186 research outputs found

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Integrating Natural Language Processing (NLP) and Language Resources Using Linked Data

    Get PDF
    This thesis is a compendium of scientific works and engineering specifications that have been contributed to a large community of stakeholders to be copied, adapted, mixed, built upon and exploited in any way possible to achieve a common goal: Integrating Natural Language Processing (NLP) and Language Resources Using Linked Data The explosion of information technology in the last two decades has led to a substantial growth in quantity, diversity and complexity of web-accessible linguistic data. These resources become even more useful when linked with each other and the last few years have seen the emergence of numerous approaches in various disciplines concerned with linguistic resources and NLP tools. It is the challenge of our time to store, interlink and exploit this wealth of data accumulated in more than half a century of computational linguistics, of empirical, corpus-based study of language, and of computational lexicography in all its heterogeneity. The vision of the Giant Global Graph (GGG) was conceived by Tim Berners-Lee aiming at connecting all data on the Web and allowing to discover new relations between this openly-accessible data. This vision has been pursued by the Linked Open Data (LOD) community, where the cloud of published datasets comprises 295 data repositories and more than 30 billion RDF triples (as of September 2011). RDF is based on globally unique and accessible URIs and it was specifically designed to establish links between such URIs (or resources). This is captured in the Linked Data paradigm that postulates four rules: (1) Referred entities should be designated by URIs, (2) these URIs should be resolvable over HTTP, (3) data should be represented by means of standards such as RDF, (4) and a resource should include links to other resources. Although it is difficult to precisely identify the reasons for the success of the LOD effort, advocates generally argue that open licenses as well as open access are key enablers for the growth of such a network as they provide a strong incentive for collaboration and contribution by third parties. In his keynote at BNCOD 2011, Chris Bizer argued that with RDF the overall data integration effort can be “split between data publishers, third parties, and the data consumer”, a claim that can be substantiated by observing the evolution of many large data sets constituting the LOD cloud. As written in the acknowledgement section, parts of this thesis has received numerous feedback from other scientists, practitioners and industry in many different ways. The main contributions of this thesis are summarized here: Part I – Introduction and Background. During his keynote at the Language Resource and Evaluation Conference in 2012, Sören Auer stressed the decentralized, collaborative, interlinked and interoperable nature of the Web of Data. The keynote provides strong evidence that Semantic Web technologies such as Linked Data are on its way to become main stream for the representation of language resources. The jointly written companion publication for the keynote was later extended as a book chapter in The People’s Web Meets NLP and serves as the basis for “Introduction” and “Background”, outlining some stages of the Linked Data publication and refinement chain. Both chapters stress the importance of open licenses and open access as an enabler for collaboration, the ability to interlink data on the Web as a key feature of RDF as well as provide a discussion about scalability issues and decentralization. Furthermore, we elaborate on how conceptual interoperability can be achieved by (1) re-using vocabularies, (2) agile ontology development, (3) meetings to refine and adapt ontologies and (4) tool support to enrich ontologies and match schemata. Part II - Language Resources as Linked Data. “Linked Data in Linguistics” and “NLP & DBpedia, an Upward Knowledge Acquisition Spiral” summarize the results of the Linked Data in Linguistics (LDL) Workshop in 2012 and the NLP & DBpedia Workshop in 2013 and give a preview of the MLOD special issue. In total, five proceedings – three published at CEUR (OKCon 2011, WoLE 2012, NLP & DBpedia 2013), one Springer book (Linked Data in Linguistics, LDL 2012) and one journal special issue (Multilingual Linked Open Data, MLOD to appear) – have been (co-)edited to create incentives for scientists to convert and publish Linked Data and thus to contribute open and/or linguistic data to the LOD