
 

   

 

Data Annotation and Ontology Provisioning for 

Semantic Applications in Virtualized Wireless 

Sensor Networks  

 

 

Rifat Jafrin 

 

 

 

A Thesis in 

The Department 

of 

Computer Science and Software Engineering 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of  Computer Science  

at Concordia University 

Montréal, Québec, Canada 

 

November 2015 

©Rifat Jafrin, 2015 



 

   

 

CONCORDIA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 
 

This is to certify that the thesis prepared 

By:  Rifat Jafrin 

Entitled: “Data Annotation and Ontology Provisioning for Semantic Applications in 

Virtualized Wireless Sensor Networks” and submitted in partial fulfillment of the requirements 

for the degree of 

Master of Computer Science 

Complies with the regulations of the University and meets the accepted standards with respect to 

originality and quality. 

Signed by the final examining committee: 

 

 

 ___________________________________________ Chair 

 Dr. Tiberiu Popa 

 

 ___________________________________________ Examiner 

 Dr. Juergen Rilling  

 

 ___________________________________________ Examiner 

 Dr. Joey Paquet 

 

 ___________________________________________ Supervisor 

 Dr. Roch Glitho 

 

 

Approved by:  __________________________________________ 

                          Chair of Department or Graduate Program Director 

 

 

____________2015                                                __________________________ 

                                                                                                      Dr. Amir Asif, Dean 

 Faculty of Engineering and Computer Science



 

iii 

 

ABSTRACT 

Data Annotation and Ontology Provisioning for 

Semantic Applications in Virtualized Wireless 

Sensor Networks 

Rifat Jafrin 

In recent years, virtualization in Wireless Sensor Networks (WSNs) has become very popular for 

many reasons including efficient resource management, proper sharing and using the same WSN 

physical infrastructure by multiple applications and services. Semantic applications are very much 

pertinent to provide situational awareness to the end-users. Incorporating semantic applications in 

the virtualized WSNs can play a crucial role in providing contextual information to understand the 

situation, increase usability and interoperability. However, provisioning of semantic applications in 

virtualized WSNs remains as a big challenge. The reason is the data collected by the virtual sensors 

needs to be annotated in-network, and the pre-requisite of the data annotation process is to have an 

ontology that needs to be provisioned, i.e., developed, deployed and managed. Unfortunately, 

annotating sensor data and ontology provisioning in virtualized WSNs is not straightforward 

because of limited resources of sensors, on-demand creation of virtual sensors, and unpredictable 

lifetime. As the existing researches do not consider data annotation in virtualized WSN 

infrastructure level, these solutions are domain specific and lack of providing support for multiple 

applications. Moreover, the major drawback of the current ontology provisioning mechanisms 

requires domain experts to develop, deploy, and manage the ontologies in WSNs.   This thesis aims 

to propose a solution for provisioning of multiple semantic applications in the virtualized WSNs. 
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The main contribution of this thesis is twofold. First, we have proposed an architecture to annotate 

sensor data in the virtualized WSN infrastructure and defined an ontology in sensor domain to 

perform data annotation. Second, we have proposed an architecture for provisioning ontology in 

the virtualized WSNs that consists of an ontology provisioning center, an ontology-enabled 

virtualized WSN, and an ontology deployment protocol. The proposed architectures use overlay 

network as a foundation. We have built a proof-of-concept prototype for a semantic wildfire 

monitoring application in the cloud environment using the Google App Engine. In order to evaluate 

the viability of the proposed architecture, we have made performance measurement of the 

implemented prototype. We ran a simulation to justify our proposed ontology provisioning 

protocol. 
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Chapter 1 

1 Introduction 

In this chapter, we define the key concepts related to our research domain including Virtualized 

Wireless Sensor Network, Semantic Applications, and Data Annotations in the first section. The 

second section presents the motivation of our research and states the problem we have solved. 

Thesis contributions are summarized in the third section. Finally, we introduce the thesis 

organization in the fourth section. 

1.1 Definitions 

In this section, we discuss few key concepts related to this thesis. 

1.1.1 Virtualized Wireless Sensor Network 

We first introduce two important concepts to define virtualized Wireless Sensor Network: Cloud 

Computing and Virtualization. 

1.1.1.1 Cloud Computing 

There are several well-known definitions for cloud computing. According to the definition proposed 

in [1] clouds are “large pool of easily usable and accessible virtualized resources that can be 

dynamically reconfigured to adjust to a variable load (scale), allowing for an optimum resources 

utilization.” 

Another definition from National Institute of Standards and Technology (NIST), “Cloud computing 

is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of 

configurable computing resources that can be rapidly provisioned and released with minimal 
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management effort or service provider interaction”. These resources can be networks, servers, 

storage, applications, and services [2].  

Cloud computing consists of three layers: Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). The IaaS is the lowest layer comprising of physical and 

virtualized computing resources. The PaaS is the second layer constructed over the infrastructure 

layer which offers a software platform to develop and manage applications. The third layer is SaaS 

which offers applications residing in the cloud. 

1.1.1.2 Virtualization  

Virtualization is a process of generating abstraction of the physical computing resources into the 

logical units for better resource utilization by multiple users [3]. System virtualization encapsulates 

the software layer by covering underline physical operating system and provides the same 

functionalities and behaviors like the actual physical hardware could provide [4].  

Wireless Sensor Network (WSN) consists of sensors that have the ability to sense environmental 

phenomena. However, traditional WSNs are domain specific and dedicated for a particular 

application. Virtualized WSNs can be considered as an infrastructure (IaaS) that consists of virtual 

sensors. Virtual sensors are created on top of physical sensors by applying virtualization technique. 

As a result, multiple application tasks can run concurrently on top of the physical sensor without 

interfering each other. 

1.1.2 Semantic Applications 

Semantic applications are mostly web based applications and developed using the technologies of 

the W3C Semantic Web. Semantic Web technologies are being used in various application domains 
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because of their usability and usefulness. One of the application domain where Semantic Web 

technologies used in WSN. The main benefit of incorporating Semantic Web in  WSN applications 

is that it provides more powerful representation, advanced access, and formal analysis of sensor 

data [5]. As a result, those applications get the high-level details of the events monitored by the 

sensors and infer additional knowledge to gain situational awareness. In this thesis, our focus is to 

provision semantic applications in a virtualized WSNs. We introduce Semantic Web and few 

related concepts for the better understanding of the semantic applications. 

1.1.2.1 Semantic Web 

Second generation World Wide Web (Web 2.0) depends on the human capability to pool resources 

and shares information online. The semantic web is an extension of the current Web 2.0 which 

provides an easier way to find, share, reuse, and combine information. According to the W3C, "The 

Semantic Web provides a common framework that allows data to be shared and reused across 

application, enterprise, and community boundaries" [6]. 

The Semantic Web offers a common format of data of various combinations or different formats 

which are drawn from diverse sources. This common format helps to manipulate data regarding the 

real world objects and allows a machine to understand the data format, search, and aggregate those 

data without taking any help from the human operator. We define two important key concepts 

(Semantic data annotation and Ontology) of Semantic Web in next sections. 

1.1.2.2 Semantic Data Annotation 

Semantic Web puts metadata (additional data) to the existing data to process them automatically by 

the machines. The mechanism of generating metadata with the actual data is called annotation, and 
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the procedure of creating semantic metadata is called Semantic Data Annotation. It allows users to 

get the high-level details and expand the existing data by tagging with semantic descriptions [7]. 

RDF (Resource Description Framework) is a flexible approach for representing basic data into a 

structured data. 

1.1.2.3 Ontology 

Ontology is one of the most important attributes of the Semantic Web technology. Ontology can be 

defined as a vocabulary which describes a set of concepts and explains the relationships between 

the concepts in a particular area of concern. There are many formal definitions of ontology. The 

most cited definition is given in [8] and according to the author " An ontology is an explicit 

specification of a conceptualization". 

Ontology offers a standard mechanism to understand some particular domains. It represents a real 

world phenomenon in a machine-understandable format. A set of concepts, ideas, and information 

from a particular field is classified with a defined relationship by an ontology that helps to 

understand the field better.     

1.1.3 Sensor Data Annotation 

Sensors are becoming very popular and adopted by many different domains, especially in those 

applications which are dedicated to providing real-time services [7]. In some real-time monitoring 

applications, it is critical to understand the analogous situations. However, raw sensor data are 

simply not enough to provide knowledge on the particular situation. We need additional metadata 

along with the sensor data to understand the situations properly. Metadata provides additional data 

such as description, contextual information related to the actual data. Sensor data can be enriched 
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by annotating them with semantic concepts. The process of annotating sensor data is called sensor 

data annotation. 

1.2 Motivation and Problem Statement 

Wireless Sensor Networks (WSN) are becoming ubiquitous and being used by many applications 

to monitor different events. WSNs consist of tiny devices that allow applications to observe various 

physical phenomena. However, traditional WSN deployments are usually tailored for predefined 

applications with no possibility for new applications to use them concurrently. For this reason, 

WSN virtualization which uses the concept of concurrent application tasks running on a sensor 

node and combines such nodes together to work for multiple applications simultaneously has gained 

considerable attention [11]–[13]. 

However, classical virtualized WSNs provide sensor data in raw format. As a result, these 

application cannot interpret the sensor data or understand its context completely. For example, a 

traditional fire monitoring application can only receive a simple fire notification without additional 

details which could help its user understand the meanings and context of the fire event (e.g., event 

status and the location of the fire event). On the other hand, semantic applications are becoming 

very popular in the WSN domain as they provide high-level details of the events monitored by 

sensors with additional knowledge. For example, a semantic fire monitoring application allows its 

users making queries such as "what is the current status of the fire?" and "what is the current 

location of the fire?” Virtualized WSNs typically monitor several real-time events simultaneously 

for different applications. Few end-users of these applications may wish to know the context of the 
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specific events. These requests bring us to the need for a mechanism that annotates the sensor data 

semantically in a virtualized WSN. 

Semantic annotation of heterogeneous sensor data generates a standard data format. It allows 

multiple semantic applications to share, reuse, search, and exploration of sensor data without any 

prior knowledge of the data source. However, semantic data annotation requires the domain 

concepts and the relationships among them. An ontology is used to represent a domain formally 

with its concepts, and the relationships among the concepts. The main advantage of data annotation 

in the virtualized WSN is that it allows the same virtualized WSN infrastructure to be used by 

several applications and enables users to understand the context of the event captured by the 

sensors. 

Semantic data annotation in IaaS depends on an ontology provisioning in the network level. During 

the operation stage, it is natural that sensors with new capabilities are added to the network. This 

mandates an update to the underlying ontology in the network. These throw several research 

challenges including (a) how the ontology will be developed, (b) how the ontology will be deployed, 

and (c) how the ontology will be managed. We need a mechanism for ontology provisioning to 

address these challenges. 
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1.3 Thesis Contributions 

The contributions of this thesis are as stated below: 

 A set of requirements on the data annotation architecture for semantic applications and 

ontology provisioning in the virtualized WSNs are defined.  

 A review of the state-of-the-art solutions for sensor data annotation and ontology 

provisioning mechanism in WSN with respect to the defined requirements is presented. 

  A Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensors 

Networks is proposed to allow standard representation of raw sensor data by annotating 

them with semantic concepts. 

 An ontology is defined for sensor data annotation which can be extended based on the 

application domains in the SaaS layer. 

 An architecture for ontology provisioning in virtualized WSNs is proposed which allows 

ontology development, deployment, and management with ease without the requirement of 

a domain expert. An ontology provisioning center and an ontology provisioning protocol 

are also defined as part of the architecture. 

 A prototype of the proposed architecture is implemented and evaluated using different 

performance metrics. A simulation is run to justify the proposed approaches for the ontology 

provisioning protocol. 
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1.4 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 provides the background knowledge about the key concepts related to our research 

domain. 

Chapter 3 presents the scenario and a set of requirements derived from the scenario. The state-of-

the-art solutions are reviewed and evaluated on the set of defined requirements.  

Chapter 4 describes the proposed data annotation architecture for semantic applications in 

Virtualized WSN and proposes a new ontology (we refer to 'base ontology') for sensor data 

annotation.  

Chapter 5 proposes an ontology provisioning architecture that contains (a) an ontology 

provisioning center for the development and management of the base ontology in the virtualized 

WSN, and (b) an ontology deployment protocol for the interaction between the ontology 

provisioning center and virtualized WSN.   

Chapter 6 describes the implementation architecture and prototype solution as a proof-of-concept. 

This chapter also includes performance measurement of the implemented prototype and simulation 

results. 

Chapter 7 concludes the thesis by highlighting the summary of the overall contributions and 

identifying the future research directions.  
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Chapter 2 

2 Background 

This chapter describes the background information related to our research domain. The topics which 

are covered in this chapter are Virtualized Wireless Sensor Network, Semantic Applications, and 

Data Annotation. 

2.1 Virtualized Wireless Sensor Network 

This section presents a basic overview of the virtualized WSN. There are two important concepts 

regarding the virtualized WSN: Cloud Computing and Virtualization. We first describe the concepts 

of Cloud Computing and Virtualization. We define virtualized WSN based on these two concepts. 

2.1.1 Cloud Computing  

This section illustrates a basic overview of cloud computing by defining a brief definition of the 

cloud computing, cloud layers, and different cloud types. 

2.1.1.1 Definition of Cloud Computing  

Cloud computing is the outcome of the progression and implementation of existing technologies 

and standards. One of the main advantages of cloud computing is that it permits users to take 

advantages of the existing technologies without having in-depth knowledge or expertise related to 

these fields [12].  
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Several definitions have been discussed in [1]. After analyzing all those definitions and considering 

the cloud features, the authors propose an integrative definition. They define cloud as:  

“Large pool of easily usable and accessible virtualized resources (such as hardware, development 

platforms, and/or services). These resources can be dynamically reconfigured to adjust to a 

variable load (scale), allowing also for an optimum resource utilization. This pool of resources is 

typically exploited by a pay per-use model in which guarantees are offered by the Infrastructure 

Provider by means of customized SLAs”. 

2.1.1.2 Cloud Layers 

Cloud computing services are divided into three layers:  Infrastructure-as-a-Service (IaaS), 

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). 

 Infrastructure-as-a-Service (IaaS)  provides infrastructural resources on demand such as 

servers, computation, storage, network, and communication [13]. Examples of IaaS include 

Amazon Web Services EC2, GoGrid, Flexiscale. 

 Platform as a Service (PaaS) provides a platform (operating system, software framework) 

to create, manage, and deploy applications and services. Examples of PaaS are Google App 

Engine, Microsoft Windows Azure. 

 Software-as-a-Service (SaaS) provides on-demand application to the end user through the 

internet. Users do not need to install the applications on their local machine as they can 

access those services through a web portal. Examples of SaaS are Salesforce.com, 

Rackspace.  
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2.1.1.3 Types of Clouds  

Cloud can be classified into the following categories based on their usabilities such as public cloud, 

private cloud, community cloud, or hybrid cloud [14], [15],  [25]. 

 Private Cloud is designed for a single organization. It can be developed and managed by 

the same organization that uses it or by any third-party organization [14].    

 Public Cloud provides services to the general public as pay-per-use manner. No initial 

capital investment in infrastructure is required for the public cloud. 

 Community Cloud is a multi-tenant infrastructure shared by several organizations from a 

particular community and set up for their specific requirements [15]. 

 Hybrid Cloud is a combination of private and public clouds. It handles the limitations of 

both cloud by utilizing the advantages of both public and private clouds. [14]. 

2.1.2 Virtualization 

We describe virtualization by defining the concept as well as discussing the advantages of 

virtualization in this section.  

2.1.2.1 Definition of Virtualization 

Virtualization is a process of creating a virtual resource from physical resources such as a server, 

storage device, network or an operating system. It separates the virtual resources from the 

underlying physical resources by creating an abstract layer in between the computing hardware and 
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the applications running on it [17]. Virtualization permits efficient physical resource utilization by 

creating several logical instances on a single hardware that can be used by multiple independent 

users. As a result, virtualization reduces cost and complexity in order to manage the physical 

resources [3]. For example, in virtualized computing environment, several operating systems can 

be installed on a single hardware. In such situation, virtualization creates multiple Virtual Machines 

(VM) on the physical machine. Each of the virtual machines ran on different operating systems 

isolated from each other. These operating systems are called Guest operating systems. The software 

layer which is responsible for creating VM is called Hypervisor or Virtual Machine Monitor. The 

physical device where virtualization takes place is known as host machine while the virtual machine 

is known as Guest machine. 

2.1.2.2 Advantages of Virtualization 

The advantages of virtualization are methodically explained [26] by differentiating the scenario of 

before virtualization and after virtualization.  

Without virtualization: 

 Each machine holds a single OS image. 

 Software and hardware are strongly coupled. 

 If several applications are run on the same machine, often it creates conflict. 

 Resources are not utilized properly. 

