram.com/NormalDistribution.html

