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ZUSAMMENFASSUNG

Für viele Anwendungen hat das Web die Art, wie wir Information sammeln,
prozessieren und nutzen, grundlegend verändert. Eine besondere Rolle spielt
diese Datenerfassung für ”Epidemic Intelligence (EI)”. EI benötigt die au-
tomatische Filterung von Nachrichten und Meldungen im Zusammenhang mit
Erkrankungen, dies wird ermöglicht über Verfahren des ”Supervised Learn-
ings”. Allerdings müssen den ”Supervised Learners” ausreichend markiertes
Trainingsmaterial zur Verfügung stehen um gute Resultate zu erzielen. Demge-
genüber stehen der hohe Zeitbedarf und die Kosten für die Bereitstellung und
Pflege eines geeigneten grovolumigen Datensatzes. Dies ist auch bekannt als
das ”Labeling Bottleneck Problem”.

Diese Arbeit beschäftigt sich mit der Lösung des Labeling Bottleneck Prob-
lems für die Anwendunge in EI durch ”Limited Supervision” (eingeschränkte
berwachung?), d.h. durch die Benutzung alternative Methoden zur Meldungs-
filterung um den Bearbeiter zu entlasten. Hierzu wurden die folgenden drei
Verfahren entwickelt: a) ”semi-supervised” Lernen mit ”schwachen” Annota-
tionen und corpora-übergreifendem Generationsprozess b) aktives Lernen mit
Label-Auflösung c) überwachungsfreies Lernen mit Erkrankungsmeldung Clus-
tern. Für jede dieser Herangehensweisen wurde zusätzlich die Effektivität aus
der Sicht eines Domänenexperten gemessen, was bei vielen der gegenwärtig
verfügbaren Systemen vernachlässigt wurde.

Erstens, beim Semi-Supervised Lernen wird die Frage nach der Ermit-
tlung von hochwertigen Startpunkten für die Initialisierung eines Klassifizieres
behandelt. Das dazu entwickelte ”xLabel”-Verfahren benötigt 1) nur einen
kurzen Text und 2) nur eine kleine Zahl von ”weak labels” zur vollständigen
Initialisierung. Diese ”weak labels” wurden dabei automatisch aus zuverlässigen
und leicht verfügbaren zusätzlichen Corpora generieren.

Als zweites wurde ”Active Learning (AL)” verwendet, eine Methode zum
Erzeugen eines lernfähigen Classifiers, um die Kosten und den Aufwand der
manuellen Annotation der Trainingsdaten zu reduzieren. Die Qualität von
Clusteringverfahren wie sie bei AL verwendet werden leidet wenn die Annota-
tionen des Classifiers nicht abgeglichen sind mit den Active Learner Clustern
(”label-cluster alignment problem”), oder der Lerner nicht den gegenseitige
Ausschlu zwischen relevanten und irrelevanten Zielkonzepten behandeln kann.
Für diese Probleme zeigt diese Arbeit mögliche Lösungen auf, die Zuordnung
der ”wahren” Labels für ungeklärte Instanzen durch einen semi kontrollierten
Clusteringalgorithmus basierend auf ”Partially Labeled Dirichlet Allocation
(PLDA)”. PLDA erlaubt nicht nur das Clustering und die Labels miteinander
anzugleichen, sondern verfügt zusätzlich einen Inferenzmechanismus für die



Label wodurch eine Vielzahl der Labels automatisch aufgelöst werden können,
ohne menschliches Zutun. Darüberhinaus kann durch das Ausnutzen der zu-
grundeliegenden Topicmodells des PLDA können überlappende Kontexte in
den Seeds eliminiert werden und der Klassifier neu angelernt werden auf einen
Seedset mit gröerer Dichotomie (Gegensätzlichkeit).

Letztendlich, ”unsupervised Learning” mit Clustern kann auch als die
Lösung für das ”Labeling Bottleneck Problem”, bezogen auf das Filtern der
Texte, dienen. Eines der Hauptprobleme mit dem ungesteuerten Clustern ist
das die Erkennung von Erkrankungsmeldungen durch generative Modelle zu
sehr komplexen Lösungen führen. Durch die Anzahl der potentiellen Klus-
ter (oder latenten Topics) stellt diese Komplexität eine signifikante Heraus-
forderung für den Epidemiologen dar. Darüberhinaus mu jedesmal aufs neue
die Signifikanz und Bedeutung eines entstehenden Musters bewertet werden,
denn diese Muster sind nicht a-priori annotiert. Damit solche automatischen
Methoden gute Resultate für den menschlichen Benutzer liefern, wurde eine
benutzerbezogenes Verfahren gewählt welches sich auf zwei Punkte konzentri-
ert: eine Bewertung der Cluster-Qualität und der Art ihrer Darstellung, beides
der Schwerpunkt dieser Arbeit.

Letztendlich ist eine Schlufolgerung dieser Arbeit, da die Verwendung von
Techniken mit ”limited Supervision” (eingeschränkter Kontrolle) ein weiterer
Schritt in Richtung besserer Unterstützung der Benutzer des World of Web
Science ist, nicht nur für EI, sondern auch für andere Domänen.
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ABSTRACT

The Web has redefined the way we gather, process, and use information;
and is capable of supporting a wide range of intelligence gathering tasks, in
many domains. One such domain is Epidemic Intelligence (EI). EI requires
techniques for automatically filtering disease reporting mentions, and is car-
ried out by using supervised learning. One of the disadvantages of supervised
learners is that they only do well, if given enough labeled training data. How-
ever, acquiring large volumes of data to build and maintain a classifier is an
expensive and time-consuming process. This is known as the label bottleneck
problem.

In this thesis, we tackle the label bottleneck problem for the domain of EI,
using limited supervision approaches to learning - i.e, alternative ways of
filtering disease reporting mentions that mitigate and/or avoid undue burden
on an annotator. We develop three approaches that use limited supervision,
namely: (1) semi-supervised learning with weak labeling and cross-corpora
bootstrapping; 2) active learning with label resolution, and 3) unsupervised
learning of disease reporting clusters. For each approach, we additionally
measure its effectiveness from a domain expert’s point of view, which is dis-
proportionately, overlooked in state-of-the-art systems.

First, in Semi-supervised learning we tackle the question of obtaining qual-
ity seeds for bootstrapping a classifier. In our xLabel approach,we do so using
semi-supervised classification that: 1) utilizes short text; and 2) is completely
initialized with small amounts of weak labels that have been automatically
acquired from highly reliable, and widely available, auxiliary corpora.

Second, Active learning (AL) is a methodology for building a trainable
classifier that attempts to reduce the cost, or burden of manually labeling
training data. Clustering approaches commonly used in AL suffers when: the
classifier labels themselves are not aligned with the active learner clusters
(label-cluster alignment problem); or when the learner is unable to handle the
mutual exclusion between relevant and irrelevant target concepts. In our work,
we tackle these problems, and facilitate the assessment of a true label for a
dubious instance with a semisupervised clustering based on a Partially Labeled
Dirichlet Allocation. PLDA not only allows us to align clusters with the labels,
but also affords an inference mechanism with respect to the labels, so that we
are able to automatically resolve many labels, without human intervention.
Moreover, by exploiting the background topic model capabilities of a PLDA,
we are also able to eliminate the overlapping context among the seeds in a
principled way; and retrain a classifier with a more dichotomous seed set.

Finally, unsupervised learning, with clusters can also be considered as a



means of tackling the label bottleneck problem with respect to text filtering.
One of the main problems with unsupervised clustering is that detecting dis-
ease reporting mentions using generative models can lead to very complex
results. This complexity poses a significant challenge for an epidemic investi-
gator, given the number of potential clusters (or latent topics). Additionally,
since the pattern is not labeled apriori, the significance and meaning of the pat-
tern must be interpreted. In order to ensure that the unsupervised methods
produce results that are of value for the human users, we consider a user-
centric approach which emphasizes both: an assessment of the cluster quality,
and their representations.

Overall the implication for our work is that adopting limited supervision
techniques, not only for EI, but also other domains as well, will help bring us
another step closer to better supporting the information needs of users in the
world of Web Science.



8

KEYWORDS

Semi-Supervised Learning, Active Learning, Unsupervised Learning, User
Assessment



FOREWORD

For Ab́ırȯla
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Introduction

1.1 Motivation: Epidemic Intelligence Scenario

Today’s Web proves to be one of the largest repositories of available information for
networked computer users. To better understand the potential of this phenomena,
Web Science, has evolved as a multidisciplinary area of research, devoted to the
socio-technical aspects of human and computer information processing. Individuals
influence, and are influenced by information that is available on the Web. The Web
has redefined the way we gather, process, and use information; and is capable of
supporting a wide range of intelligence gathering tasks, in many domains. One such
domain is Epidemic Intelligence (EI). In EI, a number of disciplines come together to
help health officials monitor potential public health threats, by harnessing information
about disease reporting mentions from unstructured textual on the web [PCKC06].

An overview of the EI pipeline used in the M-eco system is shown in Figure 1.1).1

The data processing pipeline of the system is triggered by the arrival of different
types of textual documents, such as: RSS news feeds, blogs, and microblogs from
a Media Stream. We operate the system in near-real time, in which EI domain
experts can expect to get current and relevant information at rate of four to six
times a day. Importantly, not all documents are relevant to EI experts: thus, the
first task in realizing an EI system, is in filtering out irrelevant textual mentions
from the documents in the stream. Moreover, not all portions of a documents are of
interest to the experts. Therefore, depending upon the type of text, we seek to detect
the relevant portions of segmented documents (at the sentence level), and use these
portions for: i) downstream analysis; and ii) presentation to the expert during there
investigations. Taken together, our document collection consists of short (or sparse)
text, ranging in length from a dozen words to a few sentences [PNH08].

Filtering of documents (or document segments) is accomplished by relying upon
supervised classifiers [Zha08, NSC10a, vEHV+10a]. A supervised classifier learns to
model the relationship between an observed variable (instance) and a target variable

1This EI system was development in the context of an European Union funded project, M-Eco
http://www.meco-project.eu/, which was principally envisioned by this author.
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Figure 1.1 Overview of a M-eco Epidemic Intelligence System illustrating
disease reporting messaging filtering for micro-blog text (or tweets).

(label or relevance judgment). The learned model is then used to perform inferencing,
i.e., predict whether an unseen, future instance is a relevant disease reporting mention,
or not.

We define a disease reporting mention with respect to the presence of selected
entities types, and the roles they have within a specific scope, or segment, of a docu-
ment. The predefined EI entity types of interest are: Time for temporal expressions;
Medical Condition for infectious diseases, symptoms or their pathogens; Location for
a city, state, or country; and Victim for an organism known to be affected by the
medical condition. The EI system does not strive to detect all types of diseases, but
only infectious, or communicable ones. For this purpose, a list of terms consisting of
infectious diseases, their synonyms, pathogens and symptoms, which are provided by
the domain experts, is used. All documents are annotated with these types of entities,
if they are present within the document, and are used by the supervised classifier as
features for representing the document’s content.

The presence of EI entities types is a useful criteria for determining the relevance
of a document for the task of EI. However, the presence of these entities alone is
not be enough to help the classifier discriminate between relevant and non-relevant
documents, thus depending upon the sparsity of the document, semantic feature
types, which help to discriminate the role of the entities, are often used [Zha08,
NSC10b, yZhL09, CCD09, CDKC09]. By eliminating those documents (document
segments) that are unlikely to be relevant for the task, the supervised classifier, in
essence, reduces the number (and portion) of documents that an investigator must
examine in order to assess a public health threat.

However, even after message filtering, investigators are still typically inundated
with the volume of text that they must examine in order to determine the extent
to which the information constitutes a threat to public health. Thus, successive
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stages of the proposed EI system (Signal Generation and Support for Threat

Assessment) are intended to tackle the problem of information overload, and help
users effectively digest the information and gather intelligence. During Signal

Generation: outbreak warnings (or signals) are created from relevant short text
(sentences or micro-blogs text) that has been previously filtering in the Message

Filtering stage and aggregated according to counts of the common entity tuples
they contain. Then, this time series data is used as input to biosurveillance algo-
rithms for signal generation [KRSN12, SDA12]. A signal is a temporal anomaly
generated from the counts of time series data that occur when an infectious disease
or death is above an expected level, for a particular time and place. A signal consists
of: i) an event surrogate, ii) a threshold value for which a temporal anomaly flag is
raised if the time series count exceeds the threshold, for the given time window, and
iii) a set of aggregated tweets which contributed towards temporal anomaly. At a
minimum, a disease and temporal entity are required.

M-eco offers the functionality of signal-based retrieval, that is, returning signals
as results of a given query instead of only documents. Once the desired signals are
obtained, the user is able to access the original document associated to each of them.
Having signals as a basic unit of information allows a user to perform a focused
indexing of only the tweets relevant to a particular signal. Figure 1.2 shows the
M-eco user interface along with a brief description of its main panels.

Query Input. The interface is designed to facilitate exploration, and allows users
to find and analyze all signals generated by M-eco. It offers a free-text search field
where arbitrary queries can be input. Such queries could represent medical conditions,
locations, or any other relevant keywords of interest.

Query Results. The system also offers the functionality to sort within the signals
loaded. If users wants to sort based on any of the columns of the result table, they
can click on the name of the column and the system sorts the records in ascending
(or descending) order. The user can access detailed information about the signals, as
well as the corresponding documents, by clicking on the medical condition link in the
Query Results list.

Geo-located Signals. Besides the result table, the system also displays a map with
the locations of the signals loaded at the moment. If the user selects a marker on the
map, then the system displays a box with information about the signal. The map
visualization also offers controls to adjust the map type and zoom levels.

Faceted Filter: In order to help users manage the large amounts of data generated
by the system, the search component incorporates filters to restrict the subset of
results to a specific criteria. The following filters are supported: time range; medical
condition, location pairs; medical condition only; location only; surveillance algo-
rithm.

Promoted by their interest in a signal, experts can further explore the underlying
text of a signal, that has been filtered by the Message Filtering stage, in order
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B: Faceted Filter

A: Query Input

C: Query Results

D: Geo-located Signals

Figure 1.2 Filtered disease reporting mentions converted to time series data;
and aggregated into views (signals) for browsing. A. Query Input, B. Faceted
Filter : options for filtering signal search results by signal meta-data, C.
Query results : resulting set of signals, and D. Geo-located Signals : a map for
visualizing signals’ geo-location.

to better understand the nature of a potential threat (Figure 1.3). The word cloud,
along with its accompanying short text snippet, helps officials to get a quick overview
of an incident, by summarizing its content. The Signal Generation and Support

for Threat Assessment stages are beyond the scope of this thesis.

In the aforementioned scenario, the time series data used for anomaly detection,
and the associated underlying documents, should be free of noise. That is, we would
like to filter out documents for which the relevant entity types are present; but the
role that these entities have, is not considered to be relevant in the context of a disease
reporting mention. Automatic message filtering, and the use of limited amounts of
labels to construct such a filter, is the focus of this thesis. In the remainder of this
work, we restrict our discussion to Stage I. Message Filtering, and its relevance for
the EI investigation task.
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Figure 1.3 Zooming in on a selected signal shows summary views containing
a word cloud and a short text snippet from a blog that have been obtained
from a disease reporting message filter.

1.2 Label Bottleneck Problem of Supervised Learn-

ing

The task of automatic filtering using a supervised classifier is not limited to the
domain of public health. In fact, it is important for any type of ongoing intelligence
gathering from the Web, in general. One drawback of a supervised learning approach
to text filtering is that it suffers from high initialization and maintenance costs, when
it comes to building and maintaining a data set to train the classifier. This is the well-
known label bottleneck problem. A major reason for the label bottleneck problem
is that supervised approaches operate under two major assumptions: i) high quality
labeled, text is available for training a classifier and; ii) the source data on which the
classifier is built, has the same feature space and distribution as the target data on
which it is deployed.

For-hire, human intelligent task (HIT) workers within crowdsourcing platforms,
such as Mechanical Turk [PD11a] can be employed to help acquire labeled data for
EI. In fact, small amounts of labeled data using HIT workers is easily obtained.
However, a different type of cost consideration must be taken into account for on-
going intelligence gathering, since large amounts of labels will be needed (perhaps even
frequently) over a long duration - and monetary resources devoted to a crowdsourcing
strategy are typically limited.

Finally, within the domain of EI the most prevalent approach to detecting ail-
ment mentions from unstructured text is by using rule-based filtering [SFvdG+08a,
YCB+99, SFvdG+08b]. A rule is a conditional of the form: contextual pattern →
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action. If the contextual pattern matches the appropriate parts of an input text,
then the action part of the rule fires. A contextual pattern is intended to describe the
context in which entities (disease, location, etc.) appear. Similar to the annotation
problem of supervised learners, rule-based approaches face the challenge of also build-
ing (and maintaining) the pattern base for capturing the nuances within linguistic
expressions, which can be infinite, even for a single task, such as detecting disease
reporting mentions.

1.3 Contributions: Limited Supervision Learning

for EI

The volume and types of Web data necessitate techniques for automatically filtering,
such as supervised learners. However, all existing EI systems that rely upon supervised
learning assume that large volumes of labeled text are available to aid in constructing
classifier models. Unfortunately, this is far from the truth, in practice. Notably,
approaches exist in other domains for tackling the label bottleneck problem, but these
approaches have not yet made thier way into the domain of public health. From a
socio-technical point of view, mechanisms must also be considered to help domain
experts assess and judge the final quality of automated results.

In this thesis, we tackle the label bottleneck problem using limited supervision
approaches to learning - alternative ways of filtering disease mentions that
mitigate and/or avoid undue burden on an annotator. We seek to develop
mechanisms that address the need to fully annotate training data for building a
supervised learner within the domain of EI. We present three approaches that use
limited supervision, namely: 1) semi-supervised learning; and 2) active learning, and
3) unsupervised learning. For each approach, we additionally measure its effectiveness
from a domain expert’s point of view, which is disproportionately, overlooked in state-
of-the-art systems. The contributions of this work are outlined below.

1.3.1 Semi-Supervised Learning with Weak Labels

Semi-supervised learning has been successfully used in many tasks to tackle the label
bottleneck problem. Traditionally, a small set of high quality manually labeled seeds
are assumed to be used for text level classification. In this work we address the classi-
fication task that: i) utilizes short text (a dozen words to a few sentences) [PNH08];
and ii) is completely initialized with small amounts of weak labels that have been
automatically acquired from the short text of highly reliable, and widely available,
auxiliary corpora (or EI knowledge bases).
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1.3.2 Cross-Corpora Label Bootstrapping

In the absence of labels for a desired domain in EI, we show that the propagation of
labels from an auxiliary domain is an effective way to overcome the label bottleneck
problem. In this thesis, we apply a semi-supervised learner that has been constructed
from an EI knowledge base, to the task of assigning a set of initial labels to vast
amounts of completely unlabeled short text in a target domain. One of the main
problems with semi-supervised learning is that they tend to suffer from a low recall
(recall gated); and have a low accuracy. In our work we present solutions to tackle
recall gating and over-fitting in our cross-corpora setting.

1.3.3 Semi-Supervised Active Learning with Label Resolu-
tion

Clearly there are cases for which even a well chosen EI auxiliary source is not suitable
for handling the label bottleneck. One such example is when crossing the boundary
between short text to the sparse text of Twitter micro-blogs. The corpora may no
longer be compatible enough to support the propagation of labels (due to grammati-
cally incorrect text; very limited context; lingo or metaphorical usage in Twitter). In
such cases, we consider an active learning approach to handling the label bottleneck.
The assumption of active learning is that if the learner is allowed to take part is
selecting the more informative instances, it will ultimately lead to a learner that is
supplied with as little training data as possible, for a desired optimal performance.
Active learning comes at the expense of an oracle assessing the true label of dubi-
ous instances, so it is important that as few labels as possible are presented to the
oracle. Clustering has been successfully used in many active learning strategies to
help reduce the number of requests (queries) needed. However, approaches that are
based on clustering can suffer when: i) no obvious clustering exists; ii) clusterings
exist, but are at an unknown granularities; iii) the classifier labels themselves are
not aligned with the active learner clusters (label-cluster alignment problem) [Das11].
In this thesis, we seek to address the label bottleneck problem with an active learner
that is label-cluster aware. In doing so, we are able to mitigate the number of human
annotations that are required for resolving an uncertain label for instances that stem
from a non-separable context between the relevant and non-relevant training seeds of
a binary classifier (the mutual exclusion problem). We address the mutual exclusion
problem in semi-supervised active learning (SSL-AL) by exploiting Partially Labeled
Latent Dirichlet Allocation (PLDA). As a type of semi-supervised clustering, PLDA
is not only capable of constructing per-label clusters (label-aligned clustering); but is
also capable of modeling an overlapping context among the training data (as a set of
background clusters). Armed with such a model, we are able to eliminate the overlap-
ping context among the seeds and retrain a classifier with a more dichotomous seed
set. To the best of our knowledge, no previous cluster-based approach to SSL-AL has
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employed the use of PLDAs for supporting label resolution in this way.