 Inflexible and costly infrastructure. 
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Figure 2-1 Before and after virtualization [17]  

After Virtualization: 

 Operating system and applications become hardware-independent. 

 Virtual machines can be provisioned to any system. 

 Become easier to manage the OS and application as a single unit by encapsulating them into 

virtual machines. 

2.1.3 Virtualized WSNs 

The Wireless Sensor Networks (WSNs) are now ubiquitous and using in the diverse application 

domains. A WSN can be considered as an Infrastructure-as-a-Service which consists of a vast 

number of sensor nodes deployed in a geographical area to detect various kinds of phenomena. The 

main limitation of traditional WSNs is that they are domain specific and devoted for a particular 

application. Virtualized WSN consists of virtual sensors as virtualization creates multiple virtual 

sensors on top of the physical sensor. Incorporating virtualization in the traditional WSNs allows 
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proper resource utilization of WSN deployment. As a result, multiple applications can be 

provisioned over the same virtualized WSN. 

In the next subsections, we describe some benefits of virtualized WSNs and categories of WSNs 

virtualization. Finally, we discuss some applications that can utilize virtualized WSNs. 

2.1.4 Benefits of Virtualized WSNs 

Virtualized WSNs have several benefits over the traditional WSNs [18] [19]. A summary of the 

benefits of using virtualized WSNs is mentioned below: 

 Virtualized WSNs allow multiple applications to share the same physical WSN 

infrastructure. 

 As multiple applications can be provisioned over the same deployed WSN infrastructure, 

virtualized WSNs reduce the cost and complexity of redundant deployment [18]. 

 As virtualization in traditional WSNs creates an abstract layer over the physical network, 

virtualized WSNs eliminate the tight coupling between the WSN services and WSN 

deployments  [19]. 

 Infrastructure provider of virtualized WSNs can resell the physical infrastructure to the third 

party to reuse the physical infrastructure [18]. 

 Virtualized WSNs offer scalability and flexibility to the network infrastructure. 

 Virtualized WSNs increase business profitability as the same physical infrastructure is used 

by multiple applications and services [18].   
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2.1.5 Types of WSN Virtualization 

WSN virtualization can be categorized into two types: Node-level virtualization and Network-level 

virtualization. In the following subsections, we describe each of them. 

2.1.5.1 Node-Level Virtualization 

Node level virtualization is attained by isolating and partitioning the physical resources. The 

hardware resources of a physical node are partitioned into slices and allocated for a virtual node 

[20]. In WSN domain, node-level virtualization creates virtual nodes on a single physical sensor 

node. As a result, multiple applications can run their tasks simultaneously on different virtual nodes 

over the same sensor node [21]. Figure 2-2 shows the idea of WSN node-level virtualization. 

 

Figure 2-2  Multiple application tasks running in a general purpose sensor node [19] 



 

16 | P a g e  
 

Node-level virtualization can be attained by sequential or simultaneous execution. In sequential 

execution, application tasks execute in sequence basis (first come first serve). However, in 

simultaneous execution, there is a fixed time slot for each application task's execution process 

resulting the frequent switching of execution of tasks from one application to another one [19]. 

2.1.5.2 Network-Level Virtualization 

WSN network-level virtualization can be achieved by creating Virtual Sensor Network (VSN). A 

VSN can be created by establishing a logical connection among a subset of WSN’s nodes. The 

subset of sensor nodes that create VSN is devoted to a certain task or an application at a given time 

[22]. In traditional WSN deployment, the whole network is dedicated to one application or service 

with little possibility to reuse the physical resource. However, in VSN, only a subset of physical 

nodes is committed to a certain task whereas the remaining nodes are available for other 

applications. As a result, physical resources are properly utilized and the overall cost and 

complexity of physical WSN deployment are reduced. There are two options to form WSN 

network-level virtualization [19]. 

 

Figure 2-3 VSN formation options [19] 
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First, multiple VSNs can be formed on top of the same underlying WSN infrastructure (Figure 2-

3:a). In the second choice, a single VSN can be formed by combining a subset of physical sensor 

nodes belonging to different physical WSNs (Figure 2-3: b).  

2.1.6 Applications of Virtualized WSNs 

The WSNs are now used in various application domains such as military, environment monitoring, 

smart home application, medical science and health care, traffic control, and car parking 

applications. WSN virtualization concept can be applied to these application areas.   

The application of battlefield surveillance [23] uses various wireless sensors to detect and classify 

target objects (for example, civilians, enemies, soldiers, tanks, and animal). In this application, 

virtualized WSNs can play a crucial role by executing multiple tasks and detecting different objects 

by creating multiple VSNs on the same WSN infrastructure. 

Recently WSNs are widely used to several real-time environmental monitoring applications such 

as weather monitoring, environmental disaster detection, wildfire detection, early flood detection, 

early earthquake warning applications. Instead of redundant WSN deployments, virtualized WSNs 

can be used where each sensor node can run multiple tasks on it and provides services to multiple 

applications. As a result, both cost and complexity are reduced in virtualized WSN approach. 

Several promising scenarios are presented in Sensing-as-a-Service (SaaS) model [24]  where 

virtualized WSN can enrich the SaaS model by proper physical resource utilization. In a smart home 

automation system [18], virtualized WSN allows to monitor and control different services of smart 

home remotely through the internet. 
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2.2 Semantic Applications 

Applications integrating the tools and technologies of the W3C Semantic Web such as RDF, OWL, 

and other metadata standards are defined as Semantic Applications. Semantic applications are 

becoming very popular and using in different domains such as life Science, Sensor Domain, Supply 

Chain Management, Media Management, Data Integration in Oil and Gas, Web Search, and 

Ecommerce [25]. 

Medical and life science domain deals with diverse types of data about drugs, patients, diseases, 

proteins, cells, and pathways. Incorporating semantic technology in this domain facilitates proper 

data aggregation on different medicines and illnesses that have multiple names in various parts of 

the world. Semantic Web Health Care and Life Sciences Interest Group (HCLS IG) [26] provides 

support in Bioinformatics such as health care, life sciences, clinical research, and translational 

medicine.  

Semantic Sensor Web is the outcome of combining Sensor applications and Semantic Web 

technologies. Sensors description and observation are encoded using Semantic Web languages. 

This allows more meaningful representation, advanced access, and formal analysis of sensors 

resources and data. A semantically enrich sensor network permits the sensor data to be structured, 

managed, queried, understood and controlled by adding semantics to the sensor data.   

A well-known pharmaceutical producer Biogen Idec. manages its global supply chain by using 

Semantic Web technologies [27]. Many media companies such as British Broadcasting Corporation 

(BBC), Time Inc., Elsevier, and the Library of Congress use Semantic Web technology to manage 

their media contents. In 2010,   BBC managed its  World Cup website by utilizing the Semantic 
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Web technologies which were reported on SemanticWeb.com [25]. Joost online television service 

uses Semantic Web service to enable Joost users to understand the relationships between media 

contents and allow them to find their favorite media content.  

For a better understanding of Semantic Application, we describe Semantic Web and some other 

related key concepts in the next subsection. We first discuss Semantic Web and then we describe 

ontology. Next, we describe SPARQL query language and semantic reasoning. Finally, we discuss 

the benefits of the Semantic Web. 

2.2.1 Semantic Web 

The Idea of Semantic Web (also known as Web 3.0) was invented by Tim Berners-Lee, the inventor 

of the World Wide Web and the director of the World Wide Web Consortium ("W3C"). According 

to Berners-Lee, the Semantic Web is "A web of data that can be processed directly and indirectly 

by machines" [28]. 

 

Figure 2-4 Semantic Web architecture [28] 
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The Semantic Web can be considered as a network of information linked up in such a way that it 

can be easily processed by machines. It is then considered as a web of data that enables data to be 

linked from an originating source to any other sources and understood by computers [29]. The main 

difference between Semantic Web technologies and other data related technologies (e.g., relational 

databases or the World Wide Web) is that the Semantic Web is concerned with the meaning of data 

whereas other technologies are concerned with the structure of data. Semantic Web provides a 

common format of data drawn from different sources. It also provides a common language that 

relates data on real world phenomena.  

2.2.2 Ontology 

The word 'ontology' originates from the Greek word onto (being) and logia (written or spoken 

discourse). In Semantic Web, ontology can be considered as a vocabulary that represents the 

concepts and corresponding relationships between those concepts in an area of concern. Ontology 

is one of the basic building blocks of inference technique on the Semantic Web. Precisely, ontology 

is a key enabling technique that annotates data with semantic description and provides a common, 

understandable foundation for describing resources [30].   

Ontologies are becoming popular in many research areas such as Knowledge Engineering, 

Electronic Commerce, Knowledge Management, Artificial Intelligence, and Natural Language 

Processing. The primary objective of ontology is to attain a common and shared knowledge that 

can be reused in several application systems. 

Ontology has four main components: concepts, instances, relations, and axioms [30].  
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 Concepts- A 'concept' is an abstract representation of a real-world object. It is one of the 

essential elements of a particular domain. In ontology, concepts can be defined as a group 

or class whose members share common properties. This component is similar to object-

oriented systems. The highest level concepts are represented by “parent class” and under 

the “parent class”, the subordinates can be represented using “child class”. For example, 

"Sensor" could be represented as a class with many subclasses, such as "Temperature 

Sensor", "Humidity Sensor", and "Light Sensor". 

 Instances- An 'instance' is also known as an individual. It describes the lowest level 

component of an ontology by representing a specific object of a concept. For example, “Java 

SunSpot” could be an instance of the class “Temperature Sensor” or simply “Sensor”. 

 Relations- A 'relation' is used to describe the relationships between different concepts in a 

given domain. The relation between two concepts can be expressed using domain and range. 

For example, “measures” could be represented as a relationship between the concept 

“sensor” (which is a concept in the domain) and “temperature” or “humidity” (which is a 

concept in the range). 

 Axioms- An 'axiom' sets constraints on the values of classes or instances. Axioms are 

expressed using general rules, logic-based languages such as first-order logic.  

2.2.3 SPARQL Query Language 

SPARQL (Simple Protocol and RDF Query Language) is a standard semantic query language 

recommended by W3C World Wide Web Consortium for exploring and manipulating data stored 
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in Resource Description Framework (RDF) format [31]. Data in RDF statements are characterized 

in RDF triple format (Subject-predicate-object). We can consider RDF triples as an SQL relational 

database containing a table with three columns –subject column, predicate column, and object 

column. The object column can be different (e.g., another resource or data type value). SPARQL 

allows querying over the RDF triples. 

2.2.4 Semantic Reasoning 

The reasoning is necessary for the situation where we need to find out implicit information. 

Semantic Reasoning is also known as reasoning engine, rules engine, or simply a reasoner. It infers 

implicit knowledge using inference rules or formal logics. Semantic reasoning identifies the 

subtyping and some other relationships between concepts in some particular areas of concern [32]. 

In WSN application domain, semantic reasoning plays a crucial role by providing new and implicit 

knowledge from the semantically annotated sensor data. In the following, we give an example to 

illustrate the importance of semantic reasoning. 

Let us consider that a virtualized WSN is sending sensor measurement to a wildfire monitoring 

application. The end-user of this application is interested to know the context or the situation of the 

fire event. However, semantically annotated sensor data contains the temporal (time) and thematic 

(location) information along with the sensor measurements. Knowledge inference such as "No fire 

event", "Initial fire stage", and "Huge fire blaze" requires semantic reasoning and a fire domain 

ontology. Semantic reasoning uses formal logic to derive this implicit knowledge from the 

annotated sensor data and able to answer end-users complex queries such as (a) What is the current 

fire situation? or (b) Is the fire event an initial stage or huge fire blaze?  
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2.2.5 Benefits of Semantic Web 

Semantic Web technologies have several advantages as mentioned below: 

 Offers flexible data and information integration from diverse sources. 

 Generates machine readable data by adding metadata with the actual data. 

 Infers implicit knowledge of the data by applying semantic reasoning and ontology 

concepts. 

 Resolves the ambiguity problem of the data or information that has the same name. 

 Refines information retrieval and reduces information overload. 

 Identifies relevant information for a given domain [33]. 

 Provides support for decision-making. 

2.3 Data Annotation 

Semantic Web enriches data models by adding semantics (metadata and knowledge) to the contents 

for the purpose of more efficient data management. Data annotation is a metadata generation 

process aiming towards more enriched and structured representation of the actual data. It provides 

additional information (metadata) about an existing data. Semantic data annotation is applicable for 

different types of data such as web pages, non-web documents, text fields in databases. [34] 
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Figure 2-5 Metadata referring to world knowledge [34] 

In Semantic Computing, every data is considered as a resource and represented by a uniform 

resource identifier (URI). Resource Description Framework (RDF)  is a standard approach for 

processing metadata which specifies the semantics of the actual data in a standardized manner [35]. 

The main objective of RDF is to implement a mechanism to describe a resource in a way that the 

mechanism can describe information. RDF data model consists of the following components: 

 Resources – Every component described by RDF expressions is called a resource. A 

resource can be anything such as object (e.g., a Sensor), data (e.g., sensor measurement), an 

entire Web page (e.g., HTML document). A resource can be a part of a web page (e.g., a 

specific HTML or XML element within the document source). Resources are always 

expressed by URIs.  

 Properties - A property can be considered as a characteristic or a relation which is used to 

describe a resource.   
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 Statements- A RDF statement, also known as RDF triple, consists of three components: 

subject, predicate, and object. The subject of a statement should be a resource. However, 

the object can be another resource, or it can be a literal; (i.e., a resource specified by a URI 

or any data type such as string, double). 

Figure 2-6 shows the graph representation of an RDF statement in a form of RDF triple (subject, 

predicate, and object)  

 

Figure 2-6 Graph representation of RDF triple 

 

2.4 Chapter Summary 

In this chapter, we have discussed the background concepts related to this thesis. First, we 

introduced the concept of virtualized WSNs along with cloud computing and virtualization. Second, 

we have provided few example applications that can be built on the virtualized WSNs. Third, 

semantic applications are defined by describing Semantic Web and its technologies including 

ontology, SPARQL query language, and semantic reasoning. Finally, we concluded this chapter by 

presenting the concept of data annotation. 
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Chapter 3 

3 Scenario, Requirements, and State-of-the-Art Evaluation 

This chapter consists of three sections. In the first section, we present a motivating scenario. In the 

second section, we derive a set of requirements based on the scenario. Next, we review the state-

of-the-art solutions and evaluate them based on our sets of requirements. Finally, we summarize 

the chapter. 

3.1 Motivating Scenario 

This section presents a motivating scenario in the virtualized WSN domain and shows how WSN 

applications can be provisioned in a cloud environment. We start this section by stating the early 

assumptions that we have made. The actors are identified in the next subsection. The third section 

presents a scenario in the virtualized WSN application domain. We describe the interactions 

between different actors in the fourth section. Finally, we apply the scenario in a wildfire monitoring 

application.  

3.1.1 Assumptions 

Let us consider the case of a cloud environment where there is a virtualized WSN infrastructure 

provided by a WSN IaaS provider. Let assume that there are WSN application developers who 

develop and provide different WSN applications by using the infrastructure according to their 

requirements. Our proposed scenario is based on the following two assumptions:  
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 The first assumption is that all the WSN applications are offered as a Software-as-a-Service 

(SaaS) in the cloud platform. The key benefit is that it allows easy access to the WSN 

applications from anywhere and anytime. 

 The second assumption is that the same virtualized WSN infrastructure serves multiple 

WSN applications residing in the cloud platform. This means that several WSN applications 

will share and re-use the same WSN infrastructure.  

3.1.2 Actors 

In our motivating scenario, we have identified four types of actors: the end-user, WSN SaaS 

provider, WSN PaaS provider, and WSN IaaS provider. Each actor may play several roles through 

interactions. In the following, we describe each of them. 

1) The End-User 

 The end-user plays the role of discovering and using the WSN applications. 

2) WSN SaaS Provider 

 The WSN SaaS provider is the WSN application developer who offers WSN 

 applications to the end-users to discover and use the applications. 

3) WSN PaaS Provider 

 The WSN PaaS provider allows the development and deployment of WSN applications by 

providing a platform that consists of the necessary development frameworks, libraries, 

 and tools. After developing a WSN application, WSN SaaS provider deploys and manages 

the applications in the cloud PaaS.  
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4) WSN IaaS Provider 

 The WSN IaaS provider is responsible for deploying, installing, and managing 

 heterogeneous sensors in different locations.  

3.1.3 Virtualized Wireless Sensor Network Application Domain 

Wireless sensors are becoming very popular in various application domains and being used all 

around the world to collect various data about the different environmental phenomenon. Wireless 

sensors play a crucial role in the environmental monitoring applications as it is crucial to recognize 

the context of the sensor data and understand the event or situation in such applications. We 

consider a virtualized wireless sensor network to resolve heterogeneity issues of the physical 

resources (e.g., sensors) as well as eliminate the tight coupling between WSN services and WSN 

deployments. The applications that use wireless sensors are named as WSN applications. In the 

following, we describe a motivating scenario in a virtualized wireless sensor network domain. 