cloud. Based on the disseminated call for papers, 152 authors contributed one or more accepted submissions to our venues and 120 reviewers were involved in peer-reviewing. “DBpedia as a Multilingual Language Resource” and “Leveraging the Crowdsourcing of Lexical Resources for Bootstrapping a Linguistic Linked Data Cloud” contain this thesis’ contribution to the DBpedia Project in order to further increase the size and inter-linkage of the LOD Cloud with lexical-semantic resources. Our contribution comprises extracted data from Wiktionary (an online, collaborative dictionary similar to Wikipedia) in more than four languages (now six) as well as language-specific versions of DBpedia, including a quality assessment of inter-language links between Wikipedia editions and internationalized content negotiation rules for Linked Data. In particular the work described in created the foundation for a DBpedia Internationalisation Committee with members from over 15 different languages with the common goal to push DBpedia as a free and open multilingual language resource. Part III - The NLP Interchange Format (NIF). “NIF 2.0 Core Specification”, “NIF 2.0 Resources and Architecture” and “Evaluation and Related Work” constitute one of the main contribution of this thesis. The NLP Interchange Format (NIF) is an RDF/OWL-based format that aims to achieve interoperability between Natural Language Processing (NLP) tools, language resources and annotations. The core specification is included in and describes which URI schemes and RDF vocabularies must be used for (parts of) natural language texts and annotations in order to create an RDF/OWL-based interoperability layer with NIF built upon Unicode Code Points in Normal Form C. In , classes and properties of the NIF Core Ontology are described to formally define the relations between text, substrings and their URI schemes. contains the evaluation of NIF. In a questionnaire, we asked questions to 13 developers using NIF. UIMA, GATE and Stanbol are extensible NLP frameworks and NIF was not yet able to provide off-the-shelf NLP domain ontologies for all possible domains, but only for the plugins used in this study. After inspecting the software, the developers agreed however that NIF is adequate enough to provide a generic RDF output based on NIF using literal objects for annotations. All developers were able to map the internal data structure to NIF URIs to serialize RDF output (Adequacy). The development effort in hours (ranging between 3 and 40 hours) as well as the number of code lines (ranging between 110 and 445) suggest, that the implementation of NIF wrappers is easy and fast for an average developer. Furthermore the evaluation contains a comparison to other formats and an evaluation of the available URI schemes for web annotation. In order to collect input from the wide group of stakeholders, a total of 16 presentations were given with extensive discussions and feedback, which has lead to a constant improvement of NIF from 2010 until 2013. After the release of NIF (Version 1.0) in November 2011, a total of 32 vocabulary employments and implementations for different NLP tools and converters were reported (8 by the (co-)authors, including Wiki-link corpus, 13 by people participating in our survey and 11 more, of which we have heard). Several roll-out meetings and tutorials were held (e.g. in Leipzig and Prague in 2013) and are planned (e.g. at LREC 2014). Part IV - The NLP Interchange Format in Use. “Use Cases and Applications for NIF” and “Publication of Corpora using NIF” describe 8 concrete instances where NIF has been successfully used. One major contribution in is the usage of NIF as the recommended RDF mapping in the Internationalization Tag Set (ITS) 2.0 W3C standard and the conversion algorithms from ITS to NIF and back. One outcome of the discussions in the standardization meetings and telephone conferences for ITS 2.0 resulted in the conclusion there was no alternative RDF format or vocabulary other than NIF with the required features to fulfill the working group charter. Five further uses of NIF are described for the Ontology of Linguistic Annotations (OLiA), the RDFaCE tool, the Tiger Corpus Navigator, the OntosFeeder and visualisations of NIF using the RelFinder tool. These 8 instances provide an implemented proof-of-concept of the features of NIF. starts with describing the conversion and hosting of the huge Google Wikilinks corpus with 40 million annotations for 3 million web sites. The resulting RDF dump contains 477 million triples in a 5.6 GB compressed dump file in turtle syntax. describes how NIF can be used to