1.3.4 Unsupervised Learning of Disease Reporting Mentions

Unsupervised learning, specifically generative topic models, have also been extensively
used as a means to understand overarching patterns in the data without relying upon
labels at all. Notably, with the exception of one recent work by Paul et al., [PD11a]
little work has otherwise been done in using unsupervised clustering to detect disease
reporting mentions for EI. In addition to the fact that an oracle need not provide
labels, another advantage of an unsupervised approach is that it has the potential of
detecting public health related events that were not explicitly under surveillance.

1.3.5 Expert Interpretation and Assessment

We notice with the exception of a few systems [vEHV+10b, DKCC08], most super-
vised learning approaches do not employ the assessment of the domain experts to
judge the final quality of the results - even fewer, for unsupervised systems [SS11].
Expert interpretation is especially crucial for clusterings since, their results may be
difficult to interpret. In this work, we also report on the usefulness of disease re-
porting clusters that have been obtained from a generative topic model, from the
perspective of domain experts. The goal is to offer much needed insights into how
such an approach could be more beneficial and widely accepted as a viable technique
for text filtering in EI.

1.4 Structure of This Work

This thesis is organized as follows: in Chapter 2 we first present an overview of limited
supervision approaches that can serve as an alternative to supervised learning. We
then proceed by providing the reader with a deeper insight into what constitutes an
disease reporting mention within short text; and how can it be represented as set of
features for a trainable classifier, in Chapter 3. We then present our approach to han-
dling the label bottleneck using semi-supervised learning with weak labels acquired
from EI-Knowledge Bases, to bootstrapping the short text of blogs and news, in a
cross-copora setting.

In Chapter 4, once again we begin with a characterization of disease reporting
mentions, but this time for sparse text, which is significantly different from the short
text presented in Chapter 3. We then present our solution to handling the label
bottleneck problem with Active Learning with Label Resolution. In Chapter 5, our
unsupervised learning of disease reporting mentions for EI is presented for handling
the label bottleneck problem. In each of the chapters describing our approach (Chap-
ters 3, 4, and 5) we report on the usefulness of our results from the perspective of
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domain experts, and provide an outlook for motivating the work in the chapter that
follows. Finally in Chapter 6 we conclude by first summarizing the work done in this
thesis; then provide several scenarios intended to show - in a more global context -
how the various results presented in this thesis could be exploited to support an EI
system. The thesis concludes by outlining directions for future work.

1.5 List of Supporting Publications

A number of papers investigating approaches to using limited supervision and fil-
tering text to support information seeking were published by this author, and form
the foundations for the work done in this thesis. A per-chapter listing of relevant
publications is as follows:
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• Ernesto Diaz-Aviles and Avaré Stewart. Tracking twitter for epidemic intel-
ligence: case study: Ehec/hus outbreak in germany, 2011. In Proceedings of
the 3rd Annual ACM Web Science Conference, WebSci ’12, pages 82–85, New
York, NY, USA, 2012. ACM. [DAS12]
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art. The medical ecosystem [m-eco] project: Personalized event-based surveil-
lance. In Proc. of International Meeting on Emerging Diseases and Surveillance
(IMED 2011), Vienna, Austria, February 4-7, 2011, 2011. [DDAD+11]
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Background: Types of Limited Supervision Learning

In this section, we provide background: discussing the approaches to learning that
use limited supervision (i.e., restricted amounts of manually labeled data) for building
an automatic text filter; and highlighting areas in the research where our work is
positioned.

2.1 Semi-Supervised Learning

Our task of detecting disease reporting mentions can be viewed as a binary classifi-
cation problem. A binary classifier is defined as follows:

Definition 1 (Binary Classifier) A binary classifier is a function F : Rd → {−1,+1}
that maps a d-dimensional feature vector x ∈ Rd to a label y ∈ {−1,+1}.

The advantage of a supervised learner is that they do well at the harder task
of predicting the true label for unseen, test data. The disadvantage, is that they
do well if given enough labeled training data. For most learning tasks of interest,
it is easy to obtain samples of unlabeled data; the World Wide Web, being a good
example of a large collection of unlabeled data. In most cases, the only practical way
to obtain labeled data is to have subject-matter experts manually annotate the data,
an expensive and time-consuming process.

In this thesis, we seek to find a middle ground between building a good classi-
fier, without relying heavily on the human annotation of a large quantity of training
examples. In Chapter 3, we begin by using semi-supervised learning (SSL). A tra-
ditional semi-supervised (passive) learner in contrast to a supervised learner, does
not require as much human effort since the system is bootstrapped with only a few
manually labeled examples. In traditional, semi-supervised learning [Zhu05] a query
component selects the most reliable instances at each iteration. More specifically,
the semi-supervised learner takes as input, unlabeled data and a limited amount of
labeled data; and, if successful, achieves a performance comparable to that of the
supervised learner, but at a significantly reduced cost in the manual production of
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training data. In our work with SSL, we focus on the following question: Though
we only require a small amount of labeled data for an SSL, from where do
we obtain even these small labeled data? Possibilities for obtaining SSL labels
are:

1. manual labels

2. heuristic/intrinsic labeling scheme

3. a seed classifier

4. a budget for labeling instances that have been selected by the learner

In this thesis, we explore Options 1,2 and 3 in Chapter 3 and in Chapter 4 we
explore Option 4.

2.1.1 Limited Supervision in Relation Extraction

The MUC and Automatic Context Extraction (ACE) initiatives played a significant
role in driving the research challenges for addressing the label bottleneck problem with
limited supervision systems, for the subtask of binary relation extraction. Relation

extraction is defined as a mapping, ϕ : D R−→ F of a set of documents, D, to a set of
tuples R × E1 × E2 ∈ F , where ei ∈ E1 and ej ∈ E2 are entities that form a tuple,
denoted by R(ei, ej), based on a semantic relation R. A binary semantic relation,
R(ei, ej), is a predication about a pair of (typed) entities. Early limited supervision
systems under ACE were all built on the semi-supervised learning paradigm.

2.1.2 Distant Supervision

Distant Supervision (DS) [MBSJ09] is a more recent form of limited supervision,
which attempts to acquire seed labels from an external source based on two assump-
tions. The first assumption is that if two entity pairs, within a reliable fact base, par-
ticipate in a relation, then any proximate sentence (either same page or a hyperlink
connection) that contains those two entity pairs might be an instance of the relevant
relation and the relation can be extracted from the source text. Typical fact bases
used in DS are Wikipedia info-boxes and YAGO [SKW07] or DBPedia [ABK+07].
The second assumption in DS is that of data volume and redundancy. Specifically,
the same semantic relation will appear numerous times in a large volume of text, in
different contexts. Although the entity pairs in the fact base are assumed to be a
relevant (positive) instances of a known relation, the linguistic binding that describes
the semantics, or context, for how the entities are related to one another, is unknown
from the fact base, but can be discovered, presumably from proximate text. Given
the amount of source text, and the number of relations in the fact base, it is infeasible
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to search for all entity pairs within each sentence in the proximate text. Thus a com-
mon strategy in DS is to extract the context between entity pairs for a subset of the
proximate text, and to then use these as a features for building a trainable classifier
to detect more relevant instances from the source text. WOE [WHW09, WW10] for
example, incorporates Wikipedia articles as training data to learn the extractor.

Similar to our work, this basic approach of semi-supervised learning is taken up
in this thesis. We also focus on a predefined set of entity types that are relevant for
the domain of EI. The main difference is that we take an implicit approach. In doing
so, we relax the constraint of determining the predication, i.e., the type of relation
that exists between entity pairs, as done in relation extraction. An implicit approach
can be seen as a preprocessing step (identifying trigger sentences) for explicit forms
of detection [NSC10b].

2.2 Unsupervised Learning for Clustering and Event

Detection

Another counterpart to pure supervised learning is unsupervised learning with clus-
tering. Unsupervised learning can be considered as a means of tackling the label
bottleneck problem with respect to text filtering in that, it is also concerned with
assigning instances to classes, but the clustering algorithm is only given instances
and none of the labels for the classes. That is, in unsupervised learning, one seeks
to find salient patterns in the data, which are above and beyond what would be con-
sidered pure unstructured noise [Gha04]. In particular, in Chapter 5 we will focus
on generative models (mixture models), which have almost become synonymous with
clustering.

Generative models have been widely used for the task of Retrospective Event
Detection (RED). In RED, a document is assumed to contain the textual mention
of one or more real-world, temporal events. A generative model is used to infer an
event, where an event is considered to be a latent variable. Latent variables (as
opposed to observable variables), are not directly observed, but are rather inferred
by the model from some representation of the article’s content that is observable,
and directly measured (such as the distribution of its feature). When no new events
are assumed to evolve over time, the problem can be cast as a classical document
clustering problem [Gha04]. In Chapter 5, we tackle the limited supervision using a
generative model for detecting disease reporting clusters.

2.3 Active Learning with Budgeted Labeling

Active learning (AL) is a methodology for building a trainable classifier, that attempts
to reduce the cost, or burden of manually labeling training data. AL shares elements
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of both supervised and unsupervised learning. Similar to a supervised learner, the
goal of AL is to create an optimal classifier. Similar to unsupervised learning, the
data come unlabeled. More precisely, the labels are hidden, and each of them can
be revealed only at a cost. The key difference, however in active learning is to allow
the learner to pro-actively select the ”best” (informative) training instances, without
having to label and supply the learner with more data than necessary. The label
bottleneck is overcome by only asking the oracle for advice when the utility of doing
so is high. The assumption of active learning is that if the learner is allowed to
take part is selecting the more informative instances, it will ultimately lead to a
learner that is supplied with as little training data as possible, for a desired optimal
performance.

AL can be characterized by the manner in which oracles are queried. The popular
pool-based learner [LG94] assumes a large data set with the majority of the data
unlabeled. An item is chosen, by inspection, from the unlabeled pool. In an agreement
method [LT97], a committee of learners is used to reduce the number of training
examples required for learning queries; and selective sampling [Set09], where examples
arrive successively and for each example, one has to decide independently whether it is
informative or not. Independent of the query selection strategy employed, the central
problem faced in all active learning is one of measuring the information content of
the unlabeled data point.

Similar to previous works, we use a pool-based learner. We also take an approach
to measuring the informativeness of a data point based on its distance from the
separating hyperplane. This simple heuristic is a standard approach that has been
shown to be efficient using a support vector machine for text classification [TK02].
Unlike previous works, however, we extend the traditional selection strategy with a
semisupervised clustering algorithm that is not only capable of handling non-
separable data in a principled way; but also allows us to reduce the number of data
points that would be presented to an oracle when compared with traditional clustering
approach.



Semi-Supervised Learning with Weak Labels

1

In this chapter, we use limited supervision to filter short text consisting of sen-
tences. Similar to work done in Distant Supervision, as presented in Section 2.1.2, we
tackle the label bottleneck problem for the task of detecting disease reporting men-
tions by using a reliable fact base. First, we use semi-supervised learning to weakly
labeling the sentences within EI knowledge bases. Weak labels, as opposed to gold
labels (those acquired from a human), are automatically obtained by exploiting prop-
erties of the knowledge base. In doing so, we acquire a large number of patterns for
relevant and non-relevant instances of disease reporting mentions. Second, we apply
these patterns to our desired copora to bootstrap the labeling of sentences therein.

1Image under License from Fotalia http://http://de.fotolia.com/
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We refer to this approach as cross-corpora bootstrapping, or xLabel. Our approach
to handling the label bottleneck using semi-supervised learning with weak labels that
have been acquired from EI-Knowledge Bases, to bootstrapping the short text of
blogs and news in a cross-copora setting is discussed in Section 3.4. However, before
delving into the details of our xLabel approach, we first provide the reader with a
deeper insight into what constitutes a disease reporting mention, in Section 3.1. We
first present examples of relevant and non-relevant disease reporting mentions; sec-
ondly present guidelines for defining the relevance criteria; and finally show the set
of features that we used for capturing these criteria to build a trainable classifier. In
Section 3.2, we provide related work; in Section 3.3, terminology and a more formal
statement of the xLabel problem is given. Experimental results evaluating the effec-
tiveness of the xLabel approach is presented in Section 3.5. This chapter concludes in
Section 3.6, summarizing the major results and providing an outlook for the future.

3.1 Short Text Characterizations of Disease Re-

porting Mentions

The textual mention of a real-world disease reporting mention is one which provides
information about Who-What-Where with respect to a medical condition. It involves
a persons suffering from an infectious disease; or its death related outcome that is
above an expected level, for a particular time and place. It creates a need for action
on the part of public health officials. For instance, an outbreak of cholera, or one case
of a very rare, and highly contagious infectious disease, such as Ebola. Examples of
relevant and irrelevant mentions are shown in Tables 3.1 and 3.2, respectively.

One can glean from these few examples how disease reporting mentions in short
text can be characterized. Note also the importance of EI-specific entity types: Lo-
cation, Disease, Temporal, and Victim, for the task. One of the main challenges
however is that the presence of these EI-entities are a necessary, but not sufficient,
criteria for detecting disease reporting mentions.

3.1.1 Relevance Criteria for Disease Reporting Mentions

We seek to establish a set of criteria for determining relevant and non-relevant. As
a starting point, we examined the work that has been done in BioCaster [CKCC09].
BioCaster outlines a set of boolean and non-boolean criteria that can be used for
annotating text, for a variety of events that potentially threaten public health, such
as infectious disease outbreaks and chemical contamination. Their work is not in-
tended to be exhaustive, and notably no criteria is explicitly given for when a disease
reporting mention is not relevant. Moreover, there work was intended to be used for
full documents, and not short text. Most of the criteria described in the BioCaster
guidelines are difficult to uniformly apply to short or sparse text given the limited



3.1 Short Text Characterizations of Disease Reporting Mentions 39

Table 3.1 Examples of relevant disease reporting mentions in short text.
Named entities offset with square brackets represent: ORG =victim of dis-
ease; DIS = disease; SYM= symptom; LOC=location; TEM= temporal men-
tion.

Pattern and Example Short Text
Text: The Ministry of Health (MoH) of the [Kingdom of Cambodia]/LOC has
announced a confirmed case of a [human]/ORG with the [avian influenza A
(H5N1)]/DIS virus.
Text: About [142 passengers]/VIC were ill with [Norovirus]/DIS recently on an
[Alaskan]/LOC cruise ship.
Text: While we are happy to have the negative tests for avian influenza in Bulgaria,
confirmed outbreaks of [H5N1]/DIS in [Romania]/LOC and [Turkey]/LOC continue.
Text: The three [patients]/ORG tested positive for [Swine Flu]/DIS.
Text: This is the third case of [Ebola]/DIS observed within the past week.
Text: About 75 [H1N1]/DIS cases have been reported reported in [Salt Lake]/LOC.
Text: [China]/LOC confirmed its second case of [swine flu]/DIS on the mainland,
in a [man]/ORG who had recently returned from [Mexico]/LOC.

Table 3.2 Examples of Non-Relevant disease reporting mentions in short
text. Named entities offset with square brackets represent: ORG =victim of
disease; DIS = disease; SYM= symptom; LOC=location; TEM= temporal
mention.

Reason Example
1. Off Topic The first global conference on [SARS]/DIS will open to-

morrow in [Kuala Lumpur, Malaysia]/LOC.
2. Outbreak Procedure [Brussels]/LOC would take charge of future [foot and

mouth]/DIS epidemics under a new [European]/LOC di-
rective.

3. Vaccination Campaign Of the health districts in [Burkina Faso]/LOC, 37 will
benefit from a [yellow fever]/DIS preventive mass vacci-
nation campaign on [13 Nov 2008]/TEM.

4. General Information Challenges also exist in [China]/LOC and [Japan]/LOC,
which together accounted for 82 percent of the region’s
population and more than 97 percent of its reported
[measles cases] in [2008]/TEM.

5. Historically Outdated The [Spanish Flu]/DIS of [1918]/TEM devastated the
population/[VIC].



40 Chapter 3 Semi-Supervised Learning with Weak Labels

amounts of information contained within a single, short or sparse text message. Also,
the boolean criteria is meant for a human assessment, so it is not straightforward to
automatically extract the value of these boolean attributes from text, for the purpose
of constructing features for a trainable classifier.

The boolean attributes of BioCaster are listed below.

• Was the victims of the disease involved in international travel potentially bring-
ing the disease to new countries?

• Was the disease outbreak due to an accidental release?

• Was the disease reported to have crossed the species barrier between animals
or from animals to humans?

• Was it reported that any victims of the disease failed to respond to regular drug
treatment due to drug resistance?

• Did the victims of the disease catch the disease through contaminated food or
water?

• Were any of the victims of the disease a hospital worker?

• Were any of the victims of the disease a farm worker?

• Did any of the victims of the disease catch the disease through contaminated
or badly produced vaccines or blood products?

The non-boolean attributes of BioCaster are listed below.

• The country where the outbreak occurs

• The province in the country where the outbreak occurs

• The agent (pathogen) of the disease

• The species that was affected by the disease (either animal or human)

• The relative time when the outbreak occurred (hypothetical,present,recent past,historical)

We use a subset of the BioCaster criteria in our work. Specifically, we build
upon the non-boolean attributes, which we extract via named entity detection. In
the section that follows, we describe in more detail the named entities features, their
extract, and the additional features we used to capture patterns of the type shown in
Tables 3.1 and 3.2.
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3.1.2 Features for Disease Reporting Mentions in Short Text

The meaning of relevance for our task is determined by the context, or the text
surrounding the EI named entities. We use two types of features representations in
xLabel to capture this context: non-structural and structural. Non-structural features
ignore the relationship between tokens in the text, whereas structural feature take
them into account.

Non-Structural Features

One of the most common method of representing a text document is in terms of a
feature vector, that decomposes text it into its words; known as bag-of-words and
has been found effective for text classification tasks. Bag-of-words ignore the order
of tokens in the text, and the frequency of each token, along with its implicit co-
occurrence with other tokens (i.e., context), is used as a feature. A weight can also
be a boolean value for determining whether a given property holds within the text as
in: “is the temporal mention within 3 months of today”.

As illustrated by the examples in Tables 3.1 and 3.2, named entities play an
important role in determining whether the short text is relevant. Thus, in addition
to bag-of-words, we also rely upon bag-of-concepts; represented by the frequency of a
set of predefined types of named entities that are deemed useful for the EI task. The
EI-entity types we consider are: Temporal, Location, Medical Condition ( symptoms,
pathogens or diseases), and Organism. Each entity type is discussed below.

Temporal Entity: Extensive work has already been done in detecting temporal
entities [SG12, KRSN12, CC10], and we exploit an existing approach namely, Hei-
delTime [SG12], for this entity type. The HeidelTime tagger is capable of resolving:
preposition words (such as last Friday) or adjective and adverbs (“5 months ago”);
absolute date (September 1, 1973); and a relative date, such ”yesterday”, which can
only be determined from context. For example, given a date such as January 2, 2013,
HeidelTime is capable of resolving the temporal mention ”yesterday” to the date Jan-
uary 1, 2013. We found this adequate for our needs in filtering out mentions such
as Spanish Flu of 1918, which took place over 90 years ago and is not considered a
public health threat.