Let us consider a city administrator who is interested in monitoring wildfire in the forest in the 

nearby countryside for the early detection of the brush fire eruption. Wildfire monitoring is very 

crucial since late detection of fire leads to a rapid destruction. Status of a wildfire can be categorized 

into different states including No fire, Tends to fire, Beginning of fire and Huge fire blaze based on 

the fire size, spreading speed, and direction [36].  

Let us assume that the city administrator informs the WSN IaaS provider who then deploys different 

brands of sensors having different sensing capabilities all around the city as well as the nearby 

forests to detect different physical phenomena to monitor fire situations. Examples of deployed 
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sensors can be Java SunSpot, TelosB, DHT11, AdaFruit, HTU21D-F, and ADXL335. These 

sensors have several sensing capabilities including temperature, humidity, light intensity, CO2, CO, 

and accelerometer.  

Let us consider that the same city administrator wants to monitor a weather condition to generate 

alarms in the worst weather situation. In the weather monitoring application, the weather situations 

can be categorized into different groups such as Heat warning, Sunny, Blizzard, Haze, Cold, Hot, 

Partial cloudy and Snow. So, the city administrator again informs the WSN IaaS provider. As both 

the fire monitoring and weather monitoring applications use sensor data, we can refer them as WSN 

applications. Later, we categorize the WSN applications into two groups: (a) Semantic applications, 

and (b) Non-Semantic applications. 

a) Semantic Applications 

This group of WSN applications uses semantically annotated sensor data for better 

understanding of the observed phenomenon. Semantically annotated data also provides 

contextual information and allows end-users to understand different complex events or 

situations. Examples of semantic applications are wildfire monitoring application and 

weather monitoring application. These applications use semantically annotated data to 

determine several complex events or situations. For example, a traditional fire monitoring 

application allows its users to detect the fire event. On the other hand, semantic fire 

monitoring application not only just detects the fire event but also can identify the spreading 

direction of the fire event and allow the end user to know the contexts of fire situations such 

as Tends to fire, Beginning of fire. 
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b) Non-Semantic Applications 

This group of applications is traditional WSN applications that use raw sensor data 

according to their requirements. For example, a smart home application has several features 

including smoke detection, temperature monitoring feature. The smoke detector application 

is quite simple and straightforward application. In this application, if a smoke detector 

sensor detects smoke, it generates an alarm. Similarly, in temperature monitoring 

application, a temperature sensor senses temperature event and display it.  

3.1.4 Interactions among Actors 

This section describes the interactions between the different actors in the proposed scenario. 

Interactions among the actors are categorized into three groups: end-user interactions, WSN SaaS 

provider interactions, and WSN PaaS provider interactions.  

Figure 3-1 shows the interactions that happen among the actors. 

 

Figure 3-1 Different roles of the actors and the Interactions 
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A. End-user Interaction 

In the proposed scenario, the end user interactions can be defined into two types that happen 

between the end-user and the WSN SaaS provider. 

 "Discover" WSN Application Interaction 

This interaction permits the end-users to discover the appropriate WSN application that is 

offered in the cloud SaaS. There can be an intermediate agent that bridge the gap between 

the end-users and the WSN application provider. 

 "Use" WSN Application Interaction 

End-user uses the WSN application through this interaction. The use of the WSN application 

involves monitoring, detecting events, and taking appropriate courses of actions. 

 

B. WSN SaaS Interactions 

This group of interactions occurs between the WSN SaaS and the WSN PaaS. We define three types 

of interactions which are as follows: 

 "Develop" WSN Application Interaction 

 The WSN SaaS provider or the WSN application developer is responsible for developing 

the applications. Upon being developed, the WSN application is offered by the WSN SaaS 

provider to the end-users. This interaction consists of different steps such as analyzing the 

requirements, designing the proposed solution, implementing it, and finally testing the 

developed application. 

 "Deploy" WSN Application Interaction 

After developing the WSN application, WSN SaaS provider deploys it in the cloud platform.  
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Deployment interaction consists of installing, configuring, and activating the WSN 

application. 

 "Manage" WSN Application Interaction  

This interaction is used to manage the WSN application by WSN SaaS Provider.  

 

C. WSN PaaS Interactions 

These interactions occur between the WSN PaaS provider and the WSN IaaS provider.  

 "Publish" WSN infrastructure Interaction  

WSN IaaS may consist of heterogeneous sensors having different sensing capabilities and 

serves several WSN applications. However, some of those applications may not need all the 

deployed sensor measurements. This interaction involves publishing different sensor 

capabilities to the cloud PaaS and allows WSN applications residing in PaaS to discover 

them.  

 "Discover" WSN infrastructure Interaction  

As the WSN applications rely on sensor data, these applications need to discover the WSN 

infrastructure. This interaction allows the WSN PaaS provider to find the deployed sensors 

and their capabilities. 

 "Execute" WSN Application Interaction  

This interaction describes the execution, utilization, and run-time management of the WSN 

IaaS. The WSN IaaS executes the sensing tasks by sensing different events, generating 

sensor measurements, and sending same sensor data to multiple WSN applications residing 

in the cloud PaaS.  
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3.1.5 Wildfire Monitoring Application 

We now apply the described scenario in the wildfire monitoring use case. The actors are the WSN 

SaaS provider, WSN PaaS provider, WSN IaaS provider, and end-user is the city administrator.  

Figure 3-2 shows the sequence of steps that occur among the actors and end-to-end execution of 

the fire monitoring scenario. We describe each of the interaction step by step in the following. 

 

Figure 3-2 Interactions among the actors and end-to-end execution of the Wildfire 

Monitoring scenario 

(1) The WSN SaaS provider develops a wildfire monitoring application in order to allow the 

city administrator to monitor the fire situation of the forest.  



 

34 | P a g e  
 

(2) The WSN SaaS provider deploys the wildfire monitoring application in the cloud PaaS 

which is offered by the WSN PaaS provider. 

(3) The different capabilities of sensors are published in the cloud platform by the WSN IaaS 

Provider to allow WSN applications to use the sensor measurements. 

(4) The wildfire monitoring application residing in cloud PaaS discovers sensors with different 

capabilities from the deployed area.  

(5) When the wildfire monitoring application is in operation stage, the city administrator 

discovers it using discover interaction as the cloud platform contains several WSN 

applications.  

(6) City administrator uses the wildfire monitoring application and monitors the fire situation. 

(7) The SaaS provider manages the fire monitoring application.  

(8) At the operation stages, WSN PaaS provider operates with the WSN IaaS by making proper 

setup and configurations of WSNs. As a result, sensors belonging to the WSN IaaS, execute 

the sensing tasks and send sensor data to the fire monitoring application. Fire monitoring 

application further processes these data to detect the fire events and understand the context 

of the fire situation. 

3.2 The Requirements 

In this section, we derive the requirements based on the motivating scenario described in the 

previous section. The first section describes the basic requirements and explains the importance of 

semantic data annotation and ontology requirements. Based on the basic requirements, we 
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categorize the requirements further into three different groups: (a) general requirements, (b) 

requirements for the virtualized WSNs IaaS, and (c) ontology provisioning requirements. 

3.2.1 Basic requirements 

We have identified two basic requirements: (a) Semantic data annotation requirement, and (b) 

Ontology requirement. In the following, we explain these requirements regarding the scenario 

described in the previous section. 

a) Semantic Data Annotation Requirement 

The first basic requirement is semantic data annotation. According to our assumption, data from the 

same virtualized WSN IaaS is sent to several WSN applications. Usually, the sensor produces low-

level data either in the binary or plain text. However, the end-user is interested in the context or the 

situation of the detected event. For example, in the case of wildfire monitoring application, the end-

user may be interested in the following queries:  

(a) What events are being observed near Lucille Forest currently?  

(b) Find the temperature sensor reading near Lucille Forest?  

(c) What is the current fire situation? 

 (d) Is it initial stage or huge fire blaze?  

(e) What is the current CO2 level in the fire affected area?  

(f) Which areas have been affected by the fire event?  

If the sensors send raw data in plain text or binary format (for example, data is "40"), these 

applications will not understand the context and meaning of the raw data (for example, it might be 

temperature, humidity or wind speed which is not clear from the data "40"). This ambiguity is 
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eliminated by data annotation which is a process of metadata generation that can be added to the 

raw data by labeling or tagging (for example, <temp>40</temp>) [37].   

XML and JSON are popular approaches for data annotation. However, these data representations 

lack to provide the contexts and situations of the data. For example, the data ‘<temp>40</temp>’ 

does not provide intuition whether this temperature represents a situation like Tends to fire or No 

fire [38]. These representations also lack more complex contexts involving multiple sensor 

measurements. In the scenario, we stated that the weather situations could be categorized into 

different groups such as snow alert, heat warning, partially cloudy. These situations depend on not 

only temperature measurement but also humidity, wind speed, etc. measurements. Now, the 

question is how to build knowledge from the low-level sensor data? This problem can be solved by 

performing semantic data annotation. Data annotation using semantic metadata provides contextual 

information. Using semantic data annotation, sensor observation can be expressed in terms of the 

sensing time, location and measurement unit.  

b) Ontology Requirement 

Since our focus is to create an abstraction of the heterogeneous sensor data that come from the 

WSN IaaS, hence we need an ontology that will hold the concepts related to the WSN IaaS sensors 

capabilities and observations. As a result, the second basic requirement is the use of ontology for 

semantic data annotation. There are several reasons for using an ontology for data annotation.  

First, data annotation using ontology provides more powerful and enrich representation of the 

observations having temporal and geographic contexts [39]. For example, a Java SunSpot sensor in 
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location X sent temperature output 40 degrees celsius on 09/02/2015 02:03:56 am. It is possible to 

annotate the raw data with respect to sensor type, location, measurement type, measurement value, 

unit of measurement, and measurement time. The fire monitoring application can determine a fire 

situation using the measurement value and unit of measurement (e.g., 50 C). It can also determine 

the direction of the fire using the sensor location and time.  

Second, using an ontology at IaaS level allows the domain applications applying reasoning and 

extracting implicit knowledge from the captured information. For example, in the fire monitoring 

application, different fire situations (e.g., Tends to fire) and other fire domain-related concepts (such 

as High temperature, Low humidity) can be expressed with a fire domain ontology. If this 

application receives the semantically annotated data from the IaaS level, it can inherit additional 

knowledge or context of the environment by further annotating the data using reasoning and the 

fire domain ontology. Let us consider the case of Tends to fire situation (when Very high 

temperature, Low humidity, High CO2, High CO). The fire monitoring application receives the 

annotated data (temperature, humidity, CO2, CO) from the WSN IaaS and applies reasoning rules 

to determine knowledge such as Very high temperature, Low humidity, High CO2, High CO. After 

applying further reasoning using the domain ontology, it determines the situation Tend to fire. 

However, applying ontology to annotate sensor data at WSN IaaS level is not straightforward. Since 

the ontology in the WSN IaaS domain contains concepts related to the deployed infrastructure, 

hence if any change happens to the WSN IaaS, the corresponding changes should be made to the 

ontology as well. After that, the ontology should be again deployed in the WSN IaaS. This situation 

arises the ontology provisioning requirement (explained in Section 3.2.4). 
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Based on the basic requirements, we identify several requirements and categorize them into three 

different sets which are described in the next sections. 

3.2.2 General Requirements  

In addition to the basic requirement of semantic data annotation, the first general requirement 

should be the real-time in-network annotation. As the same virtualized WSN would be used by 

several semantic applications, the sensor data should be annotated real-time before leaving the 

network. This requirement eliminates the costs and efforts of redundant annotations performed by 

the SaaS application developers.   

The second requirement implies the need for an interface that allows proper interaction between 

WSN IaaS and WSN PaaS. The interface should be based on the standard technologies. For example, 

if we consider the scenario described in the previous section, WSN IaaS should be able to interact 

with the cloud PaaS through an interface which is based on standard technology.  

The third requirement is that the proposed solution should be domain and application independent. 

For the scenarios (Fire monitoring application and Weather Monitoring application) described in 

the previous section, both applications require temperature and humidity sensor reading. In order 

to reuse the same infrastructure by both applications, the proposed framework should generate a 

standard data format that can be re-used and enhanced by multiple real-time applications.   

The fourth requirement is scalability. The WSN Infrastructure should maintain the performance 

when the number of sensors increases at a large scale in the network.  
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The fifth requirement is that the annotation should be done in a distributed manner without relying 

on a central node. This ensures that single point of failure will not occur in the annotation process. 

When the number of nodes in the network increases, distributed annotation process can accelerate 

the annotation and handle the scalability issue.  

3.2.3 Requirements for Virtualized WSNs IaaS 

The proposed solution should consider the infrastructure heterogeneity to ensure interoperability. 

Any large scale WSN infrastructure will contain different sensor nodes having different sensing 

capabilities, data formats, and other properties. The proposed solution should be able to deal with 

the sensor heterogeneity issue. 

3.2.4 Requirements for Ontology Provisioning  

The first requirement is that a standard ontology is needed at the WSN IaaS level to perform data 

annotation and handle sensor heterogeneity issue. Using ontology at an IaaS level for data 

annotation eliminates the cost and effort of redundant annotations performed by several end-user 

applications. In this thesis, we refer our standard ontology as base ontology.  Another benefit of 

using ontology at WSN IaaS is that the end-user application can extend the base ontology for the 

development of domain ontology by re-using the base ontology concepts. 

The second requirement implies that the base ontology needs to be provisioned at WSN IaaS in the 

initial stage to enable semantic applications provisioning. Base ontology provisioning includes the 

development, deployment, and management of the base ontology. This requirement raises the need 

for an ontology provisioning center. 
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The third requirement is that it should be easy for the WSN IaaS provider or any novice user to 

interact with the ontology provisioning center without knowing technical knowledge or protocol 

details.   

The final requirement is that the proposed solution should be technology independent and can be 

implemented using any standard technology. 

3.3 The State-of-the-Art Review and Evaluation 

Recent researches on the sensor data annotation focus on annotating the sensor measurements 

outside the network or at the gateway node. However, based on our knowledge, none of these 

solutions can provide in-network real-time sensor data annotation. Current solutions are domain 

specific, and there is a very little possibility for other applications to reuse the infrastructure.  

In this section, we present current state-of-the-art solutions similar to our research area and evaluate 

them critically. We classify the state-of-the-art solutions into two groups: The first group is the 

existing frameworks for annotating sensor data for semantic applications, and the second group 

involves the research work related to the ontology development, deployment, and management. 

After reviewing the state-of-the-art solutions, we evaluate them based on our requirements. 

3.3.1 Data Annotation Frameworks 

There are a number of applications available in the literature that presents the semantic enhancement 

of sensor data. The first effort to generate the idea of annotating sensor data with semantic metadata 

has been  proposed in Semantic Sensor Web (SSW) framework [5]. It is based on the Sensor Web 
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Enablement (SWE) effort by W3C Open Geospatial Consortium (OGC) Semantic Web. SWE 

annotates the sensor data using temporal, spatial and thematic concepts. OGC SWE languages are 

used for temporal and spatial annotation of sensor data. The authors use the RDF for the semantic 

annotation of the sensor data and domain ontologies for providing concepts and relationships. 

Semantic Web Rule Language (SWRL) is used to reason over the annotated data and infer 

knowledge. The authors develop two proof-of-concept prototype applications using their proposed 

architecture.  

 

Figure 3-3 Semantic Sensor Observation Service (S-SOS) architecture [5] 

Figure 3-1 is an implementation architecture named Sensor Observation Service (S-SOS) which is 

involved in requesting, filtering, and retrieving observations over the weather data. S-SOS collects 

weather reading (such as temperatures, wind speed, wind direction, and precipitation) from the 

website named BuckeyeTraffic.org that provides traffic and weather reading collected from 200 

sensors. They convert those reading in O&M and SML formats. They use various domain 
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ontologies to annotate O&M and SML formatted document. In this work, no performance result is 

presented and the solution is domain specific. Moreover, the provided solution does not allow real-

time sensor data annotation and uses a centralized approach to perform the annotation tasks. Finally, 

there is no discussion on the interface between the semantic annotation service and the knowledge 

base that contains ontologies.   

 

Figure 3-4 Semantic-based architecture for sensor data fusion [40] 

A three layer architecture based on OGC SWE and the Semantic Web is presented in [40], that 

assists the gathering, processing, and exploiting sensor data in real-time. It uses Observations and 

Measurements (O&M), and SensorML specifications for semantic specification of the sensors, 

properties, and raw data. The first layer (data) involves in collecting raw data from heterogeneous 

sensors. The second layer (processing) aggregates those raw measurements, transforms into XML 

and forwards to the next layer. The third layer (semantic) processes those aggregated data by 

mapping them into ontology model contained in a database. The annotations are created on the third 
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layer and stored in a knowledge base. However, their proposed framework is domain specific that 

conflicts our third general requirement. The proposed annotation mechanism is centralized. 