publish extracted facts from news feeds in the RDFLiveNews tool as Linked Data. Part V - Conclusions. provides lessons learned for NIF, conclusions and an outlook on future work. Most of the contributions are already summarized above. One particular aspect worth mentioning is the increasing number of NIF-formated corpora for Named Entity Recognition (NER) that have come into existence after the publication of the main NIF paper Integrating NLP using Linked Data at ISWC 2013. These include the corpora converted by Steinmetz, Knuth and Sack for the NLP & DBpedia workshop and an OpenNLP-based CoNLL converter by Brümmer. Furthermore, we are aware of three LREC 2014 submissions that leverage NIF: NIF4OGGD - NLP Interchange Format for Open German Governmental Data, N^3 – A Collection of Datasets for Named Entity Recognition and Disambiguation in the NLP Interchange Format and Global Intelligent Content: Active Curation of Language Resources using Linked Data as well as an early implementation of a GATE-based NER/NEL evaluation framework by Dojchinovski and Kliegr. Further funding for the maintenance, interlinking and publication of Linguistic Linked Data as well as support and improvements of NIF is available via the expiring LOD2 EU project, as well as the CSA EU project called LIDER, which started in November 2013. Based on the evidence of successful adoption presented in this thesis, we can expect a decent to high chance of reaching critical mass of Linked Data technology as well as the NIF standard in the field of Natural Language Processing and Language Resources.:CONTENTS i introduction and background 1 1 introduction 3 1.1 Natural Language Processing . . . . . . . . . . . . . . . 3 1.2 Open licenses, open access and collaboration . . . . . . 5 1.3 Linked Data in Linguistics . . . . . . . . . . . . . . . . . 6 1.4 NLP for and by the Semantic Web – the NLP Inter- change Format (NIF) . . . . . . . . . . . . . . . . . . . . 8 1.5 Requirements for NLP Integration . . . . . . . . . . . . 10 1.6 Overview and Contributions . . . . . . . . . . . . . . . 11 2 background 15 2.1 The Working Group on Open Data in Linguistics (OWLG) 15 2.1.1 The Open Knowledge Foundation . . . . . . . . 15 2.1.2 Goals of the Open Linguistics Working Group . 16 2.1.3 Open linguistics resources, problems and chal- lenges . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Recent activities and on-going developments . . 18 2.2 Technological Background . . . . . . . . . . . . . . . . . 18 2.3 RDF as a data model . . . . . . . . . . . . . . . . . . . . 21 2.4 Performance and scalability . . . . . . . . . . . . . . . . 22 2.5 Conceptual interoperability . . . . . . . . . . . . . . . . 22 ii language resources as linked data 25 3 linked data in linguistics 27 3.1 Lexical Resources . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Linguistic Corpora . . . . . . . . . . . . . . . . . . . . . 30 3.3 Linguistic Knowledgebases . . . . . . . . . . . . . . . . 31 3.4 Towards a Linguistic Linked Open Data Cloud . . . . . 32 3.5 State of the Linguistic Linked Open Data Cloud in 2012 33 3.6 Querying linked resources in the LLOD . . . . . . . . . 36 3.6.1 Enriching metadata repositories with linguistic features (Glottolog → OLiA) . . . . . . . . . . . 36 3.6.2 Enriching lexical-semantic resources with lin- guistic information (DBpedia (→ POWLA) → OLiA) . . . . . . . . . . . . . . . . . . . . . . . . 38 4 DBpedia as a multilingual language resource: the case of the greek dbpedia edition. 39 4.1 Current state of the internationalization effort . . . . . 40 4.2 Language-specific design of DBpedia resource identifiers 41 4.3 Inter-DBpedia linking . . . . . . . . . . . . . . . . . . . 42 4.4 Outlook on DBpedia Internationalization . . . . . . . . 44 5 leveraging the crowdsourcing of lexical resources for bootstrapping a linguistic linked data cloud 47 5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Problem Description . . . . . . . . . . . . . . . . . . . . 50 5.2.1 Processing Wiki Syntax . . . . . . . . . . . . . . 50 5.2.2 Wiktionary . . . . . . . . . . . . . . . . . . . . . . 52 5.2.3 Wiki-scale Data Extraction . . . . . . . . . . . . . 53 5.3 Design and Implementation . . . . . . . . . . . . . . . . 54 5.3.1 Extraction Templates . . . . . . . . . . . . . . . . 56 5.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . 56 5.3.3 Language Mapping . . . . . . . . . . . . . . . . . 58 5.3.4 Schema Mediation by Annotation with lemon . 58 5.4 Resulting Data . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . 60 5.6 Discussion and Future Work . . . . . . . . . . . . . . . 60 5.6.1 Next Steps . . . . . . . . . . . . . . . . . . . . . . 