Location Entity: Extensive work has also already been done in detecting location
entities [FGM05]. We experimented with Open Calais (http://www.opencalais.com/)
and Stanford Named Entity Recognizer taggers (http://nlp.stanford.edu/software/
CRF-NER.shtml) in our work. We found both taggers to be robust enough with
respect to capturing: location granularity (city, state, providence); location mentions
as adjective, (Alaskan); location disambiguations (Paris, Texas versus Paris Hilton);
and locations used in a metonymy (e.g, The Kingdom of Cambodia announced...),

http://www.opencalais.com/
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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in which an inanimate object is used to express actions that would be taken by a
sentient being.

Medical Condition Entity: For EI, in addition to the location and time entities
we need: medical condition and affected organism. Although the extensive, domain
specific annotator, Unified Medical Language System (UMLS: http://www.nlm.nih.
gov/research/umls/), is capable of medical condition entity detection, we found that
for our purposes it proved less effective. The main reason for this is that our domain
experts were not interested in all the possible medical conditions tagged by UMLS,
but only those related to infectious disease.

We were also interested in detecting aspects of a contagious medical condition,
such as: symptoms, pathogens, virus as well as disease. In other exiting work, done
by Dredze et al., [PD11a], steps are made towards determining aspects of a medical
condition, yet their work is unsupervised and does not explicitly assign label to the
aspects that are detected. The approach we take to medical condition entity detection
is dictionary based. We used 723 English terms consisting of infectious diseases,
their synonyms, pathogens and symptoms, which was manually built by our domain
experts.

Organism Entity: As one can see from the examples in this section, the affected
organism entity type is a fundamental characteristic in defining a relevant disease
reporting mention. To the best of our knowledge, no other system has specifically
dealt with an organism tagger, and we take up this issue in our work. Concretely,
we defined an affected organism to be the semantic roles of a animals, including
any concepts consisting of the following four types: (i) Persons-by-Population; (ii)
Persons-by-Occupation; (iii) Persons-by-Geography; and (iv) Non-Human Organisms.

Persons-by-Population refers to the textual mention of a human by a family rela-
tion (e.g., brother, father), or a general population group to which a human belongs
(e.g., elderly, group of children). Persons-by-Occupation refers to the textual mention
of a human by their occupation (e.g., pilgrims, mine workers, nurse). Persons-by-
Geography refers to the textual mention of a human by a geographical description
(e.g., Moroccans, Brazilians)2. Non-Human Organisms refers to the textual mention
of a non-human animal (e.g., swine, horse).

Each of aforementioned types of organisms entities were extracted with a simple
dictionary based approach using LingPipe http://ir.exp.sis.pitt.edu/ne/lingpipe-2.
4.0/. The complete list of terms used to construct each dictionary is provided
in Appendix A and also available for download from the following web address:
http://pharos.l3s.uni-hannover.de/∼stewart/. One of the advantages of a Ling Pipe

2Cases for which person-by-geographical were tagged by both the Location and Organism NER
tagger were safely ignored, since for the purposes of constructing features this overlap did not harm
classifier performance

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/
http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/
http://pharos.l3s.uni-hannover.de/~stewart/
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dictionary approach is its speed. LingPipe provides an implementation of the Aho-
Corasick algorithm, which finds all matches against a dictionary in linear time, in-
dependent of the number of matches or size of the dictionary [AC75]. On the other
hand, the limitations of a dictionary approach are that: morphological variations of
entities must be explicitly enumerated (typically by using regular expressions), and
entities names are not easily distinguished by their context if they are the same as
common words. In spite of these limitations, we found the use entities as a feature
consistently led to a improved performance for our classifiers, when compared with
classifiers in which the NEs are ignored (e.g., see Figures 3.6 and 3.7).

Structural Features

In this section we discuss the structural features, in which the relationship between
entities in the text are preserved. Common linguistic structures used for captur-
ing word ordering within a sentence are syntactic parse [Zha08] and dependency
parse [SG09, GS07] trees.

Syntactic Parse Syntactic parsing is the process of analyzing a sentence in order
to determine its grammatical structure with respect to a given formal grammar (or set
of rules). A syntactic parse tree represents the results of the parsing is a hierarchical
tree structure in which each non-terminal node represents: either the grammatical
part-of-speech (POS) or its grouping. The terminal nodes correspond to the tokens
of the sentences and the edges in the tree denote the is-a relation between nodes. An
example syntactic parse of is shown in Figure 3.1.

Figure 3.1 Example syntactic parse (POS) tree for the sentence: 8 human
plague cases occurred in New Mexico in 2006.

Dependency Parse Instead of capturing the relation between POS tags in a sen-
tence as done by syntactic parse, dependency parsing capture the relationship be-
tween the words in a sentence; and is computable directly from its syntactic parse
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[dMM08, NHN06, KMN09, SG09]. The dependency parse tree of a sentence, w, is a
directed ordered tree, T (w) = (V,E), with nodes, V and edges, E. Each node in the
tree, vi, represents a word, and each edge is labeled with a type as provided by the
particular parser. The edges can either be typed or untyped. An example of a typed
dependency parse tree is shown in Figure 3.2.

Figure 3.2 Example dependency parse tree for the sentence: 8 human plague
cases occurred in New Mexico in 2006, with 3 fatalities.

Substructures and Their Generalization Instead of using the entire tree, a
portion of the structure may be used. Substructures allow a more narrowly defined
context around the relevant entities, by pruning away, as much of the structure as
possible, while preserving the relevant portions. This often leads to better features
and classifier performance. Stevenson [SG09] and Zhang present an overview of sev-
eral different types of structures. Generalization of structures is possible, by replacing
the name of the entity with its type. In our experiments (Section 3.5), we evaluate
the use of full structures, generalized substructures and the non-structural features
that have been mentioned in this section.

3.2 Related Work

3.2.1 Distant Supervision

A number of systems exist that take steps towards addressing the label bottleneck
problem for extracting general types of relations from large data collections. These
systems are generally referred to as Open information extraction (OIE) [BCS+07,
BE08, Ban00]. They are intended to address the label bottleneck problem; but also
tackle the need for fast processing time and extraction of arbitrary tuples on a Web
scale, where neither the relations (nor the participating entities) are known in advance
[Bri99, AG00, ECD+04, BCS+07, BE08, Ban00, ZNL+09, EFC+11].
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These system seed themselves with a set of heuristics [Ban00]; shallow NLP tech-
niques [AA91]; or in the case of Know-ItAll [ECD+04] KNOWITALL, an extensible
ontology is additionally used. An underlying assumption behind the use of labeling
heuristics, is that most of the patterns for extracting the relevant relations can be
grouped into a few categories. Automatic labeling heuristics are intended to capture
the dependencies that would typically be obtained via syntactic parsing and semantic
role labeling; without actually having to perform the syntactic parsing or semantic
analysis. Differently from these works, we instead rely upon full sentential parsing.

TextRunner uses a set of heuristics based: on the length of the dependency parsing
chain not being longer than a certain value; sentence structure (the path from entityi
to entityj along the syntax parse tree, which does not cross a sentence boundary);
and a parts of speech requirements (the entities of the relation do not consist solely of
pronouns). Similarly, we as also rely upon heuristic to automatically label instances.
However, one of the limitation of TextRunner is that by using light-weight techniques,
the result contains relations that often have no meaningful interpretations. Unlike
their work, we take steps towards interpreting of our results with the help of domain
experts.

3.2.2 Transfer learning

Transfer learning is also similar to our work. The goal in transfer learning is to improve
the learning of a target predictive function, using knowledge from a comparable, but
different, domain. The work done in [ANC07, PY10] is closely related to ours, since no
labeled data from the target domain is available a priori (i.e., transductive transfer
learning). They also take into account additional domain independent properties
of the training data (namely, the proportion of positive examples in the test data)
to improve the classification performance. Numerous other works also exist where
information gained from a learning task in one domain is transferred to improve the
classification performance in another, related one [CJ09, ANC07]. For example, work
has been carried out in a bootstrap setting [CJ09], where an event extraction system
in one language is used to bootstrap another language. Similar to our approach, they
rely largely upon unlabeled data and seek to apply a model across domains.

To date, none of these distant supervision based approaches to the label bottleneck
problem consider the task of Epidemic Intelligence; use outbreak reports; nor syntactic
parse based on Support Vector Machines kernel methods.
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3.3 Terminology and Problem Statement

3.3.1 Terminology

In our approach, two distinct domains are considered, and the knowledge from a com-
parable, but different domain, is exploited to solve the same task in another domain.
We constrain the auxiliary domain to contain outbreak reports and the target domain
to contain blog and news. A domain, D = {Σ, P (X)}, is a pair consisting of: a set of
feature spaces, Σ := {(σ1), · · · , (σn)}, and a marginal probability distribution,P(X),
where X ∈ Σ, is the set of surrogates or data instances. Each feature space, σi, deter-
mines how the raw data will be modeled. We categorize the feature spaces into two
types: token based (i.e., bag-of-words, or bag-of-concepts) or structure-based (i.e.,
syntactic parse or dependency tree). As mentioned, structure-based feature spaces
take into account the relationship between tokens. For example, if the goal is to clas-
sify sentences, and σi models a sentence as a binary, bag-of-words, then each sentence
surrogate, xi ∈ X is a vector representing the presence or absence of a term in the
sentence. Also, combinations of the features types may be used. Two domains are
considered to be different, if they have different feature spaces, or different marginal
probability distributions. We refer to the auxiliary and target domains as DA and
DT , respectively.

A task, denoted by T = {L,Ψ}, is a pair consisting of a label space,L, and a
predictive function,Ψ = P (L|X). The predictive function is not observed, but instead
learned from a training set for a particular domain. For example, a training set for the
auxiliary domain is represented as: DA = {(xA1, lA1), · · · (xAn, lAn)}, where xAi ∈ XA,
is a training instance and lAi ∈ L = {true, false} is the set of all labels for a binary
classification task. The function, Ψ, is used to predict a corresponding true or false
label for a new instance that is in the target domain. Given the domains DA and DT ,
the learning tasks ΘS and ΘT are considered to be different, when either: i) the label
spaces between the domains are different (LA 6= LT ); or ii) the conditional probability
distributions between the domains are different; i.e., PA(L|X) 6= PT (L|X). In our
problem setting, we consider the tasks to be the same.

3.3.2 Problem Statement

The problem faced in our setting is that, in general, neither the auxiliary outbreak
reports, nor the new instances of the target blog data is labeled (LA and LT do not
exist). Given a auxiliary domain, DA; a learning task ΘA = ΘT ; a target domain DT ;
a feature space, Σ, that is common to both DA and DT ; xLabel aims to: i) weakly
label the data in the auxiliary domain; i) use a subset of the weakly labeled data as
a training set, to learn a predictive function ΨA; and ii) use the knowledge from DA

and ΘA, to improve the learning of a target predictive function,ΨT , where DA 6= DT ,
and ΘS = ΘT .
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3.4 Cross-Corpora Bootstrapping of Disease Re-

porting Mentions

Laboriously annotating training data for building supervised learners is a commonly
faced problem. But, what if enough reliable labels for our task could be easily gleaned
from a comparable, auxiliary information source? What if this auxiliary is more
amenable for acquiring labels due to: its nature, structure, topic matter, quantity,
redundancy, reliability etc? Then perhaps, the knowledge of relevance and (not rele-
vant) could be exploited to solve the same task in our unlabeled, target domain.

In this section we explore answers to the aforementioned questions and propose
an approach xLabel to tackling the burden of labeling short text. An overview of our
xLabel approach is depicted in Figure 3.3 and the algorithm is given in Algorithm
1. It consists of three phases: 1) Auxiliary Domain Semi-Supervised Learning; 2)
Cross-Corpora: bootstrapping ; and 3) Target Domain:Semi-Supervised Learning.

Figure 3.3 Overview of Limited Supervision Learning with xLabel: Cross-
Corpora Bootstrapping. xLabel consists of three phases: 1) Auxiliary Do-
main Semi-Supervised Learning; 2) Cross-Corpora: bootstrapping ; and 3)
Target Domain:Semi-Supervised Learning.

Within the Auxiliary Domain, we rely upon a weak labeling of the outbreak re-
port sentences(EI-Knowledge base), to build a classifier model. In the Cross-Corpora
Bootstrapping phase, the model is used to label an initial set of short text from the
desired target domain. Within the Target Domain, a target-specific model is con-
structed using the remaining, unlabeled target data. The underlying intuition behind
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our approach is that the outbreak reports, acts as a type of “interlingua”, which
constrains the pattern a disease reporting text can have within another domain. In
this section, the xLabel algorithm is presented and each phase is described, in turn,
in the discussion that follows.

3.4.1 Auxiliary Domain Learning

The subtask of weakly labeling training data, first requires applying a score to each
sentence. Various studies have been conducted for measuring the information bearing
content of a sentence with respect to its document [LAJ01]. This includes: i) sentence
position within the document; ii) the presence or absence of certain words or phrases
in the sentence; iii) the title of an article. We incorporate these established results,
by using several sentence weighting schemes.

3.4.2 Weighting Scheme

Sentence Position: For each document, in the corpus is represented as an ordered
sequence of sentences. For the sentence position weighting scheme, we score the TopN
sentences in a document with as ’+1’, to represent positive examples, for a threshold
value of N. Further, we score sentences appearing towards the end of the sequence
with ’-1’, so that the BottomN sentences are taken to be negative examples. All other
sentences receive a score of ’0’.

Sentence Semantics: We are interested in identifying disease reporting sen-
tences. We say that a sentence is a disease-reporting one, if it contains a medical
condition in conjunction with a case, time, or location, where the status of a case
may be inferred from the context. The semantic information is thus represented by
the presence of named entities (NEs) in the sentence. For the semantic weighting
scheme, we modify the position weighting scheme. A value of ’+1’ is assigned to
a TopN sentence if it contains the aforementioned entity types. A value and ’-1’ is
assigned to the BottomN sentences if it does not contain these entity types. All other
sentences receive a score of ’0’.

Sentence Length: The sentences in the auxiliary corpus, vary greatly in length,
due to conjunctions and phrases. Previous work using tree representations for sen-
tences, has shown that longer sentences may contain too many irrelevant features,
and over-fitting may occur, thereby decreasing the classification accuracy [CR03]. In
this light, we propose that sentence length is also an important aspect for weakly
labeling and investigate its impact in our experiments.



3.4 Cross-Corpora Bootstrapping of Disease Reporting Mentions 49

Algorithm 1: xLabel Algorithm: Semi-Supervised learning from Auxiliary do-
main and Cross-Corpora Bootstrapping for detecting disease reporting mentions
in Target Domain

Input: Auxiliary Domain Sentences : XA := {x1, · · · , xm}
Auxiliary Text Sentence Weighting Scheme: Γ
XT : target domain instances:
UA: set of unlabeled instances for a auxiliary domain;
UT : set of unlabeled instances for a target domain;
Φ: supervised learner
Output: ΘT = {(xT1, lT1), · · · , (xTn, lTn)}; target domain labeled instances
begin

1. Auxiliary domain weak labeling :
for each ~ai ∈ AS do

ΘA := Γ(XA) = (xAi, lAi, · · · , xAm, lAm) assign weak labels to instances
based on weighting scheme,Γ
PA ⊆ ΘA initialize pool of weak labels for target

2. Auxiliary domain learning:
ΨA = SSL(PA, UA,Φ) (Algorithm 2)
3. Target bootstrapping :
PT ⊆ ΨA(UT ))
4. Target learning:
ΘT = SSL(PT , UT ,Φ) (Algorithm 2)

end

Algorithm 2: SSL: Semi-Supervised learning algorithm

Input: P : an initial seed of labeled instances; U : set of unlabeled instances;
Φ: a binary class learner
Output: Θ = {(x1, l1), · · · , (xn, ln)}: set labeled instances
begin

L := P
for until a stopping condition is satisfied (e.g., U = ∅, or threshold number
of iterations is reached) do

1. Train classifier: Ψ := Φ(L)
Lcand := Ψ(U), label examples
2. Select most confident instances:
L̃pos := SELECT (Lcandpos) ;
L̃neg := SELECT (Lcandneg) ; 3. Update: L := L ∪ L̃pos ∪ L̃neg
U := U − L

end
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3.4.3 Cross-Corpora Bootstrapping

For the second phase, cross-corpora bootstrapping, once the optimal predictive func-
tion for the auxiliary domain has been derived, it is used to label text in the target
domain. Kernel-based methods allow linguistic structures to maintains their (dis-
creet) structural properties during classifier training. The alternative to kernel based
methods, is non-structural bag-of-words features, in which the inherent structural
properties of the text are not maintained as a feature during training. Kernel based
approaches are popular method, when defining features for semantic tasks is not eas-
ily formulate-able. We point out that kernel based methods have not yet made their
way into the domain of public health.

In our semi-supervised learner, we use a Support Vector Machine (SVM) with a
tree kernel function as the base classifier. A kernel function is a similarity function
satisfying two properties, that of being: symmetric and positive semidefinite [CST00].
The similarity function computes the inner product of two structured objects, such
as a syntactic parse trees, first representing every sentence in the training data as a
sentential parse tree. Then the feature space for the classifier is built by the (implicit)
enumeration of all tree fragments in the training data [CD01, ZAR02]. One of the
main statistical properties of the maximal margin solution is that its performance
does not depend on the dimensionality of the space where the separation takes place.
Thus, it is possible to map the data points into a very high dimensional spaces, such
as those induced by using linguistic structures as features, without over-fitting.

When propagating labels from the auxiliary domain to the target the kernel func-
tion is used again to compute the proximity (or similarity) of an unseen example in
the target domain, to the closest training examples of the auxiliary domain. The class
of an unseen target example is determined by the side of the hyperplane on which it
lies with respect to its proximate training example in the auxiliary domain.

3.4.4 Tree Kernels

The main goal of a tree kernel is to compute the number of common substructures
between two trees T1 and T2 without explicitly considering the whole fragment space.
Given the set of fragments {f1, f2, · · · } = F , and an indicator function Ii(n) which
is equal to 1 if the target fi is rooted at node n, and 0 otherwise. A kernel, K, can
then be defined as:

K(T1, T2) =
∑

n1∈NT1

∑
n1∈NT2

∆(n1, n2), where NT1 and NT2 are the sets of the

T1s and T2s nodes, respectively and ∆(n1, n2) =
∑|F |

i=1 Ii(n1)I(n2). ∆(n1, n2) is equal
to the number of common fragments rooted in the n1 and n2 nodes and is computed
as follows:

1. if the productions at n1 and n2 are different then δ(n1, n2) = 0;
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2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf
children (i.e. they are pre-terminals symbols) then: δ(n1, n2) = 0;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-terminals
then: ∆(n1, n2) =

∏nc(n1)
j=1 (σ + ∆(cjn1, c

j
n2)),

where σ ∈ {0, 1}, nc(n1) is the number of the children of n1 and cj n is the j-th child of
the node n. When sigma = 0, ∆(n1, n2) is equal 1 only if ∀∆(cjn1, c

j
n2)) = 1 i.e. all the

productions associated with the children are identical. By recursively applying this
property, it follows that the subtrees in n1 and n2 are identical. The computational
complexity of K is O(‖NT1‖ x ‖NT2‖). We refer the reader to the Moschitti [Mos04]
for an efficient implementation that runs in linear time, on average.

3.5 Experiments

3.5.1 Experimental Goals

The objectives of our experiments are threefold. For the first objective, Auxiliary
Domain Classification (Section 3.5.4), we begin by assessing the quality of a set
of weakly labeled sentences by comparing them against human judgments. Weakly
labeled seeds are those that have been labeled according to the heuristic properties
of sentence length, position and semantics, as outlined in Section 3.4.1. Then we
proceed by using these weak labels, we determine how well can we address the label
bottleneck problem by automatically labeling the short text in ProMED-mail and
WHO EI-knowledge bases using a weak semi-supervised learner (weak SSL). A
weak learner is a semi-supervised learner that has been bootstrapped with weakly
labeled seeds sentences. We compare the performance of a weak SSL against one that
has been trained with manual labels.