Moreover, there is no discussion regarding the scalability issue. In this framework, ontology files 

are stored in a database, but there is no such discussion regarding ontology provisioning 

(development, deployment, and management).   

A sensor data annotation architecture is presented in [41] which is similar to [40].  

 

Figure 3-5 Architecture proposed in [41] 

In the proposed architecture, sensors description, physical location, and data are published in XML 

format in Sensor Web by their publishers. The ontology concepts are stored in a knowledge base 

which is used to annotate sensor data by using the description provided by their publishers. 

However, there is no discussion how the ontology concepts are developed, managed, and deployed 

in that knowledge base. Work from Cyc project [42] is used in this framework by reusing the 
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existing concepts of the Cyc ontology to describe the sensors. A case study illustrating participatory 

sensing from Pachube [43] is presented. Each Pachube sensor provides its XML file containing the 

properties, measurements, and details of the events. Finally, user queries are answered using the 

Cyc inference engine.  

A large-scale European project SPITFIRE is proposed in  [44] to allow transition from Semantic 

Sensor Web to Semantic Web-of-Things.  

 

Figure 3-6 Implementation architecture of SPLITFIRE  [44] 

The work provides three main contributions: (a) A new sensor description mechanism that easily 

integrates with the Linked Open Data cloud (LOD). The data from the LOD can be used by different 

applications or services. (b) A semi-automatic creation process for semantic sensor descriptions. 

The sensor data is collected in a pattern dictionary to generate patterns along with the semantic 
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annotations. The patterns help to determine the type of a new sensor and automate annotation of its 

data, (c) An efficient search mechanism to find the sensors and things based on their current state. 

A crawler is used to retrieve the sensor data from multiple sources (sensors and web pages). The 

gathered data is stored in an RDF triple store and later queried SPARQL query engine. A reference 

implementation architecture is presented as a proof-of-concept but performance measurement for 

validation is absent in this paper. In this architecture, there is no discussion regarding the scalability. 

Moreover, the annotation process is centralized that raise the problem of single point of failure. 

 

Figure 3-7 Data annotation architecture proposed in [45] 

The architecture proposed in [45] is based on the Service-Oriented Architecture (SOA) and consists 

of three horizontal layers. The first layer is the Data Collection Service Layer that provides a 

homogenous view of different networks to the second layer. Authors use the ontological modeling 

technique to enrich sensor data by converting the raw sensor measurement into a common 
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XML/RDF data format using ontology technique. The second layer is responsible for aggregating 

the dataset of the same event observed by different networks and forwarding it to the third layer for 

a better understanding of the complex situation. The third layer consists of different types of real-

time monitoring applications which utilize the lower layers and common formatted sensor data to 

implement a decision support system. The proposed architecture uses various ontologies (Sensor 

data ontology, Sensor observation Ontology, and domain ontology) but there is no such discussion 

how these ontologies are managed and deployed. 

Authors propose a new ontology SenMESO for sensor data annotation in [46] which is a 

combination of various domain ontologies covering sensor data and features of interest.  

 

Figure 3-8 M2M architecture [46] 

The gateway nodes receive sensor data in different formats and convert the data into an XML format 

to support interoperability. The aggregation gateways incorporate semantics to XML sensor data 

using RDF, RDFS, OWL, and domain ontologies. In this work, after creating the annotation, the 
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sensor measurements are linked to the LOD (Link Open Data) Cloud where additional information 

can be inferred using various domain ontology.This architecture does not use node-level or 

network-level virtualization. As a result, the proposed solution requires redundant sensor 

deployments for multiple applications. The scalability has not been discussed in this work. Since 

the annotation process is done at the aggregation gateway in this architecture, hence there is no 

discussion regarding standard interface through which ontology can be deployed in the WSN IaaS. 

An approach to convert the sensor data in SenML format to RDF format is provided in [47]. A basic 

mapping of SenML elements to RDF types is provided. A SenML reading from a sensor is first 

transformed into RDF elements, which are used to generate an array of RDF triples. Finally, these 

RDF triples are serialized in different formats. A prototype implementation for monitoring water 

quality of fish farms is presented. The sensor data collected by an aggregation gateway is forwarded 

to a knowledge-based (KB) system. The KB system converts SenML data to RDF and applies 

domain ontology concepts in a centralized fashion to generate alerts for the client application. The 

implementation results show the performance gains while using SenML as compared to other data 

formats including RDF, N-triple, and N3. Only the data from IoT devices (sensors) that send data 

in SenML can be transformed in RDF which is the main limitation of this work. Instead of using a 

standard ontology, SenML is converted to RDF format that conflicts our requirement. Finally, the 

proposed solution is domain specific. 

Table 3-1 shows a summary evaluation of the state-of-the-art solution for data annotation 

frameworks. The following table shows none of the solutions fully satisfies our derived 

requirements.  
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Requirements  

 

 

 

State-of-the-Arts 

General Requirement IaaS 

Requirement 

Real-time 

annotation 

Standard 

Interface 

Domain 

independent 

Scalability Annotation 

Mechanism 

Infrastructure 

Heterogeneity 

[5] No 
Not 

Discussed 
No Yes Centralized Yes 

[40] Yes 
Not 

Discussed 
No 

Not 

discussed 
Centralized Yes 

[41] No 
Not 

Discussed 
Yes Yes Centralized Not Applicable 

[44] Yes Yes Yes 
Not 

discussed 
Centralized Yes 

[45] Yes Yes Yes 
Not 

discussed 
Centralized Yes 

[46] Yes 
Not 

Discussed 
Yes 

Not 

discussed 
Decentralized Yes 

[47] Yes 
Not 

Discussed 
No 

Not 

discussed 
Decentralized Yes 

Our Work Yes Yes Yes Yes Decentralized Yes 

 

Table 3-1 Summary evaluation of the state-of-the-art solutions for data annotation 

frameworks 

3.3.2  Ontology Development, Deployment and Management Framework 

In this section, we describe existing related works for ontology development, deployment, and 

management. 

Several knowledge management systems have been proposed for the development and management 

of ontologies. Authors in [48] propose a framework ONKI for the collaborative development and 

management of ontologies. According to this framework, a domain expert first develops an 

ontology using existing ontology editor and then publishes it to the ONKI Library. User applications 

can access those ontologies using web service. This framework does not address our requirements: 

(a) a domain expert is needed for the development and management of ontology, and (b) ontology 

deployment process is not discussed.  
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An ontology management framework proposed in [49] allows ontology developers to manage 

multiple ontologies as well as create new ontologies reusing the concepts of existing ontologies. 

However, there is no mechanism proposed for ontology deployment. Moreover, domain experts or 

ontology developers are required to interact with the framework which does not satisfy our ontology 

provisioning requirements.  

Another ontology development framework named SOFA has been proposed in  [50] which is a Java 

API for representing concepts and developing an ontology. This is a technology-dependent solution 

and discusses only the ontology development process. However, the ontology management and 

deployment process are not addressed in this work.  

Authors in [51] propose a tool for ontology generation which uses reverse engineering technique to 

develop an ontology. First, they extract database metadata information and then analyze the 

relationship between those data. Authors develop a prototype implementation using Apache Jena 

API. This framework does not meet our requirements as the proposed framework is technology 

dependent. As there is no easy way for the novice user to interact with the system, a domain expert 

is needed to process the data stored in the database and develop an ontology. Finally, ontology 

management and deployment procedures are not addressed in this work.   

There are few protocols exist for managing network Infrastructures. Simple Network Management 

Protocol [52] is the most widely used management protocol that runs over TCP/IP protocol stack 

and applicable for wired networks. This protocol allows managing network performance, finding, 

and solving network problems. Ad Hoc Network Management Protocol (ANMP) [53]  is mainly 

designed for managing mobile wireless ad hoc networks. This protocol is compatible with SNMPv3 
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and uses similar protocol data unit structure and management information base as in SNMP. Both 

the SNMP and ANMP have been designed for managing the network but according to our 

requirement, we need an ontology management mechanism in WSNs. These protocols do not fulfill 

our ontology management requirement. Also, SNMP and ANMP do not cater to develop and deploy 

ontology in WSNs. As a result, our requirements are not fulfilled by these protocols 

Table 3-2 shows a summary evaluation of the state-of-the-art solution for Ontology development, 

management, and deployment frameworks. We find none of these solutions satisfy all the ontology 

provisioning requirements.  

 

   Requirements  

 

 

 

State-of-the-Arts 

Ontology Provisioning Requirement 

Standard 

Ontology 

Ontology 

Development and 

Management 

Ontology 

Deployment 

User-friendly 

Solution 

Technology 

Independence 

[48] Yes Yes 
Not 

Discussed 
No No 

[49] Yes Yes 
Not 

Discussed 
No Yes 

[50] Not Applicable 
Partially 

Discussed 
No Not discussed No 

[51] Not Applicable 
Partially 

Discussed 
No No Yes 

[52] Not Applicable No No No 
Not 

Applicable 

[53] Not Applicable No No No 
Not 

Applicable 

Our Work Yes Yes Yes Yes Yes 

Table 3-2 Summary evaluation of the state-of-the-art solutions regarding ontology 

development, deployment, and management framework 
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3.4 Chapter Summary 

In this chapter, first, we presented the motivating scenario. Then we derived the basic requirements 

based on the scenario and demonstrated the need for semantic data annotation and using ontology. 

Based on the basic requirements we derived some other requirements and classified them into three 

groups: general requirements, requirements on the virtualized WSN Infrastructure and requirements 

on the ontology provisioning. The state-of-the-art solutions related to our research domain are 

evaluated based on the requirements described in section 3.2. We found that none of the state-of-

the-art solutions satisfies our requirements fully. 
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Chapter 4 

4 Data Annotation Architecture and Base ontology1 

We derived our precise requirements for sensor data annotation in virtualized WSNs in Chapter 3. 

This chapter presents the data annotation architecture for semantic applications in the virtualized 

WSNs. In this regard, we have utilized a recently proposed WSN virtualization architecture [54]  

by our research team as a basis. Since semantic data annotation process requires an ontology to 

represent the corresponding domain concepts and the semantic relationships among the observed 

concepts, hence we define the required ontology (we refer it 'base ontology') for the sensor domain.  

This chapter consists of the following sections: We explain the overall architecture for data 

annotation and describe the components of the architecture including layers and functional entities 

in the first section. In the second section, we present our base ontology that contains the concepts 

related to common sensing phenomena. Data annotation procedures are discussed in the third 

section. A wildfire monitoring use case is presented in the fourth section. We discuss how the 

requirements are met by the architecture in the fifth section. Finally, a summary of the chapter is 

presented in the sixth section.  

                                                           
1 This chapter extends the architecture presented in the  paper  “ I. Khan, R. Jafrin, F. Errounda, R. Glitho, N Crespi,  

M Morrow, P Polakos, A Data Annotation Architecture for Semantic Applications in Wireless Sensor Networks, 

IFIP/IEE International Symposium on Integrated Management (IM 2015),  vol., no., pp. 27, 35, 11-15 May 2015, 

Ottawa, Canada”  (acceptance rate: 27.2%) 
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4.1 Overall Architecture 

In this section, we begin with stating the assumptions and describing the architectural principles 

that we adopted for designing the architecture. We explain the layers and functional entities of the 

overall architecture based on these assumptions and principles. 

4.1.1 Assumptions 

The proposed architecture is based on several assumptions which are stated below: 

 The virtualized WSN consists of heterogeneous sensors and it is offered as a WSN 

infrastructure (IaaS) in cloud paradigm.  

 We assume that the sensors have already been discovered and are stored in a registration 

server.  For sensor discovery,  there are existing works including [55], [56] can be reused 

for this purpose.  

 Our proposed solution does not have storage to store the sensor data. Since it is an 

application specific requirement, hence we leave it for end-user applications to decide on 

the sensor data storage. 

 We assume that the base ontology is already provisioned in the WSNs. 

4.1.2 Architectural Principles 

The first architectural principle is that a standard ontology is used to annotate the sensor data and 

stored in WSNs. We named it as base ontology because it holds a minimal set of concepts of sensor 

observations that can be used as a basis to build an application domain ontology. The base ontology 

consists of concepts related to the deployed sensors and their capabilities. However, annotated 
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sensor data can further be annotated in semantic applications using domain ontology.  A domain 

ontology consists of a domain and application-specific concepts. This fundamental principle allows 

the solution to become independent of any application domain. 

The second architectural principle is that we use two separate overlays: one for data annotation and 

the other for storing the base ontology. Overlays have several advantages: they are distributed, they 

do not rely on centralized control, and they allow resource sharing [57].  

The third architectural principle is that every virtual sensor created for semantic applications is 

represented in the annotation overlay by a corresponding entity that annotates sensor data. This 

means that every sensor sending data to semantic applications will have a dedicated entity for 

annotation purpose. 

The fourth principle is that the annotations will be performed by capable sensors and other powerful 

nodes (e.g., gateways).  

4.1.3 Layers and Functional Entities 

The overall data annotation architecture is represented in the Figure 4-1. It is based on the WSN 

virtualization architecture [54] proposed by our research team. The virtualization architecture 

contained four layers (physical, virtual sensor, virtual sensor access, and application overlay). In 

the data annotation architecture, the physical layer remains the same as in the virtualization 

architecture. The rest of the layers are enhanced by adding different functional entities. The 

virtualization architecture only supported traditional sensor applications (non-semantic 

applications) whereas our proposed data annotation architecture supports both semantic and non-

semantic applications. 



 

55 | P a g e  
 

 

Figure 4-1 Data annotation architecture 
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We describe each component of the data annotation architecture in the following: 

A. Physical Layer 

This is the first layer which contains the physical WSN infrastructure and consists of different types 

of sensors. Based on the processing capability, energy, and storage capacity, we categorized them 

into the following three groups:  

1. Type A sensors  

This kind of sensor is resource constraint device that has very limited processing and storage 

capabilities (e.g., TelosB motes). Since Type A sensors may not be capable enough to work 

together with other sensors in the overlay, they rely on more powerful nodes such as   Gate-

to-Overlay (GTO) nodes or Type B sensors.    

2. Type B sensors   

This type of sensors is a new generation powerful sensor node (e.g., Java SunSpots) and 

capable of executing multiple tasks.  

3. GTO Node  

In order to facilitate type A sensors to work along with capable nodes, WSN infrastructure 

has specialized node called Gate-to-Overlay (GTO) node (e.g., base station, sink node). 

GTO nodes are more powerful than type B sensors. Figure 4-1 shows that Type A1 and Type 

A2 sensors are connected to the GTO node. However, Type A3 sensor is connected to the 

Type B2 sensor as Type B sensors are also capable nodes. 
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B. Virtual Sensor layer 

This is the second layer which contains virtual sensors. Virtual sensors are the logical representation 

of the physical sensors that execute different application tasks simultaneously. For example, in 

Figure 4-1, Type B1 nodes have two virtual sensors that execute two application tasks (AA and SA 

which are explained in the next section). However, without virtualization, a physical sensor can 

execute single application task. Figure 4-1 also shows that Type B2 sensor has no virtual sensor and 

execute only one application task (AA).  

We categorize the virtual sensors into two groups: 

1. Semantic virtual sensors 

Semantic virtual sensors are created for semantic applications (marked as the green box in 

the Figure 4-1) which execute different semantic tasks such as annotating sensor data or 

storing ontology.  

2. Non-semantic virtual sensors 

 Non-semantic sensors are marked as the orange box in the Figure 4-1 which execute non-

 semantic tasks. For example, these sensors directly send raw data to the non-semantic 

applications or annotated data to the semantic applications.  

C. Virtual Sensor Access Layer 

The sensor data annotation is performed in the virtual sensor access layer. This layer has three 

functional entities and two overlays.  
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Functional entities are pieces of software codes which define different application tasks and run 

either on virtual sensors or physical sensors. Following are the functional entities: 

1. Annotation Agent (AA)  

Nodes acting as Annotation Agent are primarily responsible for annotating sensor raw data 

and sending the annotated data to the nodes acting as Sensor Agent. 

2. Ontology Agent (OA)  

Nodes acting as Ontology Agent hold the base ontology and serve ontology request that 

comes from Annotation Agents. 

3. Sensor Agent (SA) 

Nodes acting as Sensor Agent send annotated or raw sensor data to the semantic and non-

semantic applications, respectively. 

It is important to mention that a powerful node can play the role of multiple functional entities. For 

example, in the Figure 4-1, a GTO node acts as both AA and SA while a Type B sensor may act 

either AA or OA. The reason behind is that GTO nodes are much more resourceful with compared 

to Type B sensors. 