61 5.6.2 Open Research Questions . . . . . . . . . . . . . 61 6 nlp & dbpedia, an upward knowledge acquisition spiral 63 6.1 Knowledge acquisition and structuring . . . . . . . . . 64 6.2 Representation of knowledge . . . . . . . . . . . . . . . 65 6.3 NLP tasks and applications . . . . . . . . . . . . . . . . 65 6.3.1 Named Entity Recognition . . . . . . . . . . . . 66 6.3.2 Relation extraction . . . . . . . . . . . . . . . . . 67 6.3.3 Question Answering over Linked Data . . . . . 67 6.4 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.1 Gold and silver standards . . . . . . . . . . . . . 69 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 iii the nlp interchange format (nif) 73 7 nif 2.0 core specification 75 7.1 Conformance checklist . . . . . . . . . . . . . . . . . . . 75 7.2 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2.1 Definition of Strings . . . . . . . . . . . . . . . . 78 7.2.2 Representation of Document Content with the nif:Context Class . . . . . . . . . . . . . . . . . . 80 7.3 Extension of NIF . . . . . . . . . . . . . . . . . . . . . . 82 7.3.1 Part of Speech Tagging with OLiA . . . . . . . . 83 7.3.2 Named Entity Recognition with ITS 2.0, DBpe- dia and NERD . . . . . . . . . . . . . . . . . . . 84 7.3.3 lemon and Wiktionary2RDF . . . . . . . . . . . 86 8 nif 2.0 resources and architecture 89 8.1 NIF Core Ontology . . . . . . . . . . . . . . . . . . . . . 89 8.1.1 Logical Modules . . . . . . . . . . . . . . . . . . 90 8.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2.1 Access via REST Services . . . . . . . . . . . . . 92 8.2.2 NIF Combinator Demo . . . . . . . . . . . . . . 92 8.3 Granularity Profiles . . . . . . . . . . . . . . . . . . . . . 93 8.4 Further URI Schemes for NIF . . . . . . . . . . . . . . . 95 8.4.1 Context-Hash-based URIs . . . . . . . . . . . . . 99 9 evaluation and related work 101 9.1 Questionnaire and Developers Study for NIF 1.0 . . . . 101 9.2 Qualitative Comparison with other Frameworks and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.3 URI Stability Evaluation . . . . . . . . . . . . . . . . . . 103 9.4 Related URI Schemes . . . . . . . . . . . . . . . . . . . . 104 iv the nlp interchange format in use 109 10 use cases and applications for nif 111 10.1 Internationalization Tag Set 2.0 . . . . . . . . . . . . . . 111 10.1.1 ITS2NIF and NIF2ITS conversion . . . . . . . . . 112 10.2 OLiA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.3 RDFaCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.4 Tiger Corpus Navigator . . . . . . . . . . . . . . . . . . 121 10.4.1 Tools and Resources . . . . . . . . . . . . . . . . 122 10.4.2 NLP2RDF in 2010 . . . . . . . . . . . . . . . . . . 123 10.4.3 Linguistic Ontologies . . . . . . . . . . . . . . . . 124 10.4.4 Implementation . . . . . . . . . . . . . . . . . . . 125 10.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . 126 10.4.6 Related Work and Outlook . . . . . . . . . . . . 129 10.5 OntosFeeder – a Versatile Semantic Context Provider for Web Content Authoring . . . . . . . . . . . . . . . . 131 10.5.1 Feature Description and User Interface Walk- through . . . . . . . . . . . . . . . . . . . . . . . 132 10.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . 134 10.5.3 Embedding Metadata . . . . . . . . . . . . . . . 135 10.5.4 Related Work and Summary . . . . . . . . . . . 135 10.6 RelFinder: Revealing Relationships in RDF Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.6.1 Implementation . . . . . . . . . . . . . . . . . . . 137 10.6.2 Disambiguation . . . . . . . . . . . . . . . . . . . 138 10.6.3 Searching for Relationships . . . . . . . . . . . . 139 10.6.4 Graph Visualization . . . . . . . . . . . . . . . . 140 10.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 141 11 publication of corpora using nif 143 11.1 Wikilinks Corpus . . . . . . . . . . . . . . . . . . . . . . 143 11.1.1 Description of the corpus . . . . . . . . . . . . . 143 11.1.2 Quantitative Analysis with Google Wikilinks Cor- pus . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.2 RDFLiveNews . . . . . . . . . . . . . . . . . . . . . . . . 144 11.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . 145 11.2.2 Mapping to RDF and Publication on the Web of Data . . . . . . . . . . . . . . . . . . . . . . . . . 146 v conclusions 149 12 lessons learned, conclusions and future work 151 12.1 Lessons Learned for NIF . . . . . . . . . . . . . . . . . . 151 12.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Analyzing Authentic Texts for Language Learning: Web-based Technology for Input Enrichment and Question Generation