Ultimately, we are interested in providing labels for the short text in the target
domain of blogs and news according to our EI Scenario that was introduced in Chap-
ter 1. Therefore, in the second objective, we measure how well we can address the
label bottleneck problem within a target domain, using xLabel, our Cross-Corpora
bootstrapping strategy using classifiers that has been trained with weak labels from
the auxiliary domains of ProMED-mail and WHO. We consider two types of filter-
ing strategies, which we refer to as: Precision Boosting (Section 3.5.5) and Recall
Boosting (Section 3.5.6).

In the Precision Boosting Strategy, we use sentence length, semantics and position
heuristics for weak labeling and ensure as large of a divergence as possible between the
positive and negative examples by using the TopN sentences containing the named
entities and the BottomN sentences not containing medical conditions named entities.
In the Recall Boosting Strategy, we use only entity bearing sentences, regardless
of position. The Recall Boosting Strategy is to a more challenging one for an EI



52 Chapter 3 Semi-Supervised Learning with Weak Labels

classifier, since the context surrounding the entities must be discriminating to assign
an appropriate label. The purpose of these strategies is to examine how xLabel can be
employed to build a classifier that simultaneously does not overfit the target domain
(good accuracy) nor lead to recall gating (good recall).

In the third objective, Section 3.5.9, we the illicit feedback from domain experts
with the intent of determining how we can adapt our xLabel strategy to come as close
as possible to relevance judgments that would be given by an expert.

3.5.2 Data Sets and Summary

In realizing the aforementioned goals, two types of data sets were used: one for the
auxiliary domain (outbreak reports) and the other for the target domain, consisting
of a combination of blogs and news.

Target Domain: Blogs and News Blog data was collected by augmenting two
different blog collections: MedWorm, 3 a medical blog aggregator; and AvianFluDi-
ary4 (Avian). For both MedWorm and AvianFluDiary, hypertext documents were
collected for a one year period: January 1 - December 31, 2009. The new articles, we
used was collected from the url column of the PULS online fact base [SFvdG+08b],
a state-of-the-art event-based system for Epidemic Intelligence which provides public
health event summarization and search capabilities. The hypertext documents were
collected for a four month period, from September 1 - December 31, 2009, by crawling
the website. The raw text was obtained by stripping all boilerplate and markup code
using the method introduced by Kohlschütter et al. [KFN10].

Auxiliary Domain: Outbreak Reports For the auxiliary data, we used ProMED-
mail 5 and WHO 6 outbreak reports. Both are global electronic reporting system,
listing outbreaks of infectious diseases. These reports contain information about
outbreaks and public health treats, which were moderated by medical professionals
worldwide. The raw text documents were collected over a period of eight years: Jan-
uary 1, 2002 - December 31, 2009 from the outbreak report databases, freely available
online.

Data Processing The raw text documents for both the source and target domains
were processed using a series of natural language processing steps in order to extract
the classification features outlined in Section 3.1.2. Each document was processed by
applying the Standford Parser for sentence splitting; tokenization, and part-of-speech

3http://www.medworm.com/
4http://afludiary.blogspot.com/
5http://www.promedmail.org
6http://www.who.int/csr/don/en/

http://www.medworm.com/
http://afludiary.blogspot.com/
http://www.promedmail.org
http://www.who.int/csr/don/en/
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tagging. The Malt Parser 7 was applied to each sentence to construct both the parse
tree and dependency tree, structural features (Section 3.1.2).

In addition, several named entity recognition tools were applied to each sentence
to obtain the named entity features. Temporal entities were extracted using Hei-
delTime [SG12]. Location entities were extracted using the Stanford Named Entity
Recognizer taggers 8. Medical condition and organism entities were extracted us-
ing LingPipe 9, a simple dictionary based extractor supporting regular expression
lookups. Table 3.3 shows a summary of the number of document collected and the
corresponding number of sentences resulting after splitting and tagging. Table 3.4
shows the entity types and number of sentences tagged within the collection.

Table 3.3 The total number of document, sentences; and sentences contain-
ing named entities, for each type of data.

No. Documents No. Sentences No. Sentences(NER)

ProMED-mail 14,665 347,822 84,423
WHO 1,541 16,213 3,469
Blogs 8,082 227,459 22,001
News 1,431 22,331 4,187

Table 3.4 shows a summary of the amount of sentences used for experimentation
based on the named entity extracted.

Table 3.4 The number of sentences per data set for each of the three entity
types medical condition (MED); location (LOC); affected organism (ORG);
and temporal (TEM)

Entity Type MED LOC ORG TEM

ProMED-mail 195,077 134,227 47,142 26,458
WHO 9,239 8,969 4,462 2,928
Blogs 19,115 9,942 409 315
News 3,245 3,468 1,662 876
Total 402,904 53,675 53,675 30,577

To prune noisy and non-informative features, some sentences were eliminated
from the experiments. Figure 3.4, shows a distribution over the sentence lengths
(in characters) for the ProMED-mail and WHO. These distribution were used to
determine the upper and lower bounds for the sentence lengths. Based on these
distributions, sentences having a length below 12 and above 500 characters were
excluded from the experiments.

7http://www.maltparser.org/
8http://nlp.stanford.edu/software/CRF-NER.shtml
9http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/

http://www.maltparser.org/
http://nlp.stanford.edu/software/CRF-NER.shtml
http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/
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Figure 3.4 Average distribution of sentence lengths for ProMED-mail and
WHO. Based on these distributions, sentences having a length below 12 and
above 500 characters were excluded from the experiments.

3.5.3 Experimental Setting

Sentence-Level SVM Classifier and Features

The classifier used in our work was based on the implementation of SVM-TK by
Moschitti [Mos06]. Experiments with various kernels and settings: linear, polynomial
(degrees 2 through 5), RBF (gamma = 0.5, 2 .0 and 12.5) and sigmoid kernels, did
not show a significance improvement over the default kernel settings, which were a
polynomial of degree 3.

The set of features used as input to the classifier consisted of both structural
features and non-structural features. We used Penn-Tree Bank, parts-of-speech pars-
ing (POS), dependency tree (DEP); the term vector (VEC), and their combination
(POS+DEP+VEC). Also used, were the presence/absence of negative terms (e.g.,
no, not, didn’t, don’t, isn’t, hasn’t); presence/absence of a modal terms (e.g., may,
might, shall, should, must, will); and the number of a location (LOC), medicalCon-
dition (MC); affected organism (ORG) entities.

For the purpose of these experiments we assume that the temporal filter is applied
as a post-filtering stage, to exclude documents containing temporal mentions in a non-
relevant time period. We opted for this approach under the assumption that sentence
containing temporal mentions still contain relevant (non-relevant) patterns and we
did not want to eliminate such instances when building our classifier. An example
feature used in training the classifier is shown in Table 3.5.

As mentioned in Section 3.4.4, one of the main statistical properties of the maxi-
mal margin solution to classification is that its performance does not depend on the
dimensionality of the space where the separation takes place. Thus, it is possible
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Table 3.5 Example classifier feature for the non-relevant sentence: Bird
flu has killed at least 208 people worldwide out or 339 cases ; where |BT |
(|ET |) correspond to the begining (and ending) of a tree structured features
and |BV | (|EV |) correspond to the begining (ending) of the vector features,
respectively.

0 |BT | (S (NP (LEFT-M (NN bird) (NN flu))) (VP (VBZ has) (VP (VBN killed) (NP (NP
(QP (IN at) (JJS least) (CD 208)) (NNS people)) (VP (VBN (MIDDLE-L worldwide))
(PRT (RP out)) (PP (IN of) (NP (NP (RIGHT-O (CD 339) (NNS cases))))))))))
|BT | (VBN (NN (NN (M *))) (RB (L *)) (CD (O *))) |ET |
|BV | 7:1.0 13:1.0 156:1.0 240:1.0 939:1.0 1401:1.0 2255:1.0 10210:1.0 11027:1.0 20735:1.0
|BV | 3:1.0 4:1.0 5:1.0 21:1.0 49:1.0 62:1.0
|BV | 1:1.0 2:1.0 3:1.0 4:0.0 5:0.0 |EV |

to map the data points into a very high dimensional spaces, such as those induced
by using linguistic structures as features, without over-fitting. Further, a tree kernel
is capable of computing the number of the common substructures between two trees
without explicitly considering the whole fragment space. This property is useful when
the contexts defined by the text is very sparse and high dimensional. For example
when using the tree structure as features, for both the dependency and parse tree,
we have as many and 113,029 features for a training set consisting of 2,000 instances;
and 465 support vectors.

Benchmark and Metrics Used

As a benchmark, we compared the performance of our xLabel approach with the: 1)
Traditional (manual); 2) Random; and 3) state-of-the-art classification methods in
EI. We used precision (P), recall (R), F1 measure (F), and Accuracy (A), as metrics.
The performance measures are computed as follows:

Precision =
TP

(TP + FP )
(3.1)

Recall =
TP

(TP + FN)
(3.2)

F1measure =
(2 ∗ Precision ∗Recall)

(Precision+Recall)
(3.3)

Accuracy =
TP + TN

(TN + TP + FP + FN)
(3.4)

where TP = true positive; TN = true negative; FP= false positive; FN = false
negative [MRS08]. The manual classification approach, where both the training and
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testing is done using a hold-out on the manually labeled sentences for the target
domain, represents a best-case scenario.

Gold Labels For the target domain 6,328 sentences were manually labeled, 835
were positive cases; clearly revealing the needle-in-the-haystack nature of the prob-
lem given the relatively low percentage of information-bearing sentences within the
blog. The manual classifier was trained with equal amounts of positive and negative
cases using a 10-fold cross-validation. Since the SVM classifier we used performs
poorly on examples where the class imbalance is very high, all of the labeled data was
not used since only about 10-12 percent of the sentences are positive examples. In
contrast to the Traditional Classifier, the random classifier represents the worse case
scenario in which the choice for the positive and negative training examples is taken
at random from the auxiliary domains for weakly labeling sentences. For the auxiliary
domain, one judge with guidance for domain expert labeled 2,000 positive and nega-
tive sentences in the both ProMED-mail and WHO. The labeled auxiliary sentences
were used for the purpose of examining the performance of a manual classifier versus
a semi-supervised one, before it was applied in a xLabel setting.

3.5.4 Results I: Auxiliary Domain Classification

We first verified the validity of weakly labeling, using three teams of judges that each
labeled 100 sentences as disease reporting or not (positive or negative) from the topN
and BottomN sentences of ProMED-mail dataset. We assessed the reliability of the
human annotation using inter-annotator percent agreement. There was an overall
inter-annotator agreement of 86%, showing that the assumption of weak labeling has
promise in building a semi-supervised classifier. Next, we proceeded to compare a
semi-supervised classifier with manually trained classifier i.e., one in which the labels
were assigned by a human.

We trained several weak classifiers by varying the initial seed set, and averaged
their performance. The results, as shown in Figure 3.5, show the superior performance
of the manually trained classifiers over the semi-supervised one. The best performance
for both ProMED-mail and WHO for the combined features of POS+DEP+VEC have
an average F1-Measure of 92% for the manual classifier; whereas we acheive only 80%
F1-Measure for the corresponding semi-supervised classifiers.

We notice that when using ProMED-mail there is 10% reduction in performance
for the POS+DEP+VEC feature using semi-supervised learning, and for WHO the
reduction in performance is larger by roughly 20%. We believe the different between
the results for the auxiliary domains is attributed to the difference in their data sizes,
and the manner in which disease reporting mentions are expressed in the collections.
For WHO disease reports are made less frequently, hence the collection in general
has fewer types of disease reporting mentions than ProMED-mail. Also overall WHO
text contains shorter sentence lengths, as can be noticed by the distribution over their



3.5 Experiments 57

(a) Promed-mail (b) WHO

Figure 3.5 Average F1-Measure for manual versus semi-supervised classifier
on auxiliary domains of ProMED-mail (3.5a)and WHO (3.5b) using various
feature types.

sentence lengths in Table 3.4. In addition, ProMED-mail tends to cross-reference
WHO. An example positive and negative sentences using weak labels for ProMED-
mail is:

1. Ex. Relevant: Typhoid epidemic continues to spread in Kyrgizia.

2. Ex. Irrelevant: Fox predicts hunters will have a tougher time filling

permits and tags this year because...

See Appendix B for more examples of relevant and non-relevant sentences from
ProMED-mail and WHO. Finally we note that the DEP feature alone under-performs
all other features, this suggests that it might be a better feature to use in combination
with the other structure features. As a whole, even though the results of the manually
trained classifier outperforms the semi-supervised one, we propose that if, very little
or no manual annotation is possible for the task of building an auxiliary classifier
from an EI knowledge base, then seeds obtained through weak labeling (or a mixture
with manually obtained seeds) from the auxiliary domains of ProMED-mail and WHO
is a viable option.

3.5.5 Results II: Precision Boosting Strategy

In this section we consider a precision boosting strategy and in Section 3.5.6 we focus
on a recall boosting one. Precision and recall boosting are important depending upon
the task of the investigator. If for example, the investigator wants to detect a disease
reporting mention as soon as possible with a high level of confidence, then a precision
boosting detection strategy is used. On the hand, if the task of the investigator is
to monitor the prevalence of an existing set of medical conditions, then it is better
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to detect as many instances of a disease reporting mention as possible; so a recall
boosting detection strategy would be put in place.

For the precision boosting strategy experiments, we used the classifier that was
trained with weak labels from the auxiliary domains of ProMED-mail and WHO to
seed labels for the unlabeled target data, which contains a mixture of blogs and news.
The TopN entity bearing auxiliary sentences are taken as positive training examples;
and the BottomN sentences that do not containing medical conditions are taken as
non-relevant training examples. We manually labeled a set of sentences in the target
domains and measured how well the auxiliary classifier was capable of predicting
the true labels of the target with respect to Sentence Features; Sentence Position;
Sentence Length; and Sentence Semantics.

Sentence Features

The results showing which feature yields the best results for the semi-supervised clas-
sifier is given in Tables 3.6, 3.7, and 3.8. We notice that in one-to-one comparison of
the TopN sentences and training sizes, the POSVEC feature consistently outperforms
the other features in terms of precision. This shows that using the combined features
of POS and VEC, we are able to achieve a better performance than using each feature
alone.

Sentence Position

A summary of the performance for our classifier showing how the position of the sen-
tence within the document affects the weak labeling approach is shown in Table 3.6.
We compared the semi-supervised labeling against a random selection of self-labels;
and a Traditional Classifier, for which the labels were manually provided. We used
the features POSVEC, varying the training size (Size) from 1,000 (1K) to 3,000 (3K)
sentences; and using a fixed range for the sentence length consisting of 12 to 500
characters. The bold font in each table shows the maximum values obtained for
each measure. The results clearly show that in terms of precision, we obtain results
of 81.85% with the weakly labeling classifier, when compared with the Traditional
Classifier, which has a precision of 86.50%. Also, in terms of a precision, the Top1
sentence positions prove to be the best. Noticeably, the random classifier performs
significantly poorer (42.85% at best) than one which accounts for sentence position.
These results clearly suggests that the sentence position is useful for weakly labeling.
Interestingly, neither increasing the amount of training data, nor the TopN, yields a
classifier with improved performance. Since, the precision performance of the Tra-
ditional Classifier is significantly better than a classifier built using weakly labels,
this suggests that there is room for improvement, so we consider additional weakly
labeling properties in Sections 3.5.5 and 3.5.5.
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Table 3.6 xLabel Performance measures for various training sizes using weak
labeling and features consisting of both a syntactic parse tree and a term
frequency vector (POSVEC). The results for the Random and Traditional
Classifiers are also shown. Size = training data size; N = topN sentences; P
= precision; R=recall; F= F1; A= accuracy.

Size N P R F A

1K

1 81.85 60.63 69.66 73.59
2 81.17 72.15 76.39 77.71
3 78.71 70.51 74.38 75.72
4 77.27 75.99 76.62 76.82
5 76.51 79.97 78.20 77.71

Random 41.37 40.11 40.63 41.61

2K

1 81.22 62.28 70.50 73.94
2 80.76 70.23 75.12 76.75
3 78.34 73.94 76.08 76.75
4 76.89 78.05 77.46 77.3
5 76.86 76.54 76.69 76.75

Random 42.85 43.62 43.11 42.88

3K

1 79.32 60.49 68.64 72.36
2 78.35 66.53 71.96 74.07
3 76.98 74.76 75.85 76.2
4 77.05 74.62 75.82 76.2
5 75.2 76.54 75.86 75.65

Random 33.37 32.66 32.94 33.40

Traditional 86.50 90.42 88.32 88.06

Sentence Length

The results showing how length of the sentences impacts the performance of the
classifier that we build from weak labels is shown in Figure 3.6. We partitioned
the set of sentences into four parts. The division points were computed from the
quartile computation (i.e., each partition contained approximately 25% of the data),
for the sentences having a length of 12...500 characters. In order to use the same
sentence length as a division point across each TopN, we averaged the quartile values
over each TopN, and used the average to create the partitions for the experiments,
these partitions corresponded to sentences lengths (in characters) in the following
intervals: Partition1=[12· · · 69], Partition2 = [70· · · 119], Partition3 = [120· · · 171],
and Partition4 = [172· · · 500].

Based on the results shown in Figures 3.6, we see that when using shorter sentence
lengths in the range of [12...69] characters, we achieve a higher overall precision values,
when compared to using sentences in the other partitions (Figures 3.6b, 3.6c and
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Table 3.7 xLabel Performance Measures for various training sizes using Au-
tomatic Labeling and features consisting a syntactic Parse tree from the
Penn-Tree Bank parts-of-speech(POS). Size = training data size; N = topN
sentences; P = precision; R=recall; F= F1 measure; A= accuracy.

Size N P R F A

1K

1 76.61 43.04 55.10 64.95
2 76.72 64.25 69.86 72.33
3 76.24 68.34 72.07 73.51
4 75.68 73.50 74.54 74.94
5 74.44 72.98 73.67 73.92

2K

1 77.78 46.45 58.16 66.60
2 76.96 65.40 70.66 72.88
3 76.57 71.00 73.67 74.62
4 74.40 73.53 73.93 74.10
5 75.08 73.83 74.44 74.66

3K

1 77.71 46.20 57.93 66.48
2 76.14 65.62 70.46 72.51
3 75.70 71.82 73.70 74.38
4 74.64 73.52 74.05 74.25
5 76.27 74.07 75.14 75.49

3.6d). These results are in fact consistent with the results reported in previous work
using tree representations for sentences classifier[CR03]. In our case, the shorter
sentences, contain the title (or headline), which is less noise and yield better classifier
performance. We exploit, the manner in which actual outbreak information is written,
when including the title of the outbreak report as the first sentence in the scoring
scheme (Section 3.4.1).

Sentence Semantics

Figure 3.7 shows the results of our experiments when we combine the sentence length
with semantics to evaluate the performance of our xLabel approach. Using the
POSVEC feature and various training sizes, we notice that using a classifier which
incorporates NEs yields significantly higher precision results, when compared with
classifiers in which the NEs are ignored. A dense extractor (Lingpipe) extracted
roughly five times more than that of sparse extractor (OpenCalais). Experimentally
can see the extent to which such a difference in the annotation density impacts the
performance of our classifier. For the dense (Figure 3.7a) and sparse (Figure 3.7c)
classifier results, we achieve a rounded precision of 92% and 90%, respectively. In
comparison, when NEs are ignored, we achieve a maximum precision of only 81.85%,
as shown in Table 3.6, for the Top1 using a training size of 1K. We also notice in
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Table 3.8 xLabel Performance Measures for various training sizes using Au-
tomatic Labeling and features consisting of a term frequency vector (VEC).
Size = training data size; N = topN sentences; P = precision; R=recall; F=
F1 Measure; A= accuracy.

Size N P R F A

1K

1 71.23 74.04 72.59 72.06
2 70.68 78.63 74.42 72.95
3 69.62 77.12 73.15 71.74
4 68.75 79.81 73.85 71.73
5 69.10 80.30 74.21 72.14

2K

1 71.76 74.46 73.05 72.54
2 70.82 77.31 73.92 72.73
3 70.87 80.71 75.45 73.76
4 68.65 78.68 73.31 71.36
5 68.06 80.55 73.76 71.35

3K

1 72.91 73.88 73.39 73.21
2 71.08 76.43 73.64 72.64
3 70.87 80.28 75.27 73.62
4 69.63 79.97 74.43 72.54
5 68.95 81.65 74.75 72.42

Figure 3.7, that the dense extractor achieves a higher overall precision than the sparse
entity extraction. This is explained by the fact that the dense entity extractor has
substantially more training data, even for the Top1 cases (15,756 examples of which
7,878 are positive and negative).