We have adopted two overlays instead of one for two major reasons. First, if all the functional 

entities reside in the one overlay, it would be hard to manage tasks between them. Second, the 

solution becomes less scalable with one overlay when the network size (e.g., the number of sensors) 

increases. The overlays with their tasks are described below: 
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1. Annotation Overlay  

The annotation overlay is dedicated for sensor data annotation. This layer consists of 

Annotation Agents (AAs) and Sensor Agents (SAs). The semantic virtual sensors send raw 

data to the AAs. Then, AAs annotate the received data using the base ontology. The detailed 

procedure of sensor data annotation is described later in Section 4.3. AA communicates with 

the SAs to send the annotated data to the semantic applications. SAs also send the raw data 

received from the non-semantic virtual sensors to the non-semantic applications. For this 

reason, SAs can be considered as the exit gates of the virtual sensor access layer.  

2. Ontology overlay  

The ontology overlay is responsible for storing the base ontology in a distributed manner 

and serving ontology when a request comes from the annotation overlay. This overlay 

consists of Ontology Agents (OAs). OAs act as super-peers which are responsible for 

storing the base ontology and providing the requested ontology to the AAs. The OAs require 

sufficient storage space and an efficient request/response mechanism. There are two types 

of nodes which can act as OAs: (a) GTO nodes, and (b) Type B sensors. As GTO node is 

more powerful, it stores the complete base ontology. On the other hand, Type B sensors 

store a part of the base ontology. The functional entities belonging to ontology overlay are 

not involved in processing sensor data. 

 

D. Application Overlay Layer 

The final and fourth layer, Application Overlay Layer comprises with multiple applications 

including semantic and non-semantic applications and shares the same virtualized WSN 
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deployment. Semantic applications receive annotated data while non-semantic applications receive 

raw data from the SA in the Virtual Sensor Access Layer.  

Apart from the four layers, there is an Operations & Management (O&M) entity which is usually 

the WSN IaaS provider and responsible for providing the base ontology. Since O&M entity is aware 

of the type of sensors deployed in the WSN, it can easily develop and deploy the base ontology to 

the ontology overlay. 

4.1.4 Interfaces 

The proposed architecture provides two standardized interfaces (Pdi and Di) for the interactions 

between the end-user applications (both semantic and non-semantic applications) and with the 

different functional entities in the overlay network.  

1. Proprietary Data interface (Pdi) 

 It is used by the virtual sensors to send the sensor data to the functional entities (AA, SA) 

 in the annotation overlay.  

2. Data interface (Di)  

 It is used by Sensor Agent (SA) to send the raw data received from the virtual sensors to the 

non-semantic applications. The same Di interface is also used by SA to send the annotated 

data received from the Annotation Agent (AA) to the semantic applications.  

Pdi and Di use RESTful interface for the interaction. The reason behind choosing RESTful web 

services are as follows: (a) lightweight, standards-based, supports different data formats (e.g., plain 

text, JavaScript, JSON, and XML), (b) provides a uniform interface as the REST resources can be 

accessed and manipulated in a standard way. 
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4.2 Base Ontology  

In order to provision semantic applications, we need to send additional metadata along with the raw 

sensor data. For example, the raw sensor data for a fire monitoring application can be annotated 

with concepts such as observed property and location (e.g., temperature, longitude, and latitude in 

this case). Semantic data annotation has been a popular approach for this purpose. However, the 

data annotation process requires domain concepts and the relationships that exist between them to 

annotate data. An ontology is used to represent formally a domain, its concepts and the relationships 

that exist between them [5]. Within sensor domain, there are several efforts to develop ontologies. 

For example, the Semantic Sensor Network (SSN) Ontology developed by the W3C Semantic 

Sensor Network Incubator Group [58] and SensorML from the Open Geospatial Consortium (OGC) 

[59]. SSN ontology is more general purpose because it is application domain independent. 

We develop our ‘base ontology’ by extending the SSN ontology since it is a well-known, standard, 

and widely used to describe sensors descriptions and their observations. The base ontology contains 

the concepts of different capabilities and types of sensors deployed in the WSN infrastructure. Since 

a single physical sensor may have multiple sensing capabilities (e.g., JAVA SunSpot sensor has 

both light and temperature capabilities), we need to add all the related concepts in the base ontology. 

If WSN infrastructure consists of temperature, humidity, light, and carbon sensors, then the base 

ontology contains the concepts of these types of sensors and their observations. Figure 4-2 shows 

part of the base ontology associated with the temperature sensors. Some of these concepts and 

properties are reused directly from the SSN ontology as these concepts already exist. We created 

the rest of the concepts based on our data annotation requirement. 
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Figure 4-2 Partial base ontology for Temperature Sensor  

A base ontology consists of six main parent classes: Sensor, ObservedProperty, SensorOutput, 

MeasurementUnit, ObservationTime, and Sensor location. We define each class below: 

 Sensor  

This class defines information about the sensors having various capabilities. When a sensor 

with new capability is added in the WSNs, the corresponding concept is added as a subclass 

of the Sensor class. In Figure 4-2, TemperatureSensor is a subclass of the Sensor class. If 

the network size grows with the different capability sensors, sensor classes for new 

capabilities are added to the Sensor class.     
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  ObservedProperty  

This class defines the physical event that is observed by sensors. Sensor observes various 

events based on its sensing capability. If we consider the example of a temperature sensor, 

then the physical event would be the temperature that is observed by TemperatureSensor. 

In our base ontology, Temperature class is added as a subclass of the ObservedProperty. 

  SensorOutput  

This class defines the sensor output. As WSNs consist of sensors having different 

capabilities, this class is introduced to distinguish different sensor output. For example, 

TemperatureSensorOutput and HumiditySensorOutput are the two concepts added under 

SensorOutput class to differentiate between the temperature and humidity sensor output. 

  MeasurementUnit  

This class contains information about unit of measure of the sensor data. For example, if 

temperature sensor gives temperature reading in degree celsius, then the DegreeCelcius 

class is added as a subclass of MeasurementUnit in the base ontology. 

 ObservationTime  

This class defines the time when a sensor senses an event. 

 SensorLocation  

This class indicates sensor's position. As a sensor's position is determined by the longitude 

and latitude, these two concepts are added under the SensorLocation class.  
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4.3 Procedures for Data Annotation 

Data annotation process starts in the operating phase after the deployment of WSNs with all 

necessary configurations are completed. Figure 4.3 shows the sequence diagram of the data 

annotation procedure in an abstract way. 

 

Figure 4-3  Data annotation procedure 

First, when a physical sensor (e.g., Java Sunspot, AdvanticSys sensor) senses a phenomenon (e.g., 

temperature), it sends the data (Raw Sensor Data) to the Annotation Agent (AA).  

Second, Annotation Agent (AA) determines (SensorCapabilityCheck) the type of phenomenon 

(e.g., temperature) recorded in the received Raw Sensor Data.  
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Annotation Agent (AA) checks whether it has the corresponding partial base ontology (e.g., 

temperature ontology) or not. If it does not have the partial ontology, it initiates the ontology 

discovery process which is explained in Section 5.4. In brief, it sends an OntologyDiscoveryRequest 

to the Ontology Agent (OA) and receives the required partial ontology.   

Third, Annotation Agent (AA) annotates the data using the partial ontology which is explained later 

in this section. It then sends the annotated data to the Sensor Agent (SA).  

Finally, Sensor Agent (SA) sends the annotated data to the Semantic Applications.  

Algorithm 1 represents the pseudo code of the data annotation procedure that is executed in the 

Annotation Agent (AA).  

 

Figure 4-4 Pseudo code for data annotation  
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This algorithm takes raw data, a partial ontology as inputs and produces annotated data as output. 

However, the raw data can be plain text or any standard formatted data.  In Line 1, raw data is 

parsed and stored as key-value pairs. Line 2 determines the concepts from the given partial 

ontology. The ontology will be used to create semantic relationship among the observed data. A 

model (represents the ontology concepts and holds their values) is initialized which represents the 

annotated data in Line 3. In Line 4, each key-value from the key-value pairs (Line 1) is mapped to 

the corresponding ontology concept (extracted in Line 2)  to create the semantically annotated data. 

Finally, the annotated data is returned in Line 5. Section 4.4.2 presents an example to illustrate the 

algorithm step by step. 

4.4 Wildfire Monitoring Use case 

In this section, we describe the wildfire monitoring application based on the proposed architecture. 

Let us assume that the WSN IaaS providers deploy sensors of brands Java SunSpot (e.g., 

temperature & light sensors) and AdvanticSys Kit (humidity sensors) in a large geographic area 

including nearby forest, public streets, and private homes, respectively. These sensors run multiple 

application tasks concurrently using virtual sensors and semantic virtual sensors. In the following 

subsections, we describe the base ontology and data annotation procedure. 

4.4.1 Base Ontology 

As WSN IaaS provider is aware of the deployed sensors, he develops a base ontology. The base 

ontology development mechanism is discussed in the next chapter. In the current sensor 
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deployment, a base ontology contains concepts related to the temperature, humidity and light 

sensors. Figure 4-3 shows the concepts of the base ontology.  

 

Figure 4-5 Concepts of base ontology  

As we mentioned earlier, we extended SSN ontology by re-using some of the concepts. Figure 4-5 

shows the parent-child class hierarchy relationships among different concepts. While developing 

an ontology, all the concepts should be under the concept of Thing. In our base ontology, we have 

five parent classes (Sensor, ObservedProperty, SensorOutput, MeasurementUnit, and 

SensorLocation). As WSN IaaS contains sensors of three different capabilities (e.g., temperature, 

light, humidity) we have three subclasses (TemperatureSensor, LightSensor, and HumiditySensor) 

under the parent class Sensor. Concepts of various sensing capabilities (e.g., Temperature, light, 
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and Humidity) are presented as subclass under the ObservedPropoerty class. In order to distinguish 

the sensor outputs, TemperatureOutput, HumiditySensorOutput, and LightSensorOutput subclasses 

are incorporated in the parent class SensorOutput. Java Sunspot temperature sensors produce output 

in degree Celsius, and light sensors produce output in lux unit. However, AdvanticSys Kit humidity 

sensors provide relativity measure of humidity. concepts for these measurement units 

(DegreeCelcius, Lux, and Percentage) are presented as a subclass of the MeasurementUnit class. 

As a sensor's physical position is determined by longitude and latitude value, longitude and latitude 

concepts are presented under the class SensorLocation. It is very critical to know the sensing time 

of an event in any WSN application. ObservationTime class defines the timestamp when a sensor 

senses an event.  

In our proposed architecture, we assumed that the base ontology has already been provisioned in 

the WSNs after deploying the sensors. However, the detail description of the ontology provisioning 

in WSN can be found in Section 5.3. According to this assumption, the OAs in the ontology overlay 

already holds the base ontology. This means that the GTO node has the full base ontology and the 

Type B (Java Sunspot) sensors have part of the base ontology. As AdvanticSys Kits are more 

resource-constrained sensors, these are connected to the GTO node and send sensor reading to the 

AAs in virtual sensor access layer. GTO node can be the gateway or a sink node.  

4.4.2 Procedures for Data Annotation  

After the deployment of the WSNs and all other setup, Java Sunspot, and AdvanticSys sensors start 

giving their reading and send their raw data in a standard format to the AAs in the virtual sensor 

access layer. Let consider a JAVA Sunspot temperature sensor (Spot1) is giving the reading in the 
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SenML format [60] and an AdvanticSys humidity sensor (TlosB2) is giving the reading in the plain 

text. Figure 4-6 shows the different type of input data received by the AA from the virtual sensors 

of Spot1 and TlosB2. 

 

Figure 4-6 Example of sensor data before semantic data annotation 

For each sensor reading, the following steps are executed by the AA. We consider the example of 

SenML data receiving from the Spot1 sensor. 

First, AA determines the sensing capability (e.g., temperature or humidity reading) and finds it as 

a temperature reading. Sensor capability check depends on the configuration setup of the WSNs 

performed by the WSN provider. In our implementation, we used sensor id to determine the 

capability of the sensor.  

Second, AA looks for the temperature part of the base ontology in its local storage. If the ontology 

is not found, AA sends an ontology discovery request for the required base ontology (temperature 
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sensor related concepts) to the OA in the ontology overlay. OA replies back with the requested 

temperature ontology. 

Third, AA executes the data annotation algorithm by performing the following steps:  

Step 1: The input data is parsed and stored as key-value pairs. Figure 4-7 shows how the input data 

can be extracted and stored as a key value pair.   

Key Value

SensorName Spot1

OutputValue 25.15034

Longitude E 48.609086

Latitude N 2.479171

SensorId 1409693334925

UnitofMeasure C

Sensor data in SenML
{"e":[{"n": "Spot1",

"v:"25.15034"}, 

{"sv":"E 48.609086", 

"u":"lon"},

{"sv":"N 2.479171", 

"u":"lat"}]   

"bt":"1409693334925", 

"bu":"C"}'

Extracting sensor data

 

Figure 4-7 Extracted sensor data  

Step 2: AA extracts the concepts of the temperature part of the base ontology as these concepts 

would be used to add the metadata to the actual data. The temperature part of base ontology has 

already been shown in the Figure 4-2. 

Step 3: A new data model is initialized in which the annotated data would be stored. The new data 

format of the data model depends on the implementation choice. There are several data formats 

(e.g., RDF/XML, OWL/XML, Turtle, and so forth) which can be used to represent semantically 

enriched annotated data. In this implementation, we  have chosen the RDF/XML format as this is 

the most popular and widely used all around the world. 
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Step 4:  Each key-value pair is taken out and mapped with the corresponding concepts of the 

ontology. Properties are used to create a semantic relationship between the concepts and observed 

data. For example, AA receives temperature data from the sensor named 'Spot1' located in X(E 

48.609086, N 2.479171) position. The partial ontology has related concepts including 

'TemperatureSensor', 'Temperature' as well as properties including 'observes', 'hasLongitude',  and 

'hasLatitude'.  Using semantic annotation, AA can represent the sensor data similar to the following 

set of information; 

 Spot1 is a type of TemperatureSensor 

 Spot1 observes Temperature 

 Spot1 has longitude E 48.609086 

 Spot1 has latitude N 2.479171 

This piece of information can be expressed in the RDF/XML format presented in the Figure 4-8. 

As we mentioned earlier, data can be simply tagged using existing standards (e.g., XML, JSON) 

but that representation cannot create semantic relationship among the observed data. 

 

 

 

 

Figure 4-8 Annotated sensor data   

There are several open source APIs (e.g., Apache Jena, OWL API) that can be used to create 

semantically annotated data. Figure 4-9 shows the annotated data in RDF/XML generated by the 

AA using base ontology.  

<rdf:Description rdf:about="http://BaseOntology.owl#Spot1"> 

<rdf:type rdf:resource="http://BaseOntology.owl#TemperatureSensor"/> 

<ssn:observes rdf:resource="http://BaseOntology.owl#Temperature"/> 

<base:hasLongitude> E 48.609086 E 48.609086</base:hasLongitude> 

 <base:hasLatitude> N 2.479171</base:hasLatitude> 

 </rdf:Description> 

http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureSensor
http://baseontology.owl/#Temperature
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Step 5: After generating the annotated data, AA forwards it to the Sensor Agent (SA) in the same 

overlay. 

Step 6: Finally, SA sends the annotated data to the wildfire monitoring semantic application. 

 

 

 

 

 

 

 

 

 

Figure 4-9 Annotated data received from Spot1 Sensor 

The wildfire monitoring application can further infer implicit knowledge from the received 

annotated data. The type of knowledge inference depends on the application domain and end-user 

requirements. In this thesis, we have created a fire domain ontology along with a set of reasoning 

rules to infer the knowledge like "No fire", "Tends to fire" or “huge fire". The details can be found 

in Section 6.1 where we present our prototype implementation. 