    Get PDF
    Acquisition of a language largely depends on the learner's exposure to and interaction with it. Our research goal is to explore and implement automatic techniques that help create a richer grammatical intake from a given text input and engage learners in making form-meaning connections during reading. A starting point for addressing this issue is the automatic input enrichment method, which aims to ensure that a target structure is richly represented in a given text. We demonstrate the high performance of our rule-based algorithm, which is able to detect 87 linguistic forms contained in an official curriculum for the English language. Showcasing the algorithm's capability to differentiate between the various functions of the same linguistic form, we establish the task of tense sense disambiguation, which we approach by leveraging machine learning and rule-based methods. Using the aforementioned technology, we develop an online information retrieval system FLAIR that prioritizes texts with a rich representation of selected linguistic forms. It is implemented as a web search engine for language teachers and learners and provides effective input enrichment in a real-life teaching setting. It can also serve as a foundation for empirical research on input enrichment and input enhancement. The input enrichment component of the FLAIR system is evaluated in a web-based study that demonstrates that English teachers prefer automatic input enrichment to standard web search when selecting reading material for class. We then explore automatic question generation for facilitating and testing reading comprehension as well as linguistic knowledge. We give an overview of the types of questions that are usually asked and can be automatically generated from text in the language learning context. We argue that questions can facilitate the acquisition of different linguistic forms by providing functionally driven input enhancement, i.e., by ensuring that the learner notices and processes the form. The generation of well-established and novel types of questions is discussed and examples are provided; moreover, the results from a crowdsourcing study show that automatically generated questions are comparable to human-written ones