As we see from the results presented in the Figure 3.7a we are able to achieve
precision as high as 92%. However, when we examine the recall for the classifiers that
were built from the sparse and dense entity extractors using the POSVEC features,
the results show the need for improvement. For the dense-classifier the maximum
recall was 65.71%, which is just above recall values for the Top1 sentences, as shown
in Table 3.6. In contrast the recall for the classifier built from the sparse entity
extractor, had a maximum recall value of only 53.09%. In the section that follows,
we consider what can be done to improve the the recall for our xLabel approach.

3.5.6 Results III: Recall Boosting Strategy

We now turn our attention to a recall boosting strategy determining - one in which we
desired to detect as many disease relevant reporting mentions as possible. Differently
from the precision boosting - where we used the entire structural feature, we instead
use only a portion of the structure as outlined in Section 3.1.2. Substructures turn out
to be an important type of linguistic feature, since they allow a more narrowly defined



62 Chapter 3 Semi-Supervised Learning with Weak Labels

(a) 12...69 Characters (b) 70...119 Characters

(c) 120...171 Characters (d) 172...500 Characters

Figure 3.6 xLabel Precision based on a quartile partition of the sentence
lengths into the intervals of: [12...69] characters(3.6a); [70...119] characters
(3.6b); [120...171] characters (3.6c); and [172...500] characters (3.6d), for the
POSVEC feature.

context around the relevant entities, by pruning away, as much of the structure as
possible, while preserving the relevant portions. This leads to even less noise; and
in our case a better recall performance, when compared with the recall obtained for
the Precision Boosting Strategies. We use shortest tree path enclosing the first and
last entity. In addition to substructure features, we also used generalization, in which
the entity name is replaced with its type (as discussed in Section 3.1.2). Also, up to
now, we only used sentences that did not contain medical conditions in the BottomN
training set. In this phase of the experiments we use entity-bearing sentences only
for assigning weak labels.

Table 3.9 shows the precision, recall and F1-Measure for the recall boosting strat-
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(a) Dense:12...69 Characters (b) Dense:70...119 Characters

(c) Sparse:172...500 Characters

Figure 3.7 xLabel Precision based on a partition of the sentence lengths for
two dense entity extractors with sentence lengths: [12...69] characters (3.7a);
and [70...119] characters (3.7b). The results using a sparse entity extractor
with sentence lengths [172...500] characters is also shown (3.7c).

egy for different sentence lengths and positions. Overall, regardless of the sentence
length and its position, the recall is significantly improved when compared with the
recall for the best Precision Boosting strategy; whose maximum recall was 65.71%.
In constrast, the best F1-Measure performance for the Recall Boosting strategy is ob-
tained when using sentence lengths in the range of [12-500] characters; with a value
of 89% in recall. Using a combinations of ProMED-mail and WHO showed no sig-
nificant improvement, over using ProMED-mail alone: this is because ProMED-mail
essential contains the text of WHO. For the same range of [12-500] characters, we
also notice, that using Top2 sentences leads to a better recall boosting classifier, than
using Top1 sentences.

These results suggest that the steps taken to generalize the auxiliary instances:
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by i) replacing entities with their class; ii) using a broader range of sentences (all
entity-bearing); and iii) incorporating the entire range of sentence lengths ([12-500]
characters) - we are able to improve the auxiliary model’s recall when classifying the
target data - and avoid overfitting with respect to the target domain.

Table 3.9 xLabel Performance measures for a recall boosting strategy that
uses substructures, structural generalization and entity bearing sentences
exclusively for weak labeling with a training size of 2,000 instances. Aux.
Domain= auxiliary training corpus; Length = sentence length in characters;
P = precision; R=recall; F= F1 Measure.

Aux. Domain Length P R F

ProMED:Top1

[12-500] 78.91 95.14 86.27
[12-69] 71.78 97.32 82.62
[70-119] 77.17 93.22 84.44
[120-171] 77.88 90.96 83.91
[172-500] 80.75 79.88 80.31

ProMED:Top2

[12-500] 81.25 98.29 88.96
[12-69] 73.40 96.49 83.37
[70-119] 77.52 92.88 84.51
[120-171] 78.95 93.17 85.48
[172-500] 80.96 89.43 84.98

WHO:Top1

[12-500] 84.92 88.22 86.54
[12-69] 81.05 79.43 80.24
[70-119] 84.77 92.31 88.38
[120-171] 85.71 93.48 89.43
[172-500] 84.55 87.87 86.18

ProMED+WHO:Top2

[12-500] 82.66 98.74 89.99
[12-69] 73.45 95.76 83.14
[70-119] 77.52 92.88 84.51
[120-171] 81.24 90.37 85.57
[172-500] 81.75 84.05 82.88

3.5.7 Discussion

The experiments presented above allow us to see that the properties of Sentence
Position, Sentence Length and Sentence Semantics do, in fact, impact the ability of a
classifier built from the weak labels to detect the relevant disease-reporting sentences
and several points should be noted regarding of the properties.
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Weak Labeling

Sentence Length: The results for sentence length have shown that using shorter
sentence lengths in the range of [12..69] characters, yields the best performance for the
Precision Boosting strategy. In constrast, for the Recall Boosting strategy, the best
performance is obtained when a larger range of sentence lengths ([12-500]) was used.
Given the fact that we used a syntactic parse tree as an underlying representation and
a tree kernel method, we were able to generate a high number of syntactic features
from syntactic fragments, from which the classifier could learn.

Sentence Position: It should be noted that the Sentence Position is not indepen-
dent of Sentence Length. The shorter sentences that appear in the top first and
second positions in the outbreak reports consist of titles, which suffice to summarize
the reports; and offer a precision of up to 92% was obtainable. Using more TopN sen-
tences in these cases, did not lead to an improved classifier performance. Moreover,
in terms of the classifier learning rate, with as little as 1,000 examples, our classifier
is able to reach this peak performance.

Sentence Semantics: Finally, we note that we achieve the best overall performance
using a more dense named entity extraction tool that was built using a dictionary
matching algorithm to extract entities. We find that the additional overhead required
for the entity extraction, is worth the benefit, since we see that there is a substantial
gain in term the classifier performance for both the Precision and Recall Boosting
strategies.

Trade-offs of Tree Kernel

Feature Engineering: Tree Kernels allows linguistic structures to maintain their
(discreet) structural properties during classifier training. Kernel based approaches are
useful when defining features for semantic tasks is not easily formula-table. In prac-
tice, most kernel-based systems, have augmented non-structural features, to achieve
a performance boost. Finally, we point out that kernel based methods have not yet
made thier way into the domain of public health.

Kernel Computation: Kernels can be computationally expensive for large vol-
umes of data and time sensitive tasks. For some complex kernels, such those in the
state-of-art work by [RKP10, FRP09], using dependency parse tree kernel, it took
up to twelve hours to train their best kernel. In time sensitive tasks, such as surveil-
lance, this turn-around time can be prohibitive. In our case, we relied upon the Tree
Kernel SVM of Moschitti [Mos06]; which operates with a complexity of O(m+n), on
average.
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Feature Construction: Linguistic structures (structural features) must be built
for both the training set and the new, unseen examples on which the classifier is
deployed. Depending upon the amount of data, a full sentential parse may also be
prohibitive. An alternative is to use shallow parsing [ZAR02] such as: chunking to
dividing sentences into noun or verb phrases [AA91]; or parts-of-speech tagging,
which assigns a syntactic label such as NP to a chunk. Although we do obtain a
performance boost with a composite kernel (structural and non-structural features),
compared to vector-based features alone, when a time-critical deployment strategy is
needed, it is better to use tokens features, if the full sentential parsing is too costly.

Parse Tree and Grammar: Parse trees semantics are not always clear. Parse
trees may share similar structure, but have entirely different meaning. Conversely,
parse trees may be structurally different, but actually mean the same thing. Finally,
some long range similarities may be missed because no common subtree in the kernel
computation covers them. Our goal was the assessment of structure features, but
this was tied to the SVM implementation we used. MaxEnt classifiers have recently
been reported to have a better performance than an SVM on certain tasks. It is
an open question as to whether this is the case for short text used here for EI; we
consider this in future work. Finally, we also note that we assumed our short text to
be grammatically correct, hence, we were able to make a sentential parse of for the
tree kernel. When is comes to grammatically incorrect text such as tweet our kernel
approach is not as effective. and the pure vector is likely to be a more promising
feature type.

EI Knowledge Bases: In order to overcome the expense associate with creating
a sufficient size training set, distance supervision has been used. These systems
overcome the burden of requiring hand labeled training data and has shown success
with Wikipedia info-boxes and YAGO as auxiliary text. One common limitation,
however, is in finding the so -called universal knowledge base that is suitable for the
task.

3.5.8 Comparison with the State-of-the-Art

Short Text Classification

Finally, we compare the performance of the xLabel approach to reported results for
the similar sentence-level classification tasks [Zha08, NSC10b]. Work has been done
by Zhang [Zha08, yZhL09] for classifying disease reporting sentences. In their work,
an F1 measure value of 76% is reported. When considering sentence position alone,
we obtain a comparable F1 of 78.20% (see Table 3.6) instead, using weakly labeling.
Work has also been done by Naughton et.al, [NSC10b]to detect events in sentences.
The focus of their work was not on e-EI, but on the more generic Automatic Content
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Extraction (ACE) event types. They achieved an F1 measure of 90% for the event
type Die, which contains incidences of death due to traffic accidents and natural
disaster. These results were based on using 5,000 features, that were subsequently
pruned using information gain theory. In contrast to this work, our F1 measures are
much lower for the precision boosting strategy and only slightly low for the recall
boosting strategy.

One of the major drawbacks of short text classification at the sentence level, is
the assumption that all the context is available within a single sentence (compared
to a document). Patwardhan addresses the problem of limited token by expanding
the field of view around key sentences to include their surrounding sentence [PR09].
Future work includes steps in this direction. Finally, we note a limitation with all
semi-supervised strategies that use the most confidently predicted candidates to build
the training set. A common problem is that if the classifier makes a confident, but
incorrect prediction, the example is still fed into the next round to the the same clas-
sifier. Co-training is a common approach to handling such limitations [BM98] when
the features are capable of being split into non-overlapping views. In our experiments
with co-training we found it difficult to find appropriate non-overlap views, using
the features presented here. Further work would be needed to devise such a set of
dichotomous features for co-training.

Automatic Labeling: Work has been done in several areas to reduce the human
labeling effort [TSZ07, FKG+09]; one such area is active learning [MS09, TSZ07,
Set09]. Active learners are self-learning systems that: i) may construct their own
(learning) examples; ii) request certain types of examples; or iii) determine a set
of unsupervised examples that is most usefully to be labeled. The human effort in
labeling a set of data is reduced, since the learner queries the human for labels of
intelligently chosen examples. Much of the work done in this area has focused on
techniques for selecting the unlabeled instances that are to be labeled. This differs
from our approach since no human interaction is assumed in order to acquire labels.

Supervised Detection

Numerous supervised classifiers exist for detecting disease reporting events within
unstructured text [CCD09, KBHT09, Zha08]. The work done in [DKCC08] incor-
porated the use of roles within epidemiological processes. Roles are central within
ontological modeling because they encapsulate how entities are involved in processes
and situations. In future work done by the same authors. [DKCC08] they addition-
ally incorporated the use of three types of roles within epidemiological processes: a)
case; b) transmission medium or vector (e.g., nonhuman, product or anatomy ); and
c) therapeutic agent (e.g., chemical substance). Roles are central within ontological
modeling because they encapsulate how entities are involved in processes and situ-
ations. Using a combination of entity types and roles, they are able to acheive an
F-Measure of 85.54% (Precision=83.74%; recall=87.43%) using the PERSON entity
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and case role, with a Support Vector Machine (SVM).

In the work done by Conway,et.al [CCD09], semantic features include the use of
hedges; the means by which writers can present a proposition as an opinion, rather
than a fact. Some example hedges used in their work include: reported, suspected,
probable, or suspect. A classifier built using hedges and unigram features achieved only
a slight improvement compared with one that used unigram features alone. Interest-
ing, using hedges they were able to associate a high, medium and low speculative
category, to both relevant and non-relevant classified documents, thereby associating
a form of confidence level to the classified documents. Collier et.al, [CDKC09], use
WordNet style synonym sets in order to capture the distinctive semantic character-
istics verbs and nouns within disease outbreak reports. KelBle09 [KBHT09] seeks
to classify the documents from ProMED-mail outbreak reports using a Digramic
Bayesian Classifier (DBACl) into event, nonevent and spam. Also at the sentence
level, the work done by Zhang et.al, address the challenge of identifying the location.

In all cases, the authors incorporate the use of some type of semantics in order
to capture relevant entity co-occurrences within a document. A limitation however is
that they all also use manually labeled data to build their models. In our work, we
seek to go beyond the human effort associated with building a training a supervised
classifier by taking an limited supervision approach to detecting disease reporting
mentions.

3.5.9 Results IV: Expert Interpretation and Assessment

We now turn our attention to a case study in which we seek to determine, which set
of relevant sentences are best. The goals of our study was to: i) illicit feedback so
we could determine how to adapt our xLabel strategy to come as close as possible to
relevance judgments that would be given by an expert; ii) determine what percentages
of the sentences that are labeled as relevant by the supervised classifier are considered
relevant by domain experts? Ultimately we want to use the filtering sentences as
input to detecting temporal anomaly (or signals); so we want to ensure that signals
are being generated from sentences that the experts would consider to be relevant.
If non-relevant sentences are being used to generate signals, this could lead to false
positives and result in an overload for the domain experts.

We will refer to the sentences that have been labeled as relevant by the classifier
as a ”trigger sentence”. We used the precision boosting strategy to build the target
classifier and used the classifier to labeled a total of 2000 sentences from combined
news and blogs. For the study we attempted to reconstruct a portion of the context
surrounding the trigger sentence, in the form of an incident report,i.e., short snippets
consisting of at most 3 sentences, including the trigger sentence and the two immediate
sentences following the trigger sentence.
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Experimental Setting

In an initial validation step (before user assessment) we constructed incident reports
using only the top 100 most confidently classified sentences. As can be seen in Figure
3.8 the top 100 sentences all followed a similar structural pattern involving maladies
in the form of an affected organism as a case of some disease.

Figure 3.8 Examples of the incident reports selected from the most confi-
dently classified instances.

From this, we could clearly see the impact of the structural features in grouping
case mentions as relevant instances. However, we wanted to avoid presenting triggers
sentence with repetition to the user. Thus, we opted to build incident reports using a
random subset of the relevant triggers only. Notably taking a random a subset of the
relevant sentences also implies that the least confidently classified instances would
also be included. Examples of the randomly selected incident reports are shown in
Figure 3.9. We believe that a random selection from all the relevant classified to
be more insightful with regard to the goal of determining how we could adjust the
classifier performance to mimic the judgments that would be provided by and expert.

Data: Data for testing consisted of 100 trigger sentences (labeled relevant by
the supervised classifier) partitioned into groups of 50 sentences and converted to
incident reports. Experts were asked to label the incidents in one of three categories:
relevant with respect surveillance at a national level; not relevant; or undecided. The
assessment was done by nine domain experts; consisting of the Mekong Basin Disease
Surveillance, World Health Organization; and European Centers for Disease Control
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Figure 3.9 Examples of the incident reports selected at random from the
classified instances.

(ECDC). As well, domain experts from the Joint Research Center in Italy, National
Health Agencies in Germany (Robert-Koch Institute) and France (Health Institut
de Veille Sanitaire); and a State Health Agency in Niedersachsen, Germany. Eight
participants labeled 50 sentences, and one participant labeled all 100 sentences, in
total 500 instances of sentences were labeled.

Users were instructed as follows:

Instructions: In this evaluation you will be presented with a set of sentences in
bold text, which may be potentially relevant as input for generating a signal. Your
task will be to judge whether the sentence is actually potentially relevant or not, from
a clinical or epidemiological point of view.

1. Please read the sentences in bold text. If the meaning of bold text is not clear,
then read the non-bold text immediately following the bold text.

2. After reading the text, put an X in one of the three circles: Relevant, Undecided
or Not Relevant, according to the following:

Relevant: if the sentence has the potential to be clinically or epidemiologically rel-
evant for generating a signal.

Undecided: if you are undecided about the potential of a sentence to be clinically
or epidemiologically relevant for generating a signal.

Not Relevant: if you do not think a sentence is potentially clinically or epidemio-
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logically relevant for generating a signal.

3. If you mark a sentence as ”Undecided ”or ”Not Relevant” briefly comment why
in the space provided.

Agreement Among Experts

Table 3.10 shows the overall percent agreement, PA, among the experts for the five
teams. PA(i) for a team,i, is computed according to:

PercentAgreement(i) =
agreement

total

where agreement is the number of agreements among the judges within a team and
total is the total number of units that where judged by the team. Percent agreement
is bounded by 0 and 1.0: an agreement score of 0 represents no agreement, and a
score of 1.0 represents perfect agreement [AP08].

Table 3.10 Per-team percent agreement for the relevance judgments of ten
EI field practitioners and the overall average among the teams.

Team No. Percent Aggreement
1 0.73
2 0.54
3 0.80
4 0.63
5 0.85

Average 0.71

Although the percent agreement is a simple agreement metric and does not take
into account agreement to due to chance, we can observe the variations in the agree-
ment across the teams and among the judges. We believe this variation to be due in
part to the fact that the experts have a wide range of expertise and diverse respon-
sibilities as EI investigators and we take this agreement measures into account when
drawing final conclusions.

Expert and Classifier Agreement

Of the 500 instances that were labeled by the domain experts, the following results
compared with the classifier were obtained:
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• 275 instances of the incidents were considered to be relevant;

• 170 instances of the incidents were considered to be undecided;

• 55 instances of the incidents were considered to be not relevant.

Although 55 of the incidents that were classified as relevant by the classifier were
not considered relevant by the domain experts. However, there is room for improve-
ment since many of instances were undecided. The comments given by the users
provide useful insights and in Table 3.11, we examine the user comments to under-
stand these results in more detail.

Table 3.11 Summary of user comments obtained by manually grouping sim-
ilar explanations given by the users during their assessment of automatic
filtering classifier labels. The value in parenthesis denotes the comment’s
frequency.

Not Relevant Category Comments

Off Topic (29) advertisement, clinic trial, vaccination
campaign

Historical(11) outdated information
Non-Transmittable (9) non-infectious disease
Personal Opinion (7) expresses opinion of author
General Information (45) not epidemiologically significant, litera-

ture review
No Outbreak (37) no threat (action) required
Relevant Category
Useful Knowledge (17) new strain
Monitoring (7) relevant for detection and monitoring

Undecided Category

Not Enough Information (11) confirmed case missing information symp-
toms or pathogen

Depends (10) what illness; number cases; when, where
take place

In some categories refinements to improve the classifier are easy. For example,
with the category Historical, outdated information can be handled with an appro-
priate temporal filter. Also refining a list of medical conditions could help improve
the fact that the classifier detected sentences containing Non-transmittable diseases
as relevant. The category Not Enough Information suggests that even though we
provided snippets of three sentences, there was still not enough information for the
users to be certain about the relevance of the incident. We believe this is due, in
part, to the fact that we only used sentences following the trigger and it would be
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useful to build context from the sentences also proceeding the trigger sentences as
well. This also has to do with the nature of short text classification in general and
a broader scope may help to tackling this problem. For example, users commented
that if no reason was explicitly linked to the medical condition, then it was hard for
them to make a relevance judgment.

More challenging categories are: Personal Opinion and General Information. Text
if often written in a factual way, but may not be useful epidemiologically. For example,
whether an outbreak is relevant for an expert, depends of context of the user; their
area of responsibility; or whether the cases have been imported into their country.
Some users found messages that originated from a health department useful, while
other users preferred the text that was identified strictly from the non-official sources.