4.5 How the Architecture meet the Requirements 

The proposed architecture fulfills all the data annotation requirements that we mentioned in Chapter 

3. First, our proposed data annotation architecture can support near real time in-network annotation 

in the virtualized WSNs. We have used two overlays: (a) base ontology is deployed among the 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:base="http://BaseOntology.owl#" 

    xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#" 

   <rdf:Description rdf:about="http://BaseOntology.owl#SpotOutput1"> 

   <base:hasUnit rdf:resource="http://BaseOntology.owl#DegreeCelsius"/> 

   <base:hasSensingTime rdf:datatype= 

   "http://www.w3.org/2001/XMLSchema#dateTime">2014/09/01T09:12:55</base:hasSensingTime> 

   <ssn:hasValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#double">25.15034</ssn:hasValue> 

   <ssn:observedBy rdf:resource="http://BaseOntology.owl#Spot1"/> 

   <rdf:type rdf:resource="http://BaseOntology.owl#TemperatureOutput"/> 

    </rdf:Description><rdf:Description rdf:about="http://BaseOntology.owl#Spot1"> 

   <rdf:type rdf:resource="http://BaseOntology.owl#TemperatureSensor"/> 

   <ssn:observes rdf:resource="http://BaseOntology.owl#Temperature"/> 

   <base:hasLongitude> E 48.609086 E 48.609086</base:hasLongitude> 

   <base:hasLatitude> N 2.479171</base:hasLatitude> 

   </rdf:Description> 

</rdf:RDF> 

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://baseontology.owl/
http://purl.oclc.org/NET/ssnx/ssn
http://baseontology.owl/#SunSpotOutput1
http://baseontology.owl/#DegreeCelsius
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#double
http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureOutput
http://baseontology.owl/#SunSpot_1
http://baseontology.owl/#TemperatureSensor
http://baseontology.owl/#Temperature
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nodes in the ontology overlay, and (b) sensor data annotation is performed by the nodes in the 

annotation overlay. In both cases, we use distributed approaches for storing the base ontology and 

performing sensor data annotation. Our proposed architecture allows the node-level-virtualization 

of the sensor nodes. As a result, multiple application tasks can be run concurrently on top of a 

physical node. For the standard representation of the sensor data and management of the sensor 

heterogeneity issue, we have proposed base ontology following the existing standards. We extend 

the SSN ontology to develop our base ontology. The virtualized WSNs send the annotated data to 

the semantic applications through a standard interface. We have used REST interface to establish a 

connection between the WSN infrastructure and Semantic Wildfire Monitoring Application. The 

architecture is platform independent and supports both semantic and non-semantic applications. 

Our proposed architecture is applicable for a large-scale sensor deployment while the physical layer 

can support heterogeneous sensors. In this way, the scalability and sensor heterogeneity 

requirements are satisfied.  

4.6 Chapter Summary 

In this chapter, we described our proposed data annotation architecture which is based on the 

virtualization and network overlay concepts. We first presented the architectural principles and then 

we explained the architecture in detail including the layers and functionalities. We explained the 

base ontology and sensor data annotation procedure. We described the use case of the wildfire 

monitoring application and showed the concepts of the base ontology and data annotation 

procedures step-by-step.  Finally, we explained how our proposed architecture meets and satisfy all 

the requirements presented in Chapter 3. 
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Chapter 5 

5 Ontology Provisioning Architecture 

We presented data annotation architecture for provisioning semantic applications in virtualized 

WSNs in Chapter 4. We explained about base ontology which was used to annotate the sensor data. 

However, in-network sensor data annotation requires base ontology provisioning in the virtualized 

WSNs. Ontology provisioning includes ontology development, deployment, and management in 

virtualized WSNs.   

In Chapter 4, we assumed that the base ontology was provisioned in the virtualized WSNs. This 

chapter tackles the challenge of ontology provisioning. We extend the architecture presented in 

Chapter 4 for ontology provisioning and refer it as ontology provisioning architecture. We have 

introduced "ontology provisioning center" as a part of the ontology provisioning architecture and 

proposed a protocol for deploying base ontology in the virtualized WSNs.  

This chapter consists of the following items: first, we present the ontology provisioning architecture 

which is an extension of our data annotation architecture described in the previous chapter to allow 

ontology provisioning in WSNs. The "ontology provisioning center" for base ontology 

development and management is outlined in the second section. In the third section, we propose a 

new protocol for ontology deployment in the virtualized WSNs which is used in several procedures 

for base ontology provisioning. A wildfire monitoring use case is presented to show the overall 

workflow of the ontology provisioning. Finally, we discuss how the requirements mentioned in 

Chapter 3 are met by the architecture. 
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5.1 Ontology Provisioning Architecture 

In Chapter 4, we proposed an in-network data annotation architecture assuming that base ontology 

was provisioned. We have utilized our previous architecture as a foundation and extended it for 

provisioning base ontology in the virtualized WSNs. The virtual sensor layer and application 

overlay layer remain unchanged as in the data annotation architecture. We have introduced new 

functional entities in the physical layer and virtual sensor access layer. The overall architecture is 

presented in the Figure 5-1 which is the final architecture for supporting both ontology provisioning 

and data annotation in the virtualized WSNs.   

In this section, we describe only the new components of the architecture which are summarized in 

the Table 5-1. 

 WSN IaaS Manager 

 This entity is a powerful physical node (e.g., server) with the overall knowledge of the 

deployed WSN IaaS, which belongs to the physical layer. It represents the WSN 

 Infrastructure  Manager (WIM) in the virtual sensor access layer. In our architecture, the 

functional entity WIM is very crucial as it executes the most important tasks related to the 

ontology deployment. In general, sensors are not reliable since they are resource constraint 

devices with limited battery life. In this regard, we chose WSN IaaS manager as a powerful 

node. The primary responsibility of this component is to provide 24/7 reliability to the WIM. 

 Ontology Manager (OM) 

 This entity belongs to the ontology overlay in the virtual sensor access layer. The primary 

responsibility of OM is to store the complete base ontology and send it to the OAs upon 

request from them. However, OAs store the partial base ontology. In order to ensure 
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availability of the ontology in the case of node failures, we replicate the base ontology 

among multiple OMs in this architecture. Powerful nodes such as GTO nodes can act as 

OMs. 

 

Figure 5-1 Ontology provisioning architecture in a virtualized WSN 
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 WSN Infrastructure Manager (WIM) 

 The WSN Infrastructure Manager (WIM) is another new functional entity added in the 

ontology overlay. The WIM is the logical entity of WSN IaaS Manager belonging to the 

physical layer as a centralized entity. Deployed WSNs may contain both resource constraint 

and resourceful (we use the term 'capable') sensor nodes. In our architecture, only capable 

nodes can act as  OM or OA, which store the base ontology. It is very crucial to find the 

capable nodes among the different types of the nodes belongs to the deployed WSNs. WIM 

performs the following two tasks:  

 (i)  Selects the capable nodes to act as either OM or OA. 

In this regard, we have adopted a  genetic algorithm recently proposed by our 

research team [61]. WIM executes the algorithm to find out the most appropriate 

nodes which can play the role of OM and OA.  

 (ii) Deploys the ontology concepts on the selected node.  

 We have explained the ontology deployment protocol in Section 5.3 which is 

executed by WIM. 

Functional Entity Position Responsibility 

WSN IaaS Manager  Physical Layer Provide reliability support to WIM 

Ontology Manager (OM) 
Virtual Sensor 

Access Layer 
Holds the full base ontology 

WSN Infrastructure 

Manager (WIM) 

Virtual Sensor 

Access Layer 

i) Selects the capable nodes that can act as 

OMs or OAs ii) Deploy entire base ontology 

to OMs and partial base ontology to OAs 

Table 5-1 New functional entities introduced in the ontology provisioning architecture  
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5.2 Ontology Provisioning Center 

Base ontology can be considered as an abstract image of the physical sensors deployed in the WSNs 

because it holds all the related concepts of the physical infrastructure. For this reason, it is very 

necessary to develop, deploy, and manage the base ontology after deploying WSN infrastructure. 

We have proposed an ontology provisioning center to develop and manage the base ontology. 

Figure 5-2 shows the components of the ontology provisioning center. 

 

Figure 5-2  Components of the ontology provisioning center 

WSN IaaS provider interacts with the ontology provisioning center through a user interface. Figure 

6-10 shows a user interface for the implemented prototype. WSN IaaS provider adds new concepts 

after deploying the sensors in the WSN IaaS. The ontology creation module is responsible for 

generating the base ontology by taking the concepts stored in the data repository. We develop a set 

of mapping rules and use the ontology development language to create the base ontology. Finally, 
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the base ontology is stored in an ontology repository. IaaS provider can store, modify or remove 

concepts of the base ontology. In the case of removing some of the existing sensors from the 

network, WSN IaaS provider can remove the concepts related to those sensors. 

The process of creating base ontology using the ontology provisioning center is described in  Figure 

5-3 (illustrated in Figure 5-6 and 5-7 in Section 5.5)  involving the following steps: 

 Add Concept 

Infrastructure Provider defines the concepts according to the sensor domain. For each 

capability, a small piece of information needs to be specified including sensor type, output 

type, output unit and observed property.  

 Add Sensor Details 

In the case of deployment of a new kind of sensor, its information can be easily added to 

the ontology. For example, its name, sensor id, sensor type, the number of attached sensors, 

and the domain & range values it supports. 

 Load Default Ontology 

Once the new concepts are included in the system, a default ontology is used to incorporate 

these new concepts in this step. We use some of the concepts directly from standard SSN 

ontology [58] in the default ontology. 

 Apply Mapping Rules 

The new concepts (we refer these as 'child concepts') are included with the existing concepts 

by applying mapping rules. 
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Figure 5-3 Steps for Base ontology development  

 Update Property, Domain, and Range values 

The values of the properties, domains, and ranges are updated to reflect the new additions 

or modifications to the concept. 

 Create base ontology 

The base ontology is created from the updated concepts, properties, domains, and ranges. 

The base ontology can be expressed as the collection of all the added concepts as below: 

 Base ontology = concept_temperature + concept_humidity + … + concept_k 

5.3 Ontology Deployment Protocol 

This section discusses our proposed protocol for deploying the base ontology in the overlay 

network. The proposed protocol exchanges messages:  
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a) From the ontology provisioning center to the WIM belonging to the ontology overlay  

(Deploy Ontology and Ontology Deploy Request), and 

b) WIM to other nodes in the ontology overlay  

The ontology provisioning center uses the Deploy Ontology message to deploy a base ontology to 

the WIM. This situation might happen when the base ontology is created, or WIM requests the most 

updated version of the base ontology.  

As the ontology overlay is responsible for holding the base ontology, the rest of the messages are 

exchanged between nodes of the ontology overlay. Table 5-2 summarizes the messages exchanged 

for the proper deployment of the base ontology. 

Message Name Message Description 
Message 

Address 

Deploy Ontology A full base ontology is deployed by the ontology provisioning 

center to WIM upon being developed. 

Unicast 

Ontology Deploy 

Request 

A request message is sent from WIM to the ontology 

provisioning center to get the most updated version of the base 

ontology 

Unicast 

Discover Request Discover the capable nodes that form the ontology overlay. Send 

the message by WIM to the nodes in the ontology overlay  

Broadcast 

Discover Response Send the response to WIM by individual capable nodes and 

include the node ID in the response message. 

Unicast 

Notification WIM notifies the selected OAs and OMs by sending the 

notification message. 

Multicast 

Acknowledgement Send an acknowledge message to WIM by individual nodes. Unicast 

Ontology Request A request message is sent from OM to WIM to get the ontology. Unicast 

Set  full Base 

Ontology 

WIM  sets an entire base ontology to OM. Unicast 

Set Partial 

Ontology 

WIM sets a partial base ontology to OA Unicast 

Table 5-2 Message exchanges for the deployment of ontology 
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Sensors are tiny devices with low battery life to serve a set of specific tasks including detecting 

events, sending data, and maintaining communication in the WSN. These tasks require a large 

amount of energy which minimizes the battery lifetime. We find the average battery lifetime of the 

Java SunSpot sensors is around 10 hours (experimental results are shown in the Figure 6-11). Most 

of the deployed sensors in a WSN do not have a facility for battery recharging or replacement. Once 

a battery life finishes for a sensor, it cannot participate in the network anymore. For this reason, 

extensive research works are done on the efficient use of sensors' energy consumption. For the same 

reason, developing routing protocol, defining topology and designing every other context of a WSN 

need to consider the battery life of the sensors in the beginning.  

In our architecture, we assume the sensors in the WSNs have different levels of battery life, 

processing power, and hardware ability. The intuition behind this is the sensors with the higher 

abilities perform more tasks including computation, routing, communication, and reporting. 

Ontology provisioning requires holding the ontology and serving to other nodes in case of ontology 

request. For this reason, we need to select a set of sensors which meet certain requirements. We 

refer these sensors as 'capable nodes'. These sensors meet pre-defined requirements such as battery 

life should be greater than X days, storage capacity should be greater than Y KB, processing 

abilities (such as memory, operating system, hardware) should be higher than a certain threshold. 

We assume that only these capable nodes can act as OM or OA in our architecture and hold the 

ontology completely or partially. 

We have introduced following procedures that rely on our proposed ontology deployment protocol:  

a) Discover potential candidates as capable nodes  
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b) Select the capable nodes  

c) Notify the capable nodes  

d) Deploy base ontology to the selected nodes 

a) Discover potential candidates as capable nodes 

In large-scale WSN deployments, we select the potential candidates first in this procedure then 

finalize the capable nodes in the next procedure. The intuition behind this is to filter out a large 

number of sensors which can't meet the requirements to become capable nodes. The mechanism for 

candidate discovery uses the third and fourth messages presented in the Table 5-2. At the initial 

stage, WIM broadcasts the discovery request message to its neighbors. Table 5-3 summarizes the 

contents of the discovery request message. The first field, broadcast_id, defines the broadcast 

message ID, which is set by WIM. The source_address holds the ID of the sender of the discovery 

request message. The third and fourth fields (node_storage_capcity and node_battery_life) are used 

to discover the potential candidates.  

broadcast_id 

source_address 

node_storage_capcity 

node_battery_life 

Table 5-3 Content of the discovery request message 

Each overlay node maintains a small cache consisting of <source_address, broadcast_id> pairs to 

identify and reject the duplicate messages upon receipt. When a node receives a discovery request 

message, it inspects the message using broadcast_id to determine the duplicate messages. If the 

received message is not duplicate, it updates the cache and disseminates it to its neighbors. As a 
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result, each node may receive a discovery request message from its neighbors multiple times but 

broadcasts the message once. In this way, broadcast_id filters redundant messages to avoid 

'broadcast storm' problem. A node also compares its storage capacity and energy level with the 

condition specified in the discovery request message. If it satisfies the requirements, it forwards a 

discovery response message with its ID to the immediate source node from which the discovery 

request message was received. Upon receipt of a discovery response message from a neighbor node, 

the immediate source nodes also perform a similar task. If an immediate source node meets the 

energy and storage requirements, it adds its ID to the ID list found in the receipt message. It also 

forwards the updated message to its immediate source node. On the other hand, if it does not meet 

the energy and storage requirements, it simply forwards the message to the immediate source node. 

This process continues until the response message is reached to the WIM. WIM can receive multiple 

response messages from the same neighbor nodes. However, it will consider the messages with the 

highest number of node IDs. In this way, WIM will get the aggregated response messages with the 

node ID of potential candidates. There will be the very low probability of an 'ACK explosion' 

problem as the message aggregation technique reduces the number of messages in the network. 

b) Select capable nodes 

WIM executes the heuristic-based Genetic Algorithm (GA) recently proposed by our research team 

[61] to select the capable nodes from the potential candidate nodes discovered in the previous 

procedure. GA provides an optimal solution for selecting capable nodes that can hold ontology in 

the virtualized WSNs. GA takes the node ID of the potential candidates as input and produces a list 

of the capable node IDs that can act as OA and OM. GA starts with a random population of 

individuals (i.e., the solutions). The individuals are evaluated using a fitness function, and the fitted 
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ones are selected to undergo crossover and mutation operations to produce a new generation of 

individuals. This procedure is repeated for many generations until a terminating condition (e.g., 

maximum number of generations) is reached.  

c) Notify capable nodes 

WIM sends the Notification message to the selected capable nodes. The message indicates that the 

targeted node defined in the content is chosen to act as OA and/or OM. Each OA and OM node send 

an Acknowledgement message to the WIM stating that it is ready to act as OA and/or OM upon 

reception of the notification message. 

d) Deploy ontology to the selected nodes 

WIM sets the complete ontology to the OMs after receiving the Acknowledgement messages from 

the OMs and OAs. Since OAs are resource-constraint devices and may not need all concepts, WIM 

divides the base ontology into multiple parts in a way that each section contains partial ontology 

for one capability. Each of these parts is randomly sent to the selected OAs.  

5.4 Base Ontology Discovery 

In our architecture, OM nodes hold the complete base ontology and OA nodes hold the partial base 

ontology where AA nodes annotate data it receives from the semantic virtual sensors. As AA nodes 

annotate data, these nodes require partial ontology. In the previous section, we have presented the 

procedures for ontology deployment to OM and OA nodes. AA nodes receive the necessary partial 

base ontology from the OA nodes through the base ontology discovery which can be either 

proactive or reactive. We describe the procedures for base ontology discovery below: 
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1. Proactive Base Ontology Discovery 

Figure 5-4 shows the sequence diagram of ontology discovery procedure in the proactive approach. 

Send partial base ontology

Annotation Agent 

(AA)

Request Ontology

Ontology Overlay Annotation Overlay

WSN IaaS Manager 

(WIM)

Ontology Agent 

(OA)

Advertise ontology

Reply ontology

 

Figure 5-4 Base ontology discovery in proactive approach 

In the previous section, we showed how the WIM deployed partial base ontology to the selected 

OAs. Each OA periodically advertises the partial base ontology it holds so that the AA nodes get 

the information. Each AA in the annotation overlay sends an ontology discovery requests in 

response to the advertisement. OAs reply back the requested ontology after receiving the request.  