    Attaching Translations to Proper Lexical Senses in DBnary

    No full text
    International audienceThe DBnary project aims at providing high quality Lexical Linked Data extracted from different Wiktionary language editions. Data from 10 different languages is currently extracted for a total of over 3.16M translation links that connect lexical entries from the 10 extracted languages, to entries in more than one thousand languages. In Wiktionary, glosses are often associated with translations to help users understand to what sense they refer to, whether through a textual definition or a target sense number. In this article we aim at the extraction of as much of this information as possible and then the disambiguation of the corresponding translations for all languages available. We use an adaptation of various textual and semantic similarity techniques based on partial or fuzzy gloss overlaps to disambiguate the translation relations (To account for the lack of normalization, e.g. lemmatization and PoS tagging) and then extract some of the sense number information present to build a gold standard so as to evaluate our disambiguation as well as tune and optimize the parameters of the similarity measures. We obtain F-measures of the order of 80\% (on par with similar work on English only), across the three languages where we could generate a gold standard (French, Portuguese, Finnish) and show that most of the disambiguation errors are due to inconsistencies in Wiktionary itself that cannot be detected at the generation of DBnary (shifted sense numbers, inconsistent glosses, etc.)

    Semantic Interpretation of User Queries for Question Answering on Interlinked Data

    Get PDF
    The Web of Data contains a wealth of knowledge belonging to a large number of domains. Retrieving data from such precious interlinked knowledge bases is an issue. By taking the structure of data into account, it is expected that upcoming generation of search engines is approaching to question answering systems, which directly answer user questions. But developing a question answering over these interlinked data sources is still challenging because of two inherent characteristics: First, different datasets employ heterogeneous schemas and each one may only contain a part of the answer for a certain question. Second, constructing a federated formal query across different datasets requires exploiting links between these datasets on both the schema and instance levels. In this respect, several challenges such as resource disambiguation, vocabulary mismatch, inference, link traversal are raised. In this dissertation, we address these challenges in order to build a question answering system for Linked Data. We present our question answering system Sina, which transforms user-supplied queries (i.e. either natural language queries or keyword queries) into conjunctive SPARQL queries over a set of interlinked data sources. The contributions of this work are as follows: 1. A novel approach for determining the most suitable resources for a user-supplied query from different datasets (disambiguation approach). We employed a Hidden Markov Model, whose parameters were bootstrapped with different distribution functions. 2. A novel method for constructing federated formal queries using the disambiguated resources and leveraging the linking structure of the underlying datasets. This approach essentially relies on a combination of domain and range inference as well as a link traversal method for constructing a connected graph, which ultimately renders a corresponding SPARQL query. 3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts, First, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Data. We evaluate the effectiveness of each feature individually as well as their combinations, employing Support Vector Machines and Decision Trees. Second, we propose a novel method for automatic query expansion, which employs a Hidden Markov Model to obtain the optimal tuples of derived words. 4. We provide two benchmarks for two different tasks to the community of question answering systems. The first one is used for the task of question answering on interlinked datasets (i.e. federated queries over Linked Data). The second one is used for the vocabulary mismatch task. We evaluate the accuracy of our approach using measures like mean reciprocal rank, precision, recall, and F-measure on three interlinked life-science datasets as well as DBpedia. The results of our accuracy evaluation demonstrate the effectiveness of our approach. Moreover, we study the runtime of our approach in its sequential as well as parallel implementations and draw conclusions on the scalability of our approach on Linked Data

    Scalable and Quality-Aware Training Data Acquisition for Conversational Cognitive Services

    Full text link
    Dialog Systems (or simply bots) have recently become a popular human-computer interface for performing user's tasks, by invoking the appropriate back-end APIs (Application Programming Interfaces) based on the user's request in natural language. Building task-oriented bots, which aim at performing real-world tasks (e.g., booking flights), has become feasible with the continuous advances in Natural Language Processing (NLP), Artificial Intelligence (AI), and the countless number of devices which allow third-party software systems to invoke their back-end APIs. Nonetheless, bot development technologies are still in their preliminary stages, with several unsolved theoretical and technical challenges stemming from the ambiguous nature of human languages. Given the richness of natural language, supervised models require a large number of user utterances paired with their corresponding tasks -- called intents. To build a bot, developers need to manually translate APIs to utterances (called canonical utterances) and paraphrase them to obtain a diverse set of utterances. Crowdsourcing has been widely used to obtain such datasets, by paraphrasing the initial utterances generated by the bot developers for each task. However, there are several unsolved issues. First, generating canonical utterances requires manual efforts, making bot development both expensive and hard to scale. Second, since crowd workers may be anonymous and are asked to provide open-ended text (paraphrases), crowdsourced paraphrases may be noisy and incorrect (not conveying the same intent as the given task). This thesis first surveys the state-of-the-art approaches for collecting large training utterances for task-oriented bots. Next, we conduct an empirical study to identify quality issues of crowdsourced utterances (e.g., grammatical errors, semantic completeness). Moreover, we propose novel approaches for identifying unqualified crowd workers and eliminating malicious workers from crowdsourcing tasks. Particularly, we propose a novel technique to promote the diversity of crowdsourced paraphrases by dynamically generating word suggestions while crowd workers are paraphrasing a particular utterance. Moreover, we propose a novel technique to automatically translate APIs to canonical utterances. Finally, we present our platform to automatically generate bots out of API specifications. We also conduct thorough experiments to validate the proposed techniques and models

    Final FLaReNet deliverable: Language Resources for the Future - The Future of Language Resources

    Get PDF
    Language Technologies (LT), together with their backbone, Language Resources (LR), provide an essential support to the challenge of Multilingualism and ICT of the future. The main task of language technologies is to bridge language barriers and to help creating a new environment where information flows smoothly across frontiers and languages, no matter the country, and the language, of origin. To achieve this goal, all players involved need to act as a community able to join forces on a set of shared priorities. However, until now the field of Language Resources and Technology has long suffered from an excess of individuality and fragmentation, with a lack of coherence concerning the priorities for the field, the direction to move, not to mention a common timeframe. The context encountered by the FLaReNet project was thus represented by an active field needing a coherence that can only be given by sharing common priorities and endeavours. FLaReNet has contributed to the creation of this coherence by gathering a wide community of experts and making them participate in the definition of an exhaustive set of recommendations

    Automatic text filtering using limited supervision learning for epidemic intelligence

    Get PDF
    [no abstract
    • …
    corecore