Another important challenge in filtering, was the distinction between detection
(sudden outbreak) versus monitoring (ongoing activity of a particular disease at a
global level). For domain experts these are separate tasks, and they expect results to
be filtered along these lines as well. For example, decreasing activity is not relevant for
outbreak, but relevant for monitoring. Users suggested a widget whereby they could
see information about general events, and not necessarily those related to outbreaks.

3.6 Chapter Summary and Outlook

On the onset, building a text filter for the task of EI seemed rather straightforward,
but in practice, building a single automatic classifier to meet the needs of such a
diverse set of epidemiologists is a challenge. In future work we will focus on an
ensemble of staged classifiers, rather than a single, universal one . An
ensemble of classifiers would then allow us to tune the classifier to different types
of information needs such as a filter for travel related infections; or a classifier for a
particular concept, such as personal versus non-personal text. Also in future work, we
will use clustering to group relevant instances and present incidents from clustering
instead of a random selection as was done in this case study.

In our case study, we built our self-trained classifiers, by selecting the most confi-
dent instances at every iteration, to include as a new training instance for the following
iteration. Using a most confident selection strategy automatically avoids including
any instances for which the classifier is uncertain; but this does not imply that the
uncertain instances are not good discriminators for the classification task at hand.
The impact of a most confident selection strategy is that it is more difficult to build a
classifier with a high accuracy (not recall gated). We also realize that when it comes
to domain expert assessment forms of personalization and adaptation are needed to
cope with the individual tasks.

One of the limitations of this case study, was that we did not get feedback from
the users on the possible false negative predictions that were made by the classifier.
Finally, as previously mentioned, one of the major drawbacks of short text at the
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sentence level is the assumption that all the context is available within a single sen-
tence. Existing work to address this problem expands the field of view around key
sentences to include their surrounding sentence [PR09]. Ongoing work in this direc-
tion already shows promise with an F-Measures of 90% using named entities features
for German text with a traditional classification task and a Support Vector Machine
as a base classifier. Future work is needed to assess the performance level achievable
for semi-supervised learning in the same setting.

In this chapter we have demonstrated that with our xLabel approach, it is possible
to exploit the domain knowledge from disease outbreak reports to build a binary,
syntactic parse tree-based, classifier that is capable of detecting disease reporting
sentences in blogs and news. Our experiments show that with weakly labeled training
data, we achieve a precision of 92% for the Precision Boosting strategy and a recall
of 89% for the Recall Boosting strategy.

In the chapter that follows, we consider a selection strategy that focuses on using
the least uncertain instance during the semi-supervised selection. Since the vast
majority of recent work in EI is now devoted to disease reporting mentions in Twitter,
we do so for the sparse text of Twitter messages.
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Active Learning with Label Resolution

1

In this chapter, we focus on automatic text filtering using limited supervision with
sparse text. The sparse text we use consists of tweets, or Twitter messages. In the
medical domain, there has been a surge in detecting public health related tweets for
Epidemic Intelligence (EI). Twitter is a popular micro-blog service that continues
to surge as a means of sharing information in social networks. Given its real-time
nature, coupled with the ease with which content can be created Twitter messages
(or tweets) are now seen as a valuable auxiliary of relevant information for intelligence
gathering tasks, such as natural disaster detection [SOM10, VHSP10] and tracking

1Image under License from Fotalia http://http://de.fotolia.com/
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flu outbreaks [AMM11, CSN11, Cul10, PD11b, SKdQ10, SKL11, Dre12].

Unlike the short text presented in Chapter 3, sparse text is significantly different.
Thus in Section 4.1, we begin by providing the reader with a deeper insight into
what constitutes a disease reporting mention for tweets. We present examples of
relevant and non-relevant disease reporting mentions and guidelines for defining the
relevance criteria. We then motivate the active learning approach we take to detecting
disease reporting mentions within sparse text. After providing an overview of related
work, in Section 4.2, we then delve into the details of our LaSAL, approach (in
Section 4.3), which uses semi-supervised clustering in an active learning setting to
tackle the label bottleneck problem by mitigating the costs associated with a budgeted
labeling strategy. In LaSAL, we attempt to offset the burden on HIT workers, by
selecting from the large pool of unlabeled data points, a small, but productive number
of instance that would still allow us to build a quality classifier, with as low a cost as
possible. In Section 4.4, we present the experimental results validating our approach,
including the results of a case study assessing the quality of HIT labels compared with
experts. Finally in Section 4.5 we present a summary and outlook for the chapter
that follows.

4.1 Sparse Text Characterization of Disease Re-

porting Mentions

4.1.1 Relevance Guidelines for Tweet in EI

Twitter is a micro-blogging service which serves as a means for sharing large volumes
of real-world events ranging from a user’s personal status to news reports. A tweet is a
highly dynamic short, multilingual text, containing up to 140 characters. In addition
to its sparsity, tweets have many peculiarities. They may consist of abbreviated lingo,
URLs, and tweet tags or hash-tags. A tweet may refer to another tweet that was
originally posted by the others (called a re-tweet); or a tweet may contain a mention
to other tweeters (via “@” symbol). Despite these peculiarities, (in comparison to
full and short text) Twitter messages are seen as a rich source of information.

Unfortunately, we found that related works in EI using Twitter do not expli-
cate their relevance criteria. In an effort to address the needs of our EI system we
undertook the task of first labeling tweets to better understand how they could be
characterized. We summarize the work done in the context of the M-Eco project
to develop labeling criteria for tweets. Then in conjunction with domain experts we
converge on a set of criteria that we used in this work for determining the relevance
of tweets for the task.

Unlike existing work in the domain of EI, the annotation guidelines set forth in by
Collier et al. [CKCC09] for full text; as well as the criteria we outlined in determining
a relevant disease mention in short text (Section 3.1 ); simply do not apply to sparse
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text. The main reasons, similar to sentential level detection, is that diseases may
be mentioned in a tweet in contexts, which do not imply relevance. This ambiguity
problem is compounded by the sparsity and peculiarities of tweets. Within the M-Eco
project, work done by Mustafa, et.al set forth the following criteria for determining
a relevant tweet.

1. Putative Case, e.g, three Chinese are suspected to have swine flu.

2. Probable Case, which is a suspect case with some evidence like X-rays

3. Confirmed Case, which confirms that someone is directly infected by an out-
break.

4. Self Reporting, an individual mentions that they currently have symptoms or
ailments associated with and infectious disease

5. Third Person Reporting, an individual mentions that someone they know cur-
rently has symptoms or ailments associated with and infectious disease

A tweet was considered relevant when an individual person is providing informa-
tion about his own or someone else’s health status and irrelevant does not fulfill this
criteria. Any tweet which confirms that there is no case or which contains text that is
unrelated to a case is labeled irrelevant. Examples of relevant and irrelevant instances
of tweets are shown below.

Examples of relevant tweets:

Any tweet should be labeled as relevant regardless whether it is a confirmed,
putative or probable case, if:

1. It confirms that the user is infected with a disease or symptom, e.g, I am sick
now. I got influenza and I need medicine,

2. It confirms that another subject (e.g., animal, ) has a disease or symptom,

3. A test result is mentioned which confirms an infection, e.g. Tyler is influenza
positive!!!!.

4. A suspicion is mentioned, e.g., my son is suspected to has swine flu.

5. Another outbreak or danger is described.

Examples of irrelevant tweets: An irrelevant tweets is any tweet that:

1. is a question, e.g. What is this Bieber Fever Thing?

2. contains a condition, e.g. If I have the flu again I will kill someone.
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3. offers advices like #Kids health:you should prevent your child from getting
#dengue fever

4. negates an infection, e.g, I don’t have measles,

5. contains a disease definition, statistics, or describes past outbreaks, jokes about
diseases or outbreaks.

6. is outside of the disease outbreak domain.

Mustafa, et.al also take into account verb classes as a set of useful features; ex-
ample trigger verbs are shown in Table 4.1.

Table 4.1 Examples for useful words for labeling a tweet as relevant

Word Category Example
Infection Verbs affect, infect, got, come down, suspect, down with, have,

has
Detection Verbs find, confirm, detect, discover
Medical Terms death, fatality, case, hospital, patient, victim, clinic,

pain, ill, sick, ache, doctor, outbreak, hurt, inflamma-
tion, negative test

4.1.2 Feedback from Domain Experts

After the initial information gathering stage, together with epidemiologists, we re-
fined the above set of criteria so that even non-domain experts could apply the cri-
teria consistently. In this way, we could tackle the label bottleneck with a budgeted
strategy and obtain relevance judgments from hired non-expert, Human Intelligence
Task (HIT) workers, within an active learning setting. Table 4.2 lists the criteria we
developed with domain experts to decide if a tweet is relevant for EI or not.

Table 4.2 Criteria for labeling tweets according to their relevance for
EI in conjunction with domain experts.

Relevance Description

Relevant Somebody reports himself or another person being ill

Irrelevant No one is suffering from symptoms; i.e., mentions refers to opinion,
advertising, jokes, music, books, films, artists, landmarks, sporting
events, slang, etc.

The criteria are notably less strict then, short and full text criteria, and often
times in practice a relevance judgment is not to make, given the limited information
contained within a tweet, but experts found these criteria easier to apply.
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Table 4.3 Examples of Irrelevant Tweets for the task of Epidemic Investi-
gation.

Literature ”A two hour train journey, Love In the
Time of Cholera ...”

Music ”Dengue Fever’s “Uku,” Mixed by Paul
Dreux Smith Universal Audio...”

Marketing ”Exclusive distributor of high qual-
ity #HIV/AIDS Blood & Urine and
#Hepatitis #Self -testers.

Vaccination
Campaign

”Rotavirus vaccine greatly reduced gas-
troenteritis hospitalizations in children: ...

General ”Identification of genotype 4 Hepatitis E
virus binding proteins on swine liver cells:
Hepatitis E virus...”

Negative ”i dont have sniffles and no real cough-
ing..well its coughing but not like an in-
fluenza cough.”

Joke ”Thought I had Bieber Fever. Ends up I
just had a combo of the mumps, mono,
measles & the hershey squ...”

Off Topic ”Its raining like severe diarrhea”
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4.1.3 Ambiguity and Limited Context of Tweets

The examples presented above represent rather clear cut cases. Given the lack of con-
textual information, we found is was even challenging for the experts to determine
if a tweet is relevant or not. Given the volume of tweets, an automatic interpreta-
tion is necessary, yet challenging, due to the variance in content, ambiguity of lan-
guage, and sparsity of the text. Consider the following tweets. ‘‘This condition is

making me sick?’’ which could imply that somebody suffers from a medical con-
dition, where as the tweet ‘‘...Beraee is my buddy cough, cough future wife

cough’’ does not explicitly mention aliment, but uses injection to express feelings
about some situation. Whereas tweets such as: ‘‘face it me and ace is sick

like malaria carriers’’ mention infectious disease used as analogy or metaphor.
Still further, the mention of symptoms such as fever, cough, headache or infec-
tious diseases such cholera, anthrax in English natural language can be used to
express many concepts from the excitement over an event: ”Royal Wedding Fever”;
”Spring Fever”; liking for a celebrity: ”Justin Bieber Fever”, ”Austin Fever”, ”Canuck
Fever”; preference for human characteristics: ”Scarlet Fever”, ”Korean Fever”; ”Yel-
low Fever”; performing artist: ”Anthrax Band”; book titles ”Love in the Time of
Cholera”, etc. These examples only represent the tip of the iceberg.

We see from these examples, that in addition to the limited context, we are also
faced with the problem of discriminating the sense of a word. In the section that
follows, we discuss semi-supervised learners that seek to tackle the problem of limited
supervision while simultaneously handling the exclusion between ambiguous concepts
that are being learned.

4.2 Related Work

4.2.1 Semi-Supervised Learning with Mutual Exclusion

One of the main challenges faced by many learners, is the ability to handle the mutual
exclusion between relevant and irrelevant target concepts. Naive approaches operate
under the one-sense-per-meaning principle, namely, that: (1) terms only have a single
sense; and (2) context used to represent the concept only extract terms with a single
sense. This assumption that context are mutually exclusive is, in general, for human
language text far from true in practice, as illustrated by numerous examples in Section
4.1.3.

For semi-superivsed learning this problem is surfaces as semantic drift. Semantic
Drift occurs when a term with multiple senses is selected and incorrectly incorporated
in the training data. As a result, the context of candidate instances tend to become
more similar to the recently added instances, drifting away from the context of the
seeds and the high precision instances of the early iterations. In the semantic drift
problem, the goal is to maintain a word’s sense, and additionally its labels (relevant
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or irrelevant) along with it.

Bootstrap aggregating (bagging) [MC09] is a general approach which seeks to ex-
ploit knowledge from multiple views over the data. It proposes to combine multiple
supervised learning models trained by randomly resampling data from the same source
training set. In contention methods, such as mutual exclusion bootstrapping [CMS07]
Weighted MuxB [MC09], multiple semantic categories simultaneously compete with
one another in an attempt to actively direct categories away from each other. In
agreement based methods such as: co-training [BM98], instead of asking a human,
the response from multiple classifiers is used, and resolution of a label is accomplished
by specifying an agreement (disagreement) strategy on the labels provided by each
automated prediction. Mutual exclusion in bootstrapped learning has also been en-
sured by manually craft negative categories [McI10] and knowing which tasks share
semantic spaces, in coupled learning [CBW+10]. In general is difficult to predict if
a category will share overlapping context and compete with other target. Moreover,
the success of the approach also greatly depends on the negative categories.

In bootstrapped learning, clustering has also been used to ensure mutual exclusion
in the presence of semantic drift [CMS07, MC09]. The underlying intuition for using
clustering to support mutual exclusion is that we can disambiguate a concept by the
words it co-occurs with [PP04]. We build upon this basic assumption and incorporate
the use of clustering. Differently however, these works is the sampling method used.
These passive passive learners selects the most confidence instances at each iteration.
However, we employ an aggressive selection strategy - using the most uncertain in-
stances at each iteration of the semi-supervise learning process. Moreover, we seek
advice for labeling data from humans with a limited budget, thus take up an active
learning approach.

4.2.2 Active Learning with Clustering

Active learning (AL) is a methodology for building a trainable classifier, that attempts
to reduce the cost or burden of manually labeling training data. Clustering has also
been successfully used in many active learning strategies to help reduce the number of
queries needed [NS04, BMC11]. They start by clustering the entire pool of unlabeled
data (global clustering) and then select for each cluster a set of instances to be labeled
by the oracle. However, such approaches have been known to suffer when: (i) no
obvious clustering exists; (ii) clusterings exist, but are at an unknown granularities;
(iii) the classifier labels themselves are not be aligned with the active learner clusters
(label-cluster alignment problem) [Das11].

In our approach to active learning, we also using clustering techniques to help
reduce labeling costs, but in unlike existing active learning approaches, we not only
tackle the problem of ensuring mutual exclusion; but also use semi-superivsed learning
as an additional mechanism to tackling the problem of have a limited amount of
training data to build the learner. Moreover, we perform a locally clustering (i.e.,
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during each iteration of the semi-supervised learning process) as opposed to a global
clustering strategy. Local knowledge captures the state of the current inferences and
feature for the latest batch of data.

Finally we build upon generative model for clustering tweets. The fundamental
difference is that a generative model describes how instances of each class are gener-
ated (commonly denoted by plate notation); For example the model associates each
tweet with some (latent) topics and each topic with some significant words. A dis-
criminative model on the the other hand, does not specify how to generate instances,
but rather by specifying how to divide up the space into class regions. In our ap-
proach we also seed to simultaneously seek to minimize the side-effect of mislabeling
by taking into account confidence levels to capture the conditions under which we can
trust the clusters. In the section that follows, we introduce terminology to describe
our problem more formally and then present the details of our approach.

4.3 LaSAL: Semisupervised Clustering with Ac-

tive Learning

4.3.1 Motivation

In Chapter 3, we tackled the label bottleneck problem using forms of weak labeling,
and semi-supervised learning (SSL). In this chapter we integrate the limited super-
vision approach of SSL with a budgeted labeling strategy, or active learning. During
the process of SSL we pro-actively select instances, with the intension of building
the best performing classifier, with as few requests as possible, for a fixed budget.
Independent of the query selection strategy employed, the central problem faced in
all active learners is one of measuring the information content of the unlabeled data
point and the use of sampling the most uncertainty instances has consistently been
showed to be a simply, yet effective query selection strategy, yielding a good classifier
performance that converges with fewer requests for labels[TK02].

Ideally, we would like to select the most uncertain samples, (thereby having a
fast converging classifier) but also resolve the labels without human intervention.
Specifically, resolving as many of the labels for uncertain samples as possible without
asking an oracle, would allow us to tackle the label bottleneck problem and reduce
the cost associated with our budgeted labeling strategy. This is the aim of this work.

Existing approaches to active learning have used clustering to reduce the number
of annotations that would be otherwise be deferred to a human, but suffer when
the classifier labels themselves are not aligned with the active learner clusters (label-
cluster alignment problem) [Das11]. In our work, we also use clustering to reduce
the number of annotation needed, but facilitate the assessment of a true label for
a dubious instance with a semisupervised clustering based on a Partially Labeled
Dirichlet Allocation (PLDA) [RMD11]. The PLDA allows us to align the clustering
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with the labels of the training instances. We refer to our approach as Label-Aligned
Semi-superivsed Active Learning or LaSAL.

4.3.2 Terminology and Overview

An overview of our approach to Label-Aligned Clustering (LAC) using pool-based,
semi-superivsed active learning is depicted in Figure 4.1. It is similar to the the SSL
algorithm outlined in Algorithm 2. The main differences however, are: oracle inter-
vention, which is needed, since we now select instances that have the most uncertain
classifier predictions, and a component which attempts to automatically resolve the
labels of these uncertain instances. This is in stark contrast to the approach taken in
our previous chapter, in which the most certain classifier predictions were used, no
human intervention was considered.

Figure 4.1 Overview of a LaSAL, a pool-based semisupervised active
learner using label-aligned clustering for reducing the number of queries pre-
sented to an oracle.

We start with a small set of initial Labeled Data (or seeds), S = {s1, ds2...sl} ∈
RN , representing instances of documents that have been manually labeled by a human
as either relevant, +1, or irrelevant, -1 with respect to our task. Throughout the
discussion, we ignore the distinction between relevant or irrelevant instance when
doing so lends to no ambiguity.

Classification Training. We use a pool-based active learning. A pool-based active
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learner is a quadruple, Γ = (H,Q,S,U), where U = {u1, u2...ul} ∈ RN is a set of
Unlabeled Data instances; H : U → l ∈ L = {+1,−1}, is a binary classifier, which
have been trained on the current set of labeled instances in S.

Classifier Inferencing. Once training on the current set of seeds is complete for
the current iteration,i, the Classifier Model, H is used to map U to L. We denote
these as inferred instances and denote then as D.

Candidate Sampling. The query function, Q(D) : D̃ =
{
d̃1, d̃2...d̃β

}
U , is used to

select a candidate set of instances from the inferred instances (sampling), β ≥ 1 is
the size of the sample. We use the notion d̃ ∈ D̃ to denote a instance whose label
is inferred with uncertainty; and d̂ ∈ D̂ to denote a instance whose label is inferred
with confidence. We create a set of Candidate Samples,D̃, by selecting a subset of
the most uncertain instances.

Topic/Label Inferencing. The query function, Q is also used to select a subset
of confident samples,D̂. We use: (1) D̂; (2) along with a subset of seeds from any
previous iterations (Ŝ0,··· ,i−1); and (3) their corresponding labels, L, as input seeds
to train a Label-Aligned Cluster Model. The cluster model is used to map an
instance to a set of topics, Φ = 1, 2, ..N; and (2) infer (possibly new) labels for the
uncertain Candidate Samples for the current iteration, D̃i.

Candidate Sample Re-classification. Optionally, the set of topics, Φ, can be used
as features to retrain a SSL classifier using the seeds for the current iteration(D̂i);
along with a subset of seeds from any previous iterations (Ŝ0,··· ,i−1) to infer new labels
for the uncertain samples of the current iteration.