2. Reactive Base Ontology Discovery 

The reactive approach is needed when an AA does not have the required part of the base ontology 

for annotation. The base ontology discovery procedure is illustrated in the Figure 5-5. 
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Figure 5-5 Base ontology discovery in the Reactive approach 

The AA node sends an ontology discovery request message for the required part of the base 

ontology to an OA known from its cached advertisement. If the OA does not have the requested 

part of the base ontology, it sends an ontology discovery request to the OMs in the same ontology 

overlay as OMs contain the complete base ontology. Finally, OM  replies back the request partial 

base ontology (such as ontology for temperature sensor) to the OA, which is then forwarded to the 

requesting AA.   

5.5 Wildfire Monitoring Use case 

We presented the wildfire monitoring use case to illustrate the semantic data annotation architecture 

in Chapter 4. We have extended the architecture in this chapter to allow ontology provisioning in 

the virtualized WSNs. In this section, we present the wildfire monitoring use case again to illustrate 

the new architecture focusing on the ontology development and deployment.  
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As we mentioned before, initially the WSN IaaS provider deploys sensors of brands Java SunSpot 

(temperature and light sensors) and AdvanticSys Kit (humidity sensors) on a large geographic area. 

WSN IaaS developer may not be an ontology developer or domain expert to develop base ontology 

by himself. He can develop the base ontology using our proposed ontology provisioning center by 

adding few information. Then he deploys the base ontology in the virtualized WSNs using ontology 

provisioning protocol.  

Based on the scenario, we describe the ontology provisioning process. We divide the work process 

into two sections:  

(i) Ontology development process using ontology provisioning center, and  

(ii) Ontology deployment procedure from ontology provisioning center to the 

virtualized WSNs. 

5.5.1 Base Ontology Development  

The first step of the base ontology provisioning is to develop a base ontology. The base ontology 

development using ontology provisioning center is illustrated in the Figure 5-6. 

In this scenario, we show the steps performed by the IaaS provider to develop a base ontology by 

adding concepts related to the Java Sunspot temperature sensors:  

1. IaaS provider adds the concepts related to the temperature sensor (e.g., sensor type: 

TemperatureSensor, observed property: Temperature, output type: TemperatureOutput, unit: 

DegreCelcius) using the user interface.  

 



 

89 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Sequence diagram for base ontology development 

2. In the user interface of the ontology provisioning center, there is a process for checking 

duplicate concepts. When the IaaS provider wants to add new concepts, the system first 

checks whether the concepts are unique or not. If a duplicate concept is found, IaaS provider 

is notified that duplicate concept cannot be added to the system. For example, if there are 

already some existing concepts related to the temperature sensor in the data repository, the 

IaaS provider would not be allowed to add the redundant concepts. We have not addressed 

the issue when relevant concepts already exist in the data repository using different names. 
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Because it requires human effort to match and identify relevant concepts having different 

names (e.g., location: washroom, restroom). We believe that this type of situation will less 

likely happen in the sensor domain as most of the sensing phenomena are well-known.    

3. The newly added concepts related to the temperature sensor are stored in the data repository. 

Following concepts are added for this use case: 

 Temperature 

 TemperatureSensor 

 TemperatureSensorOutput 

 DegreeCelcius 

4. Ontology creation module requests for the concepts related to the temperature sensor in the 

data repository for creating a base ontology and checks its local storage for the default 

ontology.  If the default ontology is not found, a request message is sent to the ontology 

storage.  

5. Ontology storage replies back the requested ontology. The default SSN ontology already 

contains some core classes (e.g., Sensor, ObservedPropoerty, SensingUnit) and properties 

(e.g., observes, hasUnit) that create semantic links between the classes.  
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Figure 5-7: Ontology development for temperature sensor 

6. The ontology creation module incorporates the new concepts in the ontology by creating a 

parent-child relationship between the concepts from SSN ontology and the new concepts. 
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Figure 5-7 shows the default ontology, newly added concepts and generated ontology for 

the temperature sensor. We see that the  "TemperatureSensor" is added as a subclass of the 

"Sensor" class whereas the "Temperature" class is added to the "ObservedProperty" class. 

In order to create a semantic link (for example, "TemperatureSensor observes Temperature") 

between the TemperatureSensor and Temperature class, domain and range values of the 

property "observers" are updated. An Ontology development language (such as OWL, 

Apache Jena)  is used to create a base ontology when all the newly added concepts are 

mapped to the corresponding parent classes and properties are updated for domain and range 

values. 

7. Finally, the base ontology is sent to the ontology storage which is used to deploy in the 

ontology overlay.  

5.5.2 Base Ontology Deployment 

Once the base ontology development is completed, base ontology deployment is performed. Figure 

5-8 shows the sequence diagram of base ontology deployment. We describe the deployment process 

for the wildfire monitoring use case below. 

At the initial stage, the WSN IaaS provider adds the concepts related to the Java SunSpot 

(temperature and light) and AdvanticSys Kit (humidity) sensors and develops the base ontology 

using the ontology provisioning center that we have discussed in the previous subsection.  

As the developed base ontology contains concepts of sensors having three different capabilities, the 

ontology provisioning center splits the complete base ontology into the following three parts in such 

a way that each portion contains all the related, capability-specific concepts: 
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a) Ontology for only Temperature Sensor  

b) Ontology for Light Sensor   

c) Ontology for Humidity Sensor 

 

Figure 5-8 Sequence diagram for ontology deployment process 

The common concepts and properties (e.g., "sensor", "observedProperty", "sensorOutput", 

"observes") are present in all the three parts. The ontology provisioning center deploys the full and 

parts of the base ontology to WIM belonging to the ontology overlay through deploy ontology 
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message. A discovery request message is sent from WIM to the neighboring nodes residing in the 

ontology overlay. Only the potential candidates, i.e., those with the higher energy and storage 

capacity, give the response messages along with their IDs to WIM. In the next step, WIM selects 

capable nodes that can act as OM or OA by executing a genetic algorithm. WIM notifies the selected 

OM and OA nodes. Upon receiving the notification message, OM and OA nodes send an 

acknowledgment message to WIM, stating their readiness to work accordingly. Finally, WIM sends 

the complete base ontology to the selected OMs and the partial base ontology to the selected OAs.   

5.6 How the Architecture meet the Requirements 

The refined architecture fulfills all the ontology provisioning requirements that we mentioned in 

Chapter 3. First, our proposed ontology provisioning center allows WSN IaaS provider to easily 

develop and manage the base ontology. It can be implemented using any standard technology. We 

use distributed approach to deploy the base ontology in order to avoid a single point of failure. We 

propose an ontology deployment protocol that allows the interaction between the ontology 

provisioning center and the virtualized WSNs. Our proposed protocol re-uses the genetic algorithm 

to find a set of capable nodes and deploy the base ontology among those nodes. It results in efficient 

resource utilization of the WSN IaaS. Base ontology is replicated among the selected capable nodes 

to ensure fault tolerance. Our proposed solution is applicable to the large-scale sensor deployments, 

thus, the scalability requirement is also satisfied.  
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5.7 Chapter Summary 

In this chapter, we have described an ontology provisioning architecture in the virtualized WSNs, 

which was built upon the data annotation architecture presented in Chapter 4. We first described 

the enhanced architecture focusing on the new components and functionalities, then presented the 

ontology provisioning center. We discussed the ontology provisioning protocol to deploy the base 

ontology in the virtualized WSNs. An illustrative scenario showing the workflow of different 

components of the architecture was presented based on the wildfire monitoring use case. Finally, 

we explained how our proposed architecture satisfied all the ontology provisioning requirements 

presented in Chapter 3. 
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Chapter 6 

6 Validation: Prototype, Simulation, and Evaluation 

We presented an architecture for data annotation in Chapter 4 which was extended in Chapter 5 for 

ontology provisioning. In this chapter, we describe the implemented prototype and simulation to 

evaluate them based on the different performance metrics. We implemented a semantic wildfire 

monitoring application that uses the annotated data from sensors. We also implemented an 

application for ontology provisioning which was used for developing and managing the base 

ontology. This chapter consists of two main sections. The first section validates the data annotation 

architecture. The second section validates the ontology provisioning architecture. Finally, we 

summarize the chapter. 

6.1 Validation of Data Annotation Architecture 2  

We begin this section by representing the implementation scenario. The scope of the prototype 

application is defined in the second subsection. We discuss the prototype setup and different 

configurations that we used to implement our prototype in the third subsection. The fourth 

subsection describes the performance matrices along with the performance result of the 

implemented prototype. 

                                                           
2 This section is an extended version of the validation presented in  the  paper  “ I. Khan, R. Jafrin, F. Errounda, R. 

Glitho, N Crespi, M Morrow, P Polakos, A Data Annotation Architecture for Semantic Applications in Wireless Sensor 

Networks, IFIP/IEE International Symposium on Integrated Management (IM 2015), pp. 27, 35, 11-15 May 2015, 

Ottawa, Canada”  (acceptance rate: 27.2%)  

 



 

97 | P a g e  
 

6.1.1 Implemented Scenario 

We have implemented a semantic wildfire monitoring application inspired by the scenario 

presented in Chapter 3. In this implementation, we consider that the base ontology has already been 

provisioned into the WSNs. Figure 6-1 depicts the workflow of the implementation scenario.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Sequence diagram of the implemented scenario 

Semantic virtual sensors send their raw data to the AA. Once an AA receives the raw sensor data, it 

first checks locally to determine whether it has the required ontology to annotate the data. If AA 

does not have the necessary ontology, it sends a request message to an OA for the ontology. The 
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OA sends the requested ontology to the AA. The AA annotates the raw sensor data using the 

ontology and sends the annotated data to the SA. The SA sends the annotated data to the semantic 

wildfire monitoring application.  

Wildfire monitoring application receives annotated data and applies a set of reasoning rules along 

with domain ontology to infer additional knowledge. If the application detects any fire event, it 

immediately sends a fire notification message to the end user. The user can ask for some detail 

information such as where the fire event has occurred? Or what is the current fire situation? 

Semantic wildfire monitoring application has an SPARQL query execution engine that finds the 

required information from the annotated data and replies back to the end-user.  

6.1.2 Prototype High-Level Description 

Figure 6-2 is a snapshot of the user interface of the semantic wildfire monitoring application that 

enables the end-user to monitor fire situation.  
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Figure 6-2 A user interface for the semantic wildfire monitoring application  

There are two buttons in the user interface. The prototype application continuously checks the fire 

status by taking sensor measurement from virtualized WSN. If any fire situation occurs, then the 

application immediately triggers a fire notification message to the user. After getting the fire 

notification message, the user can query for additional information by pressing the button "Status" 

to understand the context of the fire situation such as is it initial fire or massive fire in that place. 

The user can also get the detail information such as time, location, and the current temperature of 

the fire-eruption area by clicking the next button "FireDetail". 
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6.1.3 Prototype Setup 

We used the following software and technologies to implement the prototype:  

1) Google App Engine [62] was used as the PaaS Layer for implementing and hosting the 

semantic wildfire monitoring application. 

2) Apache Jena [63]  was used for annotating sensor data, reasoning, and executing SPQRQL 

queries. 

3)  RESTlet framework [64] was used for the interaction between the WSN IaaS and semantic 

wildfire monitoring application in PaaS. 

4) JXTA protocol [65] was used to implement the annotation and ontology overlays. 

 

We used two different sensor kits for the prototype: Java SunSpot and TelosB motes from 

AdvanticSys Kit. In total, we used 6 SunSpots (two of them as base stations), 4 TelosB motes (one 

of them as border router) running Contiki OS [66]. All these sensors have multiple on-board sensing 

capabilities but differ in their processing and storage abilities. In our implementation, TelosB motes 

are Type A sensors and Java SunSpots are Type B sensors. All of the sensors were running multiple 

application tasks. The Java SunSpots had three application tasks running concurrently and 

periodically measured the temperature, light and blinking LEDs. The TelosB motes had the 

temperature, light, and humidity tasks running concurrently. Type B sensors send their data in 

SenML [60] format which is a lightweight standard data model and suitable for sending sensor data. 

Type A sensors send their data in a simple string format.  
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The wildfire monitoring semantic application is a RESTful web service that uses the following 

components: 

1) Fire domain ontology:  

We developed a fire domain ontology. Figure 6-3 shows few concepts of the fire domain 

ontology. Fire domain ontology contains the concepts related to the fire event situations, 

states of the sensing events, and location (city, area). Examples of the fire event situations 

include "no fire", "initial fire", and "fire blaze". States of the sensing events might be "low 

temperature" or "high temperature, "low humidity" or "high humidity", etc. 

 

 

 

 

 

 

 

Figure 6-3 Few concepts of the fire domain ontology 

2)    Jena Inference API:  

 We used Jena inference API to reason over the annotated data and infer implicit 

knowledge using a set of rules. We developed several rules for our wildfire monitoring 
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application to provide information to the end-users about the fire events. Two examples of 

the rules are given in the Figure 6-4. 

 

 

 

 

 

 

Figure 6-4 Example of Reasoning rules 

The first rule states that if the sensing temperature is more than 80-degree celsius, then it 

is a high temperature.  The second rule states that if the temperature is high, relative 

humidity is low, and the CO2 level is high then there is a fire blaze situation.  

3) Query Engine:   

SPARQL query engine is used to query the annotated data. An example query is shown in 

the Figure 6-5 to get the event information like fire event's occurrence time, current 

temperature value, location and the status (fire blaze in this case). 

 

 

 

 

 

Figure 6-5 Example of SPARQL query 

[Rule1: (?output ssn:hasValue ?Value) greaterThan(?Value,80),  

  (?output rdf:type base:TemperatureOutput),  

  (?output base:hasUnit base:DegreeCelsius) ->  

  (?output fda:hasTemperatureType: fda:HighTemperature)  

        ] 

[Rule2: (?output fda:hasTemperatureType  fda:HighTemperature), 

 (?output fda:hasHumidityLevel fda:LowHumidity), 

   (?output fda:hasCO2Level fda:HighCO2) -> 

  (? output fda:hasFireSituation fda: fireBlaze) 

       ] 

SELECT  ?Time ?Temperature ?Longitude ?Latitude ?Firesituation 

WHERE { 

 ?SunSpotOutput base:hasSensingTime ?Time. 

 ?SunSpotOutput ssn:hasValue ?Temperature. 

 ?Sunspot base:hasLongitude ?Longitude. 

 ?Sunspot base:hasLatitude ?Latitude. 

 ?SunSpotOutput fda:hasFireSituation ?Firesituation. 

FILTER ( regex(str(?Firesituation), 

 ’http://www.semanticweb.org/WirelessSensor/FireApplication#FireBlaze’, ’i’ ) 

          } 
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The functional entity AA belongs to the annotation overlay and has the following components: 

 Web Server: receives the sensor data 

 JXTA Edge Peer: participates in the overlay and requests the required parts of the base 

ontology 

  RDF Generator: annotates sensor data using the base ontology 

 Web Client: sends annotated data to the semantic wildfire monitoring application 

The functional entity OA in the ontology overlay has the following components: 

 JXTA Rendezvous Peer: stores the base ontology and sends it to the requesting AA. We 

used the JXTA Content Management System (CMS) to advertise the base ontology 

available in each OA and send it to the requesting AAs. 

The proposed architecture is implemented as Infrastructure as a Service (IaaS) which allows us to 

link our solution to the IaaS, PaaS, and SaaS aspects of the cloud computing paradigm. Figure 6-6 

shows the three implementation configurations we used for evaluation purpose. The details of these 

configurations are as follows: 

1) Configuration A 

We used Type A sensors (TelosB) at the infrastructure level. The semantic virtual sensors 

sent their raw data to a GTO node. The GTO node (acting as an AA) downloaded the 

required ontology from an OA and annotated the raw sensor data. Finally, the annotated 

data was sent to the semantic wildfire monitoring application via SA. 

  



 

104 | P a g e  
 

 

Figure 6-6 Implementation architecture of the semantic wildfire monitoring application 



 

105 | P a g e  
 

2) Configuration B 

We used Type B sensors (Java SunSpots). The ontology used to annotate the data was stored 

locally in the Type B sensors as there was no ontology overlay. We implemented the AA in 

the Type B sensors using μJena library [67]. In this way, those AAs did not need any GTO 

node to perform annotation. Each semantic virtual sensor sensed and generated the raw data, 

annotated it and sent it to the semantic wildfire monitoring application via SA. 

3) Configuration C 

We used both Type A and Type B sensors. All of the sensors sent their raw data over the 

internet. For Type A sensors, we used a Contiki border router to allow them directly 

communicate with the wildfire monitoring application. For Type B sensors, we used Java 

Socket-Proxy, which communicates with the wildfire monitoring application on their 

behalf. In this configuration, the wildfire monitoring application performed the annotation 

itself. This allowed us to measure the extra delay introduced by our approach. 

6.1.4 Performance Metrics and Results 

We evaluated the performance of the implemented prototype with the following metrics: 

1) End-to-End Delay (E2ED)  

 E2ED is defined as the duration of sending the raw data by virtual sensors and receiving 

acknowledgment by SA from the wildfire monitoring application. It includes the time taken 

by all the following intermediate steps:  

 A semantic virtual sensor sends raw data to AA  
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 Discover ontology (for configuration A) when ontology is not present in AA  

 Annotation performed by AA  

 AA sends annotated data to the semantic wildfire monitoring application 

 SA receives acknowledgment  from the application  

2) Ontology Download Time (ODT)  

ODT is the duration between the request for an ontology by AA and reception of the required 

ontology from an OA. 

3) Scalability of AAs  

The number of AAs are varied to observe the ontology discovery time and ODT.  

4) Expected Operation Time (EOT) 

 EOT is the duration a sensor can execute tasks (semantic and non-semantic) and its battery 

lifetime.  

The delays were measured in milliseconds. The experiments were repeated 50 times.  

Figure 6-7 shows the individual E2ED of the three configurations. Configuration A had an average 

E2ED of 3566ms. The actual annotation delay was negligible (less than 10ms) since the AA was 

implemented on a laptop computer. The E2ED of configuration B was the highest, at 4575ms. The 

average annotation delay was 525ms since the Java SunSpots were annotating data themselves. We 

found that this longer time was due to the low RAM size, only 1MB. Despite this, SunSpots were 

able to annotate sensor data and run other tasks concurrently without any other issues. The E2ED 

of configuration C was 3187ms. As expected, the wildfire monitoring application was able to 

annotate the sensor data quickly but at the expense of developing the base ontology and then 

implementing it in addition to the application logic. 
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Figure 6-7 End-to-End Delay 

Figure 6-8 shows their average E2ED of all configurations after 50 repetitions. 

 

Figure 6-8 Average End-to-End Delay 
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Figure 6-9 Ontology Download Time 

Figure 6-9 shows the ODT when a particular AA requests for the required part of the base ontology 

and received the corresponding OWL file. The average ODT found from 50 experiments was 94ms 

which was typically found in private LAN settings using JXTA protocol.  

The results in Figure 6-10 show how the OA discovery time increases when the number of AAs 

increases. 

 

Figure 6-10 OA discovery time when AAs increase 
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Since JXTA was used for implementation, it had a direct impact on the scalability. JXTA is known 

to perform poorly when peers in the network increase which is also found in this work. However, 

the increase in AAs does not impact the ODT mainly because OA is already discovered. Here, the 

average ODT was around 100ms, which is almost similar to the one shown in the Figure 6-9. 

 

 

Figure 6-11 Expected operation time of Java SunSpots (always on) 

Figure 6-11 shows the EOT of the Java SunSpots while running a semantic and a non-semantic task 

without using any sleep mechanism. Without considering normal battery discharge, SunSpots lasted 

around 571 and 603 minutes operation time for the semantic and non-semantic tasks, respectively. 

Using 0.8 as a constant multiplier for normal battery discharge reduced the operation time to 456 

and 482 minutes, respectively 

For all the three configurations, we have experienced delay due to the circumstances beyond our 

control. For example, from time to time, GAE would start a new process for the wildfire monitoring 

application and reload it thereby incurring an unnecessary delay. We determined this from the log 

files of our wildfire monitoring application.  
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6.2 Validation of Ontology Provisioning Architecture  

In this section, we discuss how we validate our ontology provisioning architecture. The first section 

states implementation scenario. In the second section, we give a high-level description of the 

prototype. The prototype setup for ontology provisioning center and the implementation 

architecture is presented in the third section. The fourth section describes the performance matrices 

and performance results of the implemented prototype. The fifth section presents the simulation 

setup and performance matrices to validate our ontology deployment protocol. 

6.2.1 Implemented Scenario 

In the data annotation implementation scenario, we assumed that the base was already provisioned. 

Our scope of this implementation is to develop, manage, and deploy base ontology to the WSNs.  

We extended the same implementation scenario discussed in the Section 6.1.1. After deploying the 

sensors, WSN IaaS owner needs to create the corresponding base ontology. In this regard, we built 

a prototype application named ontology provisioning center that allows WSN IaaS owner or any 

novice user to interact with the system and develop a base ontology without knowing any technical 

knowledge or protocol details. Finally, the base ontology is provisioned using the ontology 

deployment protocol to the virtualized WSNs.  

6.2.2 Prototype High-Level Description 

We need a user-friendly application that permits WSN IaaS provider to create, manage, and deploy 

the base ontology to the virtualized WSNs to accelerate the automatic annotation process. In this 

thesis, we have implemented an ontology provisioning center which is a web-based application. 
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This application allows base ontology development and management which can also be used by a 

novice user.   

Figure 6-12 represents the user interface of the ontology provisioning center application. From the 

figure on the left side, there is a list of buttons dedicated to performing some specialized tasks.  

 The button "Add Concept" is used to create new concepts when a new type of sensors is 

deployed in the WSN infrastructure.  

 WSN IaaS provider can add new sensor information by using the button "Add Sensor". 

Existing concepts can be updated or deleted by using the button "Update Concept".  

 The button "Base Concepts" simply shows the current list of the concepts that forms the 

base ontology.  

 Ontology can be developed by using the button "Create Ontology". The button "Ontologies" 

presents a list of already created ontologies by WSN IaaS provider.  

 WSN IaaS provider can view the existing sensors information residing in the WSN 

infrastructure by clicking the button "Sensor Repository".  

 WSN IaaS provider can also download the base ontology to his local machine with the help 

of "Download" button. 



 

112 | P a g e  
 

 

Figure 6-12 User interface for ontology provisioning center application  

6.2.3 Prototype Implementation Architecture 

The ontology provisioning center was developed by using the following software and technologies:  

1) Java was used to develop the whole application using JAX-WS web services API 

2)  MySQL Database was used to store the base ontology concepts 

3) Apache Tomcat web server was used to host the application  
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4) In order to generate the base ontology using the stored concepts in the database, we used 

Protégé 3.8 API which is an open-source Java-based library for OWL and RDFS. 

To implement the annotation and ontology overlay, we used the Java-based JXSE implementation 

of JXTA protocol. The WSN IaaS Manager, OM, and OA were implemented by the JXTA 

Rendezvous Peer functionality to store the base ontology. We used the JXTA Content Management 

System (CMS) to send the base ontology from WIM to OM, then from OM to OA and finally, from 

OA to AA. 

Figure 6-13 shows the implementation architecture for provisioning base ontology. We extended 

the data annotation implementation architecture and added the ontology provisioning center 

application in this new architecture. 

 

Figure 6-13 Prototype implementation architecture for ontology provisioning 
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6.2.4 Performance Metrics and Results 

We used the following two metrics to evaluate the performance of the prototype:  

1) Overlay Creation Delay (OCD)  

OCD is the time to create JXTA overlay from a non-existent state to a ready state when it 

is ready to accept join requests. We measured this delay inside the Java code to ensure that 

the OCD does not include the JVM start-up delay.  

2) Ontology Distribution Time (ODisT)  

ODisT is the combination of the following delays: 

 The delay from ontology provisioning center application to WSN IaaS Manager,  

 The delay from WSN IaaS Manager to OM and Delay from OM to OA. 

All these experiments were repeated 50 times with 95% confidence interval. 

 

Figure 6-14 Overlay creation time 

Figure 6-14 presents the OCD of 50 experiments and its average value. We figured out that the 

average OCD was 1906ms, based on the 50 experiments. It is important to note that the OCD 

depends on the configurations of the machines acting as JXTA peers and is unavoidable. As it was 
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experienced only during the overlay initiation phase, it did not make much impact on the sensor 

data annotation process.  

Figure 6-15 shows the ODisT. Since the ontology provisioning center and WIM were implemented 

on the same laptop, hence the delay between this two entities was minor. For this reason, we did 

not include this delay in the result. The average delay from WIM to OM was ~56ms. The average 

delay from OM to OA was about 54ms. In total, the average ODisT from 50 experiments was 

around 109ms.   

 

Figure 6-15 Base ontology distribution time 

6.2.5 Simulation Setup and Performance Result 

We developed a discrete event simulator [68] to validate our ontology deployment protocol. The 

primary objective was to compare our proposed protocol with the simple flooding protocol. In this 
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section, we first present the simulation setup and then describe the performance metrics. Finally, 

we will show the simulation results. 

6.2.5.1 Simulation Setup 

We developed a discrete event simulator [68] to select the proper protocol for finding OA and OM 

nodes that create the ontology overlay.   

We considered following two protocols to discover the OA and OM nodes:  

 (i) No Delay Simple Flooding 

 (ii) Delayed Aggregation Flooding  

We selected following two types of network topologies: 

  (i) Grid topology  

 (ii) Random topology 

In both protocols, upon receiving a message for the first time, a node updated its cache and sent it 

to its neighbors. If the received message was duplicate, it was discarded. In the No Delay Simple 

Flooding approach, the capable node sent a reply message immediately upon receipt of a discovery 

request message. On the other hand, each node waited for a while and then sent the discovery 

response message to have the opportunity to aggregate responses from neighbor nodes in the 

Delayed Aggregation approach.  

In the Grid topology, we assumed that the nodes were in a fixed distance rectangular area, which 

represented a planned deployment. The positions of the nodes were determined by the Gaussian 

distributions [69] in the Random topology representing the ad hoc deployment of a vast number of 

sensors. 
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6.2.5.2 Performance Matrices and Results 

We evaluated our protocol using the following two performance matrices:  

 Convergence Time (CT)  

Convergence time is the total number of discrete events required to discover all the potential 

candidates that can act as OM or OA. 

 Discover Response Messages (DRM) 

Discover Response Messages (DRM) is the total number of response message received by 

the WIM node from the potential candidate nodes.    

CT and DRM were calculated for both No Delay Simple Flooding and Delayed Aggregation 

Flooding protocols. While calculating CT and DRM, several factors were considered. We varied 

the network size, the number of directly connected neighbors of the nodes by changing the 

connection range R, and the percentage of capable nodes C. We observed how the values of CT and 

DRM changed on these factors. We varied the network size from 1000 to 5000, set the connection 

ranges (R) 18 or 25 to change the directly connected neighbors, and fixed the percentage of capable 

nodes (C) 40% or 60%. In Grid topology, we considered the node distance was 10. The mean and 

standard deviation of the Gaussian distribution were
2

_ sizenetwork  and
4

_ sizenetwork , respectively.  

Figure 6-16 shows the convergence time of the Grid and Gaussian topologies using both the No 

Delay Simple Flooding and Delayed Aggregation approaches. As the figure makes it clear, for both 

topologies, the network convergence time is higher in the Delayed Aggregation approach, where 

each node waits a certain time before sending a response message. In the No Delay Simple Flooding 

approach, the potential nodes instantly reply back with the response message results in less delay 
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compared to the aggregation approach. Since this discovering process will run single time during 

the network initial setup phase, we can ignore that the Delayed Aggregated approach needs more 

time to converge, compared to the other approach, to reduce the number of response messages in 

the network, which will, in turn, resolve the ACK explosion problem. 

 

 

Figure 6-16 Total convergence time in Grid and Gaussian topologies 
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Figure 6-17 shows the total Discovery Response messages in the Grid and Gaussian topologies. 

From the figure, it is clear that the Delayed Aggregation approach has lower Discovery Response 

messages in both topologies. The reason behind the better performance of Delayed Aggregated 

approach is that each node gets the opportunities to aggregate response messages from the huge 

number of neighbors.  

 

3 Figure 6-17 Total response message in Grid & Gaussian topologies 
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6.3 Chapter Summary 

In this chapter, we validated both of the proposed architectures presented in Chapter 4 and 5. In 

order to validate the data annotation architecture, we presented an implementation scenario, the 

scope of the prototype, prototype setup including different configuration settings and the 

performance measurements. After that, we validated the ontology provisioning architecture by 

describing the high-level prototype description, implementation architecture, and performance 

measurements. Finally, we presented the simulation setup and performance measurements to justify 

our proposed ontology deployment protocol.  
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Chapter 7 

7 Conclusion and Future Work 

In this chapter, first we summarize the overall contributions we made and then give some research 

directions for future work. 

7.1 Summary of Contributions  

Wireless sensor networks (WSN) are ubiquities. Virtualization in WSNs allows an efficient 

resource usage through the sharing of the same WSN physical infrastructure by multiple 

applications. Semantic applications are very much momentous to provide situational awareness to 

the end-users. Incorporating semantic applications in the virtualized WSN can potentially play a 

critical role as these applications are situation aware. However, provisioning semantic applications 

in virtualized WSNs remains big challenges. The first challenge is the data collected by the virtual 

sensors need to be annotated semantically in-network so that multiple semantic applications can 

use those data. The pre-requisite of semantic data annotation is to have an ontology to a particular 

area of interest. The second challenge is that the defined ontology needs to be provisioned (i.e., 

developed, deployed, and managed) in the virtualized WSNs to enable the in-network data 

annotation. 

This thesis tackles the semantic application provisioning challenges. At first, we identify the user 

requirements and show that none of the existing research works meet all the user requirements. Our 
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proposed solutions overcome the challenges and satisfy all the user requirements including platform 

and technology independence.  

We identified appropriate user requirements. At first, we define two basic requirements: (a) 

semantic data annotation requirement, and (b) ontology requirement. In the basic requirements, we 

define the motivation for using semantically annotated data and the need for an ontology to perform 

the sensor data annotation. Based on the basic requirements we defined three different sets of 

requirements: general requirements, requirements on the virtualized WSN Infrastructure, and 

requirements for ontology provisioning. We have reviewed the existing related works in our 

research domain. We have classified these related works into two broad categories: sensor data 

annotation framework and ontology provisioning in WSNs. Afterward, We have evaluated these 

related works based on our defined requirements. We found that none of them satisfied all of our 

requirements. 

In order to address the first challenge, we have proposed a data annotation architecture that allows 

in-network, distributed, real-time annotation of sensor data at the WSN IaaS level. We have 

proposed an ontology in sensor domain and referred it as “base ontology”. This ontology contains 

concepts related to the basic sensing phenomena. Moreover, the proposed architecture is built upon 

the notions of overlay and super peer to store the base ontology and annotate data at the IaaS level. 

A proof-of-concept prototype has been implemented based on the wildfire monitoring scenario. 

The wildfire monitoring application uses annotated data receiving from Java SunSpot and 

AdvanticSys kit. We have evaluated this application based on the defined metrics.   
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In order to address the second challenge, we have extended our data annotation architecture for 

provisioning base ontology to the virtualized WSN. The new architecture consists of an ontology 

provisioning center for base ontology provisioning and an ontology deployment protocol for 

interactions between the provisioning center and the WSN. We have implemented a proof-of-

concept prototype along with an ontology provisioning center application for developing and 

deploying the base ontology. Some measurements have been presented to validate the proposed 

architecture. Finally, we performed a simulation to justify our proposed ontology provisioning 

protocol. 

7.2 Future Work 

This section presents some key research issues and some new work items as a future work of this 

thesis.  

 Publication and Discovery of VWSN capabilities 

In this thesis, we have focused on the sensor data annotation and ontology provisioning in the 

virtualized WSNs. It would be interesting to find whether semantic web can help in publishing and 

discovering sensors and their services from a virtualized WSN IaaS or not. This will provide a 

standard way of advertising the capabilities and services of sensor deployments and make it easier 

for interested applications to discover easily sensors according to their requirements.  

 Libraries for semantic annotations in resource constraint environment 

There are limited libraries for semantic annotation that can be used by resource-constraint devices. 

We found an old J2ME-based μJena library.After several modifications, we managed to use the 

library with the Java SunSpots. However, it only annotates data in the N-Triple format whereas 
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standard Apache Jena Framework supports multiple formats. Developing new libraries to allow 

suitable data annotation in resource constraint environment can be an interesting future work.  

 Propose a new PaaS for provisioning WSN applications 

Another interesting research would be the possible integration of our proposed architecture with 

PaaS for the rapid provisioning of WSN applications. As a future work, we plan to design and 

implement a new PaaS, which will raise the level of abstraction of the virtualized WSN and include 

specialized features for the provisioning of semantic applications. 

 Algorithmic Extension  

We can also evaluate the performance of our proposed architecture by comparing the used GA 

algorithm with other existing algorithms. We can adopt a Round-Robin algorithm for scheduling 

the role of OM and OA nodes among the selected capable nodes to consider the availability and 

energy efficiency of the sensors. 
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