Query Selection. Using either the labels inferred by the Topic/Label Inferencing

stage or Candidate Sample Re-classification stage, Candidate Samples, D̃, are
fed into the pool of Labeled Data. Those candidates D̃, which fall below a threshold
level of confidence are ushered to the oracle so that their true labels can be obtained.
All samples, those whose labels have been successfully resolved; either by the oracle;
the Label-Aligned Clustering inferencing; or Candidate Sample Re-classification,
are included in the existing set of labeled data, and the cycle repeats until a desired
stopping condition is met.

4.3.3 Problem Statement

Let S be a set of instances and L = {+1,−1} be a set of possible labels. Further,
let H be their hypothesis, a set of functions mapping S to L. We assume there is a
distribution, P , over the instances in S, and that the instances are labeled by multiple,
heterogeneous oracles, O. Let accO denote the minimum accuracy of any hypothesis
in H with respect to the distribution induced by S and the labeling oracle, O; and
ηO be the number of queries needed to achieve accuracy, accO. Similarly, let accR
denote the maximum accuracy of any hypothesis in H with respect to the distribution
induced by S and an automatic label resolution strategy, R; and ηR be the number of
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queries needed to achieve accuracy accR. The goal is find a hypothesis h ∈ H using
R, that has an accuracy within a tolerance, ε of accO, such that ηR ≤ ηO.

The intuition is that although the majority of uncertain samples might be mis-
classified, some of the uncertain samples can be more readily resolved automatically.
We propose an active learning selection strategy to reduce the annotation effort by
exploiting semi-supervised clustering to identify and handle: uncertainty that arises
due to non-separable context between training seeds. In the discussion that follows,
we describe the details of our LaSAL approach, and the machinery underlying the
automatic label resolution strategy, R.

4.3.4 Label-Aligned Cluster Training

Partially Labeled Dirichlet Allocation (PLDA) probabilistic generative graphical model.It
is built upon the Labeled Dirichlet Allocation and is used to express the coupling be-
tween words and labeled documents, by introducing an unobserved (hidden) variables
to capture the notion of a topic [RMD11, SG07]. Given a collection of documents
s ∈ S, each containing a multi-set of words ws from a vocabulary W and a set of
labels, l ∈ L. The goal of PLDA is to recover, for each label, l ∈ L, an association
that fits the observed distribution of words in the labeled documents. For a set of
topics, Φ, the multinomial probability distribution, P (Φ|s)), describes the probabil-
ity that the document is devoted to a topic; where each topic is a distribution over
words, ws ∈ W , that tend to co-occur with each other. To train the PLDA, we
use the labels from the confidently labels seeds, D̂ ∪ Ŝ at each SSL iteration. Each
l ∈ L = {+1,−1} is assigned some number of topics that are unique to that label.
This is a crucial aspect in our ability to uniquely assign a label to an unseen instance,
since we have binary classification task, there are only use two labels; so the label
and clustering are aligned (hence the term label-aligned clustering). We compute
the number of topics assigned to the relevant labels, ‖Φ⊕‖ and the number of topics
assigned irrelevant labels, ‖Φ�‖, for the current iteration,i, according to equations 4.1
and 4.2, respectively.

‖Φ⊕i ‖ = Ceiling(|S⊕i | ∗ γ) (4.1)

‖Φ�
i ‖ = Ceiling(|S�

i | ∗ γ) (4.2)

where γ = .05. The PLDA assumes that each topic, Φ takes part in exactly one label,
so Φi = Φ⊕i ∩ Φ�

i = �. Additionally, let Lb represent a set of background labels,
used to denote a shared latent, set of topic classes, Φb that is applied to all seeds,
in the collection for the current iteration, where Φi = Φ� ∪ Φ�

i ∪ Φb
i . We compute

the number of background topics, for each iteration, Φb
i , according to the formula in

Equation 4.3:
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‖Φb
i‖ = Floor(log(‖Φ⊕i ‖+ ‖Φ�

i ‖)) (4.3)

By incorporating the latent class of topics in addition to the label classes, the
model is essentially driven by deciding whether each word to better modeled by a
broad, latent topic, or a topic that applies specifically to one of its document’s labels.
The outputs of the PLDA are: a distribution, P (Φ|s), describing the probability that
each seed document,ŝ is devoted to a topic in Φ; and a distribution describing the
probability that each word belongs to a topic.

We emphasis the two crucial aspects of our appraoch using PLDA. First, since
each l ∈ L = {+1,−1} is assigned some number of topics that are unique to that
label: so the label and clustering are aligned (hence the term label-aligned clustering,
Φi = Φ⊕i ∩ Φ�

i = �). This alignment allows us to unambiguously assign a class
label to an unseen instance. Second, the use of background topics allows us model
any context that might be overlapping with a separate set of topics, which we can
subsequently eliminate to ensure mutual exclusion between the seeds is maintained.

Global versus Local Clustering. Intuitively, we would expect that so long as (1)
the context (i.e. topics) of the seeds are in separable classes; and (2) the uncertain
samples fall into one of the mutual exclusive classes; then resolution of the uncertain
samples can be accomplished using other types of clustering, besides PLDA, such
LDA, globally. The advantages of a global strategy is that we could cluster once
and apply the same clustering to each iteration. Differently from our PLDA strategy
where a new clustering is performed at each iteration, albeit for a relatively small
number of documents.

Is important to note however, that this global clustering does not ensure a mutual
exclusion, nor does it align labels with clusters, since the labels for the entire pool of
data is simply not known in advanced, but learned per iteration via SSL. Nonetheless,
if we were to use a global clustering strategy, in a manner that is similar to PLDA, we
could heuristically enforce mutual exclusion among the seeds using the LDA topics
on at each iteration, to assign an unseen instance to a class in mutual exclusion-
aware manner. We take up the notion of a mutual exclusion-aware strategy in the
experimental section. Next we describe the selection of the most uncertain candidate
instances,D̃.

4.3.5 Candidate Sample Selection

Bag-of-words is a common method of representing a text document in terms of a
feature vector and is use in this work for tweets. Even though tweets are sparse, their
bag-of-words representation still leads to a high-dimensional feature. This means that
a classification algorithm must be able to handle high-dimensional training input
well. Support Vector Machines (SVMs) have been shown to be a good choice for
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Figure 4.2 Fig (a) shows the hyperplane f ∗ that separates those examples
with maximum margin δ. Fig (b) depicts a linearly inseparable classification
task in 2-dimensional space. f ∗ is a solution for the soft-margin optimization
problem with slack variables ξ1 and ξ2.

high-dimensional text classification tasks [VLC94, TK02]. An SVM learns a linear
function, given in Eq. 4.4, to find the largest margin between the closest negative
(irrelevant) examples and the closest positive (relevant) examples. This margin δ is
shown in Fig. 4.2a. The examples closest to the hyperplane, with distance exactly δ,
are the support vectors.

f(x) = sgn (w · x+ b) =

{
+1 if w · x+ b > 0

−1 otherwise
(4.4)

The sgn function returns -1 if the argument is negative and +1 otherwise. This
means the predicted label of an example is given by the side of the hyperplane w ·x+b,
with normal vector w and bias b, it lies on. Formally, the requirement that all training
examples xi with labels yi lie on the correct side of the hyperplane is given in Eq. 4.5.

yi(w · xi + b) > 0 (4.5)

Most words in natural language have multiple possible meanings that can only
be determined by considering the context in which they occur. Often a well defined
context can not be easily defined. In practice, the training examples of most text
classification tasks, are not linearly separable, and these constitute uncertain samples
that are selected with our uncertainty sampling selection strategy. Figure 4.2b
depicts depicts a linearly inseparable classification task in 2-dimensional space.
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These uncertain samples are selected with our query function, Q as follows. First,
the current classification model, H, is applied to the set of unlabeled instances, U ,
to infer their labels. Second, an information measure is applied to the relevant and
irrelevant instances; and a partial ordering over the the instances are made using
the measure. We use the magnitude of log-likelihood of the classifier predictions
for as an information measure. Third, we define a small fixed number of instances,
as the sample size, β; and build a set of uncertain samples by taking the smallest
log-likelihood values(most uncertain samples) as the Candidate Samples, denoted by
D̃.

4.3.6 Topic-Label Inferencing

PLDA also allows for approximate inferencing so that the assignments for both: per-
document distributions over labels and topics; as well as the set of words associated
with each label, can be made on a previously unseen document collection. Inferenc-
ing is performed on the most uncertain instances D̃, and we refer to this as label
resolution. A key point of the PLDA is that we can eliminate all background topics
from the seeds, S and candidate samples, D̃ in this way, mutual exclusion among
S⊕i and S�

i is guaranteed. Specifically, let Φ⊕i be the set of topics induced by the
PLDA for the relevant set of seeds, and Φ�

i be the set of topics induced from the
irrelevant set of seeds, then after background topics are eliminated from each set of
seeds, Φ⊕i ∩ Φ�

i = �.

PLDA is feasible approach for handling overlapping context since any background
topics uncovered by the PLDA model are eliminated prior to constructing the feature
vector for a classifier. Moreover, the PLDA model essentially transforms the topic
space, for both relevant and non-relevant seeds, into a set of sub-topics, which may
not be revealed in a global clusterings. This, in effect, allows a once non-shared
context between the seeds and uncertain samples, to share context. We make use of
this exclusion and sub-clustering during the Candidate Sample Re-classification

phase, described next.

4.3.7 Candidate Sample Re-classification

In this stage, the inferred labels and discovered topics as used as features for retraining
a local (per iteration) classifier. In order to do so, we must first convert the topic
distribution to features. The results of the PLDA, yields a distribution such that
every document is associated with each topic,with some probability. We can, at
one extreme, construct a topic context using all the topic is the PLDA model. The
practical limitation in doing so however, is that not all topics assigned to a document
are equally confident. Thus, we opt for limiting the number of topics applied to
a single document, and define an additional parameter, α, used to represent the
threshold probability a topic must have to be included in the resolution process.
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4.3.8 Query Selection

We do not want to introduce more mislabeling of the uncertain examples than is
already introduced by the base classifier’s inference. It should be noted that PLDA
is not always capable of making an inference prediction. There are three cases for
which we do not choose to rely upon the predicted label of the PLDA: (1) given the
sparsity of a tweet, the features sometimes degenerate so that counts for building
the PLDA model are insufficient to make a prediction; (2) a prediction is not used
when the instance only belongs to a background topic; (3) finally, when the prediction
probability is below a threshold level, we also do not consider its label in our task.
If one of these criteria fails, we then defer to the oracle to obtain a true label for
an instance. Otherwise, the label of the uncertain document is considered to be
resolved automatically by the PLDA inferencing. Ideally a very small subset of the

original uncertain samples D̃ ⊂ D̃, is presented to the Oracle: we assume
∣∣∣D̃∣∣∣� |U |.

When the label is resolved, either from inferencing, re-classification or the oracle, the
document is augmented with the set of labeled data to be included as a new seeds
for the next iteration.

4.4 Experiments

We have proposed, LaSAL, semi-supervised, pool-based active learner. LaSAL, uses
label-aligned clustering, LAC in order to reduce the number of requests for labels that
are presented to an oracle. In this section we evaluate the efficacy of our approach.

4.4.1 Experimental Goals

Recall from our previous discussion that that PLDA affords us a clustering, per class
label (Section 4.3.4) ; as well as capabilities to perform inferring for these labels (
Section 4.3.6). We are interesting in evaluating the extent to which both can be
exploited in an active learning setting. More specifically, we consider two different
approaches to the tackling the label bottleneck problem: PLDA Topic Driven
Resolution and PLDA Inference Driven Resolution.

In PLDA Topic Driven Resolution, we use the topics afforded by the semi-supervised
clustering as features to retrain a secondary binary classifier in which the background
topics have been eliminated from the the training seeds. The label of the uncertain
sample is obtained by classifier inferencing. In PLDA Inference Driven Resolution, we
exploit the inferences capabilities to automatically resolve labels of uncertain samples
and feed them, as seeds, back into the SSL process.

In Section 4.4.4, we first compare the accuracy of different active learning strategy
(ALU , ALR, ALC) and passive learning strategies (PLU , PLR, PLC - similar to
the ones used in Chapter 3). The strategies presented in Part I form the baselines
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for the remaining experiments. For ALU , samples closest to the hyperplane are
selected; ALR, a random subset close to the hyperplane is used and; for ALC, the
most confident of the uncertain samples were selected. Likewise we PLU , PLR,
PLC except that the selection is made from the instances farthest away from the
hyperplane. Section 4.4.5 focuses on PLDA Topic and Inference Driven Resolution
for tackling the label bottleneck. We compare the accuracy and costs of classifier
that we build by automatically resolving the labels of uncertain samples using label-
aligned clusters LAC for which background topics have been eliminated. We compare
the LAC against a baseline strategy MuxA in which global clusters are using and
mutual exclusion is enforced. PLDA Inference Driven Resolution for tackling the
label bottleneck problem. We use the baselines from Part I, but instead compare the
accuracy and cost of a classifier that has been built purely from resolving the labels of
uncertain samples with PLDA-inferenced labels. Finally, in Section 4.4.6, we measure
the percent agreement between labels obtained from crowdsourcing labels again a
baseline consisting of labels obtained from subject matter experts. When labels can
not be automatically resolved with LAC, we must defer to the oracle for providing
a judgment; we examine the extent to which such judgments obtained from for-hire
workers can be used, as a proxy for judgments that would otherwise be obtained from
subject matter experts.

4.4.2 Data Set and Summary

In realizing the aforementioned goals, we collected 14,725,788 Tweets gathered during
a 3-month period from April 1, 2011 through June 30, 2011. The data was collected
by using the Twitter stream collector for list of 1,258 terms consisting of infectious
diseases, their synonyms, pathogens and symptoms, which are provided by the do-
main experts. A random subset of consisting of 36,067 Tweets were used and exact
duplicates where removed, leaving a total of 22,514 for experimentation. All tweets
were processed using a series of language processing tools, including Lucene English
Analyzer 2 for tokenization, stemming and indexing; and Ark Tweet [GSO+11] for
part-of-speech tagging; and entity taggers outlined in Section 3.1.2 for named entity
recognition.

Stop words were also removed. The stop word list was created using the tags
produced by the Ark Tweet parts-of-speech tagging. The stop list consisted of words
whose class was tagged as: determinants; subordinating conjunction; WH-words,
non-possessive pronouns; and urls. The tagger allowed us to eliminated lingo-specific
variations that would not be detected with a traditional stop list of grammatically
correct terms. Table 4.4 show example terms included in our stop list.

2http://lucene.apache.org/

http://lucene.apache.org/


4.4 Experiments 93

Table 4.4 Example stop list terms obtained by filtering Twitter terms based
on their word class (i.e., part-of-speech).

Word Class Stop List Term Grammatical Term

Determinants
da, dah, de, deh, teh, thee,
theeeeee, tha

the

dat, daaat that
alll, alllll, allllll all

Subordinating Conjunction
dwn down
b/c, bc, bc0z, Bcoz, bcus,
bcuz, bcz, cus, cuz, cuuz

becuase

b4, be4 before

Non-personal pronuoun/WH

yuu, Yooooouuuu, yoooouu-
uuu, YOOU, youh, youu, you-
uuu

you

wen, wenn, when
wth, wit, wt with
w/, w/’da, w/2, w/a, w/his,
w/my, w/o, w/the, w/this

with*

whaaaap’n what’s happening
wha, wutttt, wut, wht, Whud,
Whut, wot

what

ether, ethr either
whre, whr where

4.4.3 Experimental Setting

The classifier performance was evaluated on a hold data set consisting of 2,000 exam-
ples, (1000 positive, and 1000 negative) using the precision, recall, F1-Measure and
accuracy, as computed according to 3.1, 3.2, 3.3, and 3.4, respectively.

We measure the oracle labeling cost, CostO, of an active learning strategy as
some multiple of the number uncertain samples for which an oracle is asked to give
the true labels. We assume the number of samples per iteration is a fixed number;
and that there is a unit cost is associated with each request. The total oracle labeling
cost is then computed based on the number iterations n, of the learner as given in
Equation 4.6.

costO(n) =
n∑
i=1

(cost ∗ nrSamplesi) (4.6)

,where cost is the cost per unit, and nrSamplesi is the number of samples for iteration,
i We measure the cost of a LAC strategy, costLAC , as the number uncertain samples
that we were able to resolved without requesting input from the oracle. The total
cost a LAC strategy is then computed based on the number iterations n as given in
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Equation 4.7.

costLAC(n) =
n∑
i=1

(cost ∗ (nrSamplesi − nrResolved)) (4.7)

where nrResolved is the number of resolved labels. The cost savings is thus computes
according to Equation 4.8:

savings = costO(n)− costLAC(n) (4.8)

PLDA Parameter Settings: For training the PLDA, we set the number of topics per
class to be some fraction of the total number of documents per class, as given by
Equation 4.2. We set the number background topics relative to the total number of
topics, as in Equation 4.3. We set both the PLDA term and topic smoothing to be
0.01; and run the PLDA for a maximum of 1,000 iterations.

4.4.4 Results I. Selection Strategy and Ngram Features

The goal of this experiment is to determine whether there is a clear advantage to
using and active learning strategy (ALU , ALR, ALC) in comparison to the a passive
strategy (PLU , PLR, PLC similar to the ones used in the Chapter 3). We also seek
to determine which active (and passive) learning strategy is best.

Active versus Passive Selection

Figure 4.3a shows the SSL classifier performance under different active (ALU, ALR,
ALC) and passive (PLU, PLC, PLR) sample selection strategies. We first examine
which select strategy would lead to a better performing classifier for our task. Passive
selection was used previously in Chapter 3. As mentioned in Section 2 the main
difference between active learner and a passive learner is the querying component,
QU that determines which samples will be drawn from the pool of unlabeled data to
include as candidates in the next round of semi-supervised learner (SSL). The passive
query strategy selects only from most confident instances at each iteration. From
these confident instance we select a random subset (PLR); a top-N subset (PLC) or
the bottom-N subset (PLU). In contrast to a passive learner, an active learner more
aggressively seeks the most productive instances and presents them to an oracle in
the form of queries, who then resolves their true labels. The true labels of these
productive instances are then used input for the next round of training. In our case
the most productive instances, are considered to be those that lie close to the decision
boundary of the SVM Section 4.3.5.

At iteration zero we assume an initial set of seeds were given to start the training
process, likewise in all experiments we assumed 10 positive and 10 negative initial sees
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Figure 4.3 Fig (a) shows the accuracy of classifier at iteration of the
semisupervised learning process. Fig (b) shows the corresponding average
F-measure, precision and recall.

were used, and we disregard the cost of obtaining these initial labels. First we notice,
that compared to an active strategy, the passive strategy, has a considerable lower
accuracy (no more than .60%, which does improve when using more training instances
(higher number of iterations). In contrast, we notice a marked improvement in the
accuracy over the passive strategy for any of the active learning strategy. When taking
only an active learning strategy into account - we notice a strategy which selects most
confident instances and, presents them to the user for labeling under-performs other
AL strategies.; whereas the uncertainty sampling strategy outperforms all others.

Initially, selecting instances at random (ALR) and presenting them to the user
for labeling performs almost as well as a strategy which selected the most uncertain
ones (ALU). However we notice that as the active learner proceeds, the gap between
ALR and ALU widens; the uncertain strategy performance outstripping the perfor-
mance of the random strategy. At a cost factor of roughly 30 queries, we are able to
achieve an accuracy of 80% and at a cost of 55-60 queries, we reach an accuracy of
90%. We seek to find out if how much we can reduce these costs even further from
additional, knowledge that has been obtained in an unsupervised manner. The most
uncertainty instances always outperforms the random and most confident strategies;
in the remaining experiments, we take ALU , ALR and ALC as baselines.

We see from the above results that acquiring the labels for the most uncertain
samples has a high utility. How uncertain are these same uncertain samples for
ALU without any human intervention? When the accuracy of predicted samples are
measured in the absence of any type of resolution, at best, we achieve level of accuracy
of %65. This is a clear indication that the utility gained from resolving the labels of an
ALU can leads to an optimal classifier (good accuracy and faster convergence), when
compared with the other baseline strategies. In the section that follows we consider
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the extent to which we can achieve a comparable level of accuracy by ”resolving” as
many of the ALU labels as possible without human intervention.

We also notice in Figure 4.3b the corresponding F1-measure, precision and recall
curves for the passive strategies show that a precision as high as .90% is achievable,
without user involvement in the labeling training instances. Consistent with the
results in the previous chapter for short sentential text. This approach to limited
supervision is, in an of itself, quite a promising result for EI system designers. We
also notice however, that the passive strategy is recall gated and we never achieve a
recall more than .55%. On the other hand, the situation is quite different for the active
learning selecting strategies. We notice that if we are able to obtain the true labels
from the most uncertain instances, then we are able not only achieve a much higher
overall accuracy, but also a high precision (90% for ALU) as well. In the remainder
of these experiments we consider the extent to which we can use and active learning
with uncertainty sampling (ALU) and reduce the number of queries that we must
present to the oracle for their resolution.

Ngram Features

Since Twitter message are limited in length by 140 characters, the feature vectors
representing them are very sparse. In this experiment, we are interested in knowing
which features lead to a better classifier. Intuitively, we one would like to enrich the
feature vectors of tweets, with a more robust set of features. Particularly for cases
where the target concept can be correctly labeled with sequences of n words. This
is useful to capture the occurrence of phrases that consist of multiple words, e.g.,
“bieber fever” or “ice-cream headache”.

As shown in Figure 4.4, our results show that when using uncertainty sampling,
we are less sensitive to the type of features used. Using 2-grams did not achieve
improved performance over using 1-grams; and in fact, adding n-grams with n > 2
decreases the performance of the classifier. For this reason we opted to using 1-grams.

4.4.5 Results II: Classifier Performance and Costs

In these set of experiments, we use the baseline classifier from Part I, and seek to
determine how good a classifier we can build by automatically resolving the labels of
uncertain samples using label-aligned clusters LAC for which background topics have
been eliminated and the topics, used as features to retrain a secondary classifier. We
compare the LAC against a baseline strategy MuxA in which global clusters are using
and mutual exclusion is enforced.We assume that batch of uncertain samples (and
corresponding seeds) has been produced apriori, by aggregating the set of uncertain
samples that were selected at each iteration.
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Figure 4.4 Average accuracy for Active and Passive Learners.

Classifier Performance Figure 4.5a shows the classifier performance for Topic
Driven Resolution, which uses Label-Aligned Clustering (LAC) topic features, and
background topic elimination. We show the results for samples sizes, beta = 3, 4, 5:
denoted as LAC:Sz3, LAC:Sz4, and LAC:Sz5, respectively.

We first notice that although ALU and ALR strategies outperform the LAC
strategy, the difference in performance is not so great, considering that ALU and
ALR learning strategies are fully supervised. It is also interesting to note that all
the of LAC strategies outperform ALC, up to a point. ALC overtakes the LAC:Sz3
and LAC:Sz5 after 70 iterations. With respect to ALC, the LAC strategy is already
providing to a cost of: 420 queries (3 x 2 x 70) for sample size of 3; and a cost of
700 queries (5 x 2 x 70) for sample size of 5. For sample size of 4 ALC does not
begin to overtake the LAC:Sz4 until roughly 110 iterations. These results suggest
that in the absence of obtaining true labels from and oracle an intermediate strategy
of semisupervised clustering such as PLDA is a reasonable option for obtaining labels
at least during the initial stages of the training (up to about iteration 40 for where the
LAC:Sz4 peaks). Also, we find that for the first iterations of the bootstrap a warm
up period is needed for all strategies until the number of training instances reaches an
amount to build a classifier that does more than purely guessing (accuracy exceeds
.50% which is around iteration 10).

Figure 4.5b shows the classifier performance for Inference Driven Resolution in
which, a bootstrapped purely uses inferencing to resolve the labels of uncertain sam-
ples. When only the PLDA inferencing is used, this is actually equivalent to a zero
cost strategy, since all the uncertain labels are resolved automatically. The results
are rather encouraging. For much of the early iterations (up to 40 iterations) the
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(a) Topic Driven Resolution (b) Inference Driven Resolution

Figure 4.5 Learning curves for PLDA Topic Driven Resolution in which
topics are used as classification features (4.5a). PLDA Inference Driven Res-
olution: learning curves for Label-Aligned Clustering using only PLDA in-
ferencing (zero cost) label resolve (4.5b).

performance is actually competitive with ALU and ALR. Only after around 80 it-
erations do we start to see the pure inferencing strategy degrade and level off. This
degradation is due to the fact that at some point, as the size of the training set grows,
we are no longer capturing an appropriate number of topics per class and background
to model the growing size of the seeds. Also, if poor inferences are made, they start
to impact the classifier performance over time. Nonetheless, the degradation experi-
enced here is still acceptable, and does not worse than the Topic Driven Resolution
at larger iterations.

Cost Savings Figures 4.6a and 4.6b shows the cost associated usingALU , ALR and
ALC and LAC, respectively. We actually do save using LAC as a selection strategy
and fundamental reason is that unlike the basic active learning strategies (ALU, ALR
and ALC) which have fixed cost, the LAChas a variable cost. Specifically, if assume
that unity represents a cost equivalent to requesting labels for each instance, then the
results in Figure 4.6b show the percent of the total that we would actually request
per iterations. Since we only intermittently request labels from the oracle the cost
percentage curve exhibits a step function. In comparison, the basic strategies, which
follow a nearly linear shape for their costs.

Figures 4.6c, 4.6c,4.6d,4.6e, and 4.6f shows the cost associated with a mutual
exclusion aware (Mux-A) strategy. One can notice that in comparison to the cost of
the LAC strategy the percentage of cost for global labeling scheme is much higher.
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The main reason for this is that although we are able to label instances with a
reasonable level of confidence, many uncertain instances can be covered by the mutual
exclusion criteria - which allows us to automatically assign the label in the first place.

Figure 4.7 shows the average percentage of uncertain instances that are not able
to be resolved with the mutual exclusive aware strategy per cluster size and threshold.
As as, we notice a clear tradeoff between the percentage of documents that we can
assign to a mutual exclusive cluster and the confidence we have that a document
belongs to a topic. The high the confidence level we require, the more documents
remain unassigned that we must eventually offload to an oracle, hence the higher the
cost of the the sampling strategy. This suggests that there is some benefit to using
a principled approach to modeling the background topics with the PLDA as opposed
to enforcing mutual exclusion among a seeds of a global topic model.

Mux-Aware Labeling Quality Figure 4.8 shows the average hit rate among seeds
and uncertain instances compared with true labels for a mutual exclusion-aware clus-
tering strategy, i.e., one that using global topics and enforces mutual exclusion per
iteration (the local level). We notice that independent of the cluster size chosen, we
are able to achieve an average hit rate of at least 70%. Hit rates at 80 % and above
are obtained using threshold values in the range of .55 to .75. We believe is due to the
fact that this range represents the densest part of the threshold distributions. Many
probabilities values beyond .75 % although extremely confident are few in number.

Mux-Aware Classifier Performance Finally, when seek to determine how the
bootstrapped classifier would perform using the Mutual-Exclusion Aware topics from
a global clustering. Figure 4.9 shows the at each of 140 iterations of the bootstrap the
classifier either toggles back and forth between pure guessing and perfect accuracy!
Such a learning is not reliable since it uses so few instances to train its a matter of
chance if we find the seeds that happen to lead to a highly accuracy result on the test
set. These results lead us to conclude that a global strategy is an inexpensive way to
obtain a few reliable labels with limited supervision, but when more labels are needed
a LAC is a viable option. Even though the quality of LAC labels diminishes, we are
able to build a stable classifier during the early stages of the training. When even
more training data is needed to build the classifier the LAC becomes less reliable and
mixture of global clustering in conjunction with labels from an oracle are then needed.
We limited the reclassification to the set of seeds for the current iteration, we believe
that improved results can be obtained by using not only the seeds for the current
iteration, but a random subset of past previously generated seed when training the
PLDA.
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(a) Cost: UNC Sampling (b) Cost: LAC Sampling

(c) Cost: Mux-A, α =[.30..55) (d) Cost: Mux-A, α =[.55..65)

(e) Cost: Mux-A, α =[.65..75) (f) Cost: Mux-A, α ≥ .75

Figure 4.6 Fixed cost of basic uncertainty sampling strategy (4.6a); vari-
able cost of using a strategy based on Labeling-Aligned Clustering (4.6b).
Cost of global clustering with Mutual Exclusive-Aware strategy, for threshold
probability,α =, for: α =[.30..55) (4.6c); α =[.55..65)] (4.6d); α = [.65..75)]
(4.6e); and (α ≥ .75) (4.6f).
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Figure 4.7 Average percentage of documents that remain unresolved after
enforcing mutual exclusion among seed instances.

Figure 4.8 Average Hit Rate among seeds and uncertain instances showing
the Quality of Mutual Exclusive Seeds when using global topics and enforcing
mutual exclusion at the local level.

4.4.6 Results III: Expert Assessment and Interpretation

In this chapter we relied upon an oracle to safely handle those instances that we could
not label with confidence in an automatic way. Up to now we assumed this oracle was
a subject-matter expert. What if we outsourced the task of labeling to a non-expert
or human intelligence worker, could we trust the labels they provide, for our task? In
this case study we examine the answer to this question by evaluating the quality of
labels obtained by crowdsourcing again the labels assigned by a domain expert.
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Figure 4.9 Classifier accuracy among seeds and uncertain instances when
using global topics and enforcing mutual exclusion at the local level. An
unreliable classifier is obtained since at each of 140 iterations of the boot-
strap, the classifier toggles back and forth between pure guessing and perfect
accuracy.

Crowdsourcing versus Experts. To build a crowdsource set, a total of 1,500
tweets was created by randomly sampling 500 tweets from each of the calendar weeks
15, 16 and 17, and presented to workers of the CrowdFlower platform. Judgments
given by untrusted workers were eliminated by computing a trust score for each
worker, based on the their agreement with a gold standard set of tweets. The agree-
ment among the 43 HIT workers (minimum of 3 workers for each task) was 93.89%.
We chose 130 tweets according to the agreement of the crowdsourcing annotators
to include a representative amount of “easy” tweets (perfect agreement) and more
“difficult” tweets (low agreement). The agreement between five domain experts was
89.33%. To control the quality of the crowd sourced labels, two actions are taken.
First, a set of “golden” tweets with known labels is added to the unlabeled tweets
that are randomly shown to the workers. A trust value is computed for each worker
based on the number of correctly labeled “golden” tweets. If this trust value is below
a fixed threshold, the workers labels are removed from the task. Second, each tweet
was labeled by multiple workers. Then, the tweet is assigned to that category that
received the most votes weighted by the workers’ trust values. The agreement of mul-
tiple annotators for the label of a tweet is measured by the percentage of annotators
that agreed on a tweet relative to the total amount of annotations on the tweet. The
agreement on the crowd sourced data sets was 93.89% with an average accuracy on
the injected gold labeled tweets of 92%. Out of the 1,500 tweets labeled by the crowd:
1,114 tweets had a perfect agreement of 100 295 tweets had an agreement between
66% and 100%; and 91 tweets had an agreement between 50% and 66%.
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For the 130 tweets labeled by both the public health experts and the HIT workers,
there was a percent agreement of 87.69%. When measuring the classifier performance
individually for each group based on a 10-fold cross validation and equal percentages
of positive and negative examples, the classifier performance was 75% for the experts
and 83% for the HIT workers.

Our results suggest that people outside the public health domain are able to
accurately judge the relevance of tweets, when given a simple set of criteria. Thus,
once M-eco has been detected feature change, it is also feasible to outsource the
novel tweets, as part of a separate feature change handling procedure in an Active
Learning setting. It took roughly 6 hours for the CrowdFlower workers to label the
set of 1,500 tweets and the entire M-eco pipeline runs around the clock, restarting
roughly every 4 hours, depending on the amount of incoming tweets. Although the
classifier performance was much less for the expert labels, than the crowd labeled
data, we believe this is due to the fact that in practice, when a tweet is relevant for
an expert depends on several factors as outlined in our previous case study in Section
3.5.9. In our case, relevance depends on different time periods of an outbreak, (before,
during or after); or on the task and role of the expert with respect to an epidemic
investigation. Nonetheless, the crowd can still serve to help filter label instances that
are clearly off topic.

To get a better understanding of the impact of detected feature change on the
classification accuracy, a larger set of expert labeled tweets for experimentation would
be useful to further improve the significance of the results. Nonetheless, doing so,
would still not address the need to experts to relabel each time feature change was
detected and in practice, the overhead of such a task is too expensive and not timely
enough. We propose instead, that after tuning expert labeled examples with a good
inter-annotator agreement, expert labels examples could be used as gold standard to
filter out HIT workers who trust value is too low.

The fact that our classifier performed better on the labels provided by the HIT
workers suggests that there are advantages in being able to use more workers than
expert labelers. Importantly, being able to build in a trust value that allowed us
to filter instances and/or workers, can greatly help with dynamically labeling and
maintaining long-term tweet classification accuracy. Such considerations are even
more crucial for more complex criteria, for which the crowdsource performance can
greatly diminish.

Table 4.5 lists the 16 tweets where experts and CrowdFlower workers disagree.
On those 16 tweets, the average crowdsourcing agreement is 83.65% and the average
agreement of the experts is 72.37%.

4.4.7 Discussion

In this chapter, we propose a label resolution strategy for semi-supervised active
learner, which aims to reduce the labeling cost for an active learner while simulta-
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Table 4.5 Tweets with different expert (E) and crowdsourcing (C) labels

Tweet Label Agreement
E C E C

How you can inadvertently make a headache worse
http://dld.bz/gCqr

- + 50% 64%

Yay the headache is gone! Way to go, bed. + - 73% 66%
3 hours of bell ringing? I’d have such a headache by the
end.. haha

- + 91% 66%

Lmfao I just caught a headache laffn at dis message from
@STRONGDEUCE...@BOBdaBuildER3

- + 73% 66%

Doing my income taxes gave me such a migraine headache,
that it kept me from going to work today. We need tax
reform with the Fair Tax.

- + 50% 70%

Want a cough drop? + - 63% 71%
I’m so thankful when I wake up headache-free!! Happy
Tuesday, it’s going to be a busy one! #kidmin

+ - 55% 74%

lol! @SILENT CHAOS706 it’s hunger headache ; not hun-
gry headache ; lol!

- + 90% 78%

@Phil KnowsBest aha dam i gotta headache. ma mom is
buggn me.

- + 55% 84%

doing d bad thing just make some headache...argghhh but
i cant help it,,

- + 50% 100%

I accidentally took nighttime cough medicine during the
day and slept through half of it.

- + 60% 100%

@HeartChloe Its been a headache lately, hopefully here too
lol u get some green tonight?

- + 60% 100%

So tonight should be interesting at work. Trainee + Inter-
net issues = headache. — RT @StrangeHand

- + 90% 100%

@SexGodKatherine Killing Klaus sounds like a plan.
*smirks* I just want Elena gone.She gives me a headache
*rubs my head*

- + 100% 100%

If u use my microwave R Urs n stop it early but Don’t clear
it I get So PISSED watching Hoarders gives me a headache
n shortness of breath

- + 100% 100%

@felee92 Ooooh cool!!! So many people are changing their
DPs to sideways like jaejoong also, give me headache only
@ @

- + 100% 100%

neously, seeking to minimize the side-effect of more mislabeling when automatically
attempting resolving uncertain with additional context from unsupervised probabilis-
tic clustering. Also, we provide a novel approach to learning using Partially Labeled
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Dirichlet Allocation (PLDA). PLDA was to address the problem of ambiguity (non-
separability) that arise from seeds instances with overlapping context.

A cost reduction is obtained in pro-actively selecting instances and creating a mu-
tual exclusive context when re-classifying dubious instances (Topic Driven Resolution)
and using pure inferencing (Inference Driven Resolve) afforded by the PLDA model.
In both cases, we were able to minimizing human annotation effort, when compared
with a fixed cost strategy. Thus allows a human annotator to focus on those instances
which are most difficult or require world knowledge or additional features that are
not part of the current training instances.

In these experiments, we limited the type of features to 1-gram, since they showed
better performance over 2-and 3-grams. Still other types of features could be consid-
ered. Given the advent of reliable of parts-speech-taggers for Tweets (Ark-Tweet) and
the speed with which its performs, it is feasible to include POS tags as features; and
we considered this in our future work. For selecting the number of topics per class and
the number of background topics we used a simple heuristic based on the proportion
of documents in each class. We also restricted the number of topics per document to
1. Experiments with three topics, showed poorer results when compared to using a
single topic; more experiments should be undertaken to decide for the optimal set of
parameter in each case.

Can active learning be effectively combined with semi-supervised and unsuper-
vised learning? It is known from the rich area of semi-supervised learning that unla-
beled data can suggest learning biases (e.g., large margin separators, low dimensional
structure) that may improve performance over supervised learning, especially when
labeled data are few. When these biases are not aligned with reality, however, per-
formance can be significantly degraded; this is a common but serious criticism of
semi-supervised learning. A basic observation is that active learning provides the
opportunity to validate or refute these biases using label queries, and also to subse-
quently revise them. Thus, it seems that active learners ought to be able to pursue
learning biases much more aggressively than passive learners.

Another aspect not considered in this work is the use of multi-view active learning.
Given the fact that we have can resolve labels either by PLDA inferencing or classifier
retraining with PLDA topics, the question arises as to whether these judgments could
be combined to improve the perform; we consider this in our future work.

4.5 Chapter Summary and Outlook

In this chapters we explored semisupervised learning to detecting disease reporting
mentions in short and sparse text. The basic technique we explored to tackling the
label bottleneck was bootstrapping. That is, an initial set of seeds where provided and
more labeled were obtained through from a classifier that labeled its own examples.

A growing number of researchers are feasibly using Human Intelligence Tasks
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(HITs) or crowdsourcing to improve the performance of automated systems [DDCM12].
In a similar work, Paul and Dredze [PD11b], also created an annotated Twitter data
set using Mechanical Turk for an EI task similar to the one described in this work, but
they do not consider HIT workers in the context of an feedback loop for maintaining
the accuracy of their system. We believe that the results presented in this case study
show the potential and feasibility of employing human intelligence workers to handle
budgeted labeling under limited supervision learning.

In the final chapter on limited supervision approaches to detecting disease report-
ing mentions, we explore a much different variety of learning in which no labeled
training data at all is required: the unsupervised learner.



Unsupervised Dection of Disease Reporting
Mentions

1

In Chapters 3 and 4 we respectively tackled the label bottleneck problem using
forms of weak labeling, and budgeted labeling. In both cases, the classifier algorithm
was based on semi-supervised learning (SSL). Using SSL, only a small amount of
labels were given for the task and the classifier incrementally built its own train-
ing instances through repeated training-inferencing cycles. If we choose to by-pass
any form of supervised learning altogether and opt for an unsupervised approach to

1Image under License from Fotalia http://de.fotolia.com/
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learning, for which no labeled data is required, can we then discover patterns that are
representative of disease reporting mentions, which are meaniful to an investigator?

In this chapter we explore the answer to the aforementioned question. Generative
models for clustering are a popular tool for the unsupervised analysis of text, and
provides a latent topic representation of the corpus. It is used to check models, sum-
marize the corpus, and guide exploration of its contents. Notable, with the exception
of work done by [PD11b], no other work has been done in using generative models in
EI. In addition to the fact that an oracle need not provide labels, another advantage
of an unsupervised approach is that it has the potential of detecting disease related
events that were not explicitly under surveillance. This serendipity can be useful for
early detection systems if an emerging disease has no known name, or can only be
characterized by symptoms.

Although more generic and flexible, an unsupervised approach to detecting disease
reporting mentions using generative models can lead to very complex results. This
complexity poses a significant challenge for an epidemic investigator, given the number
of potential clusters (or latent topics). Additionally, since the pattern is not labeled
apriori, the significance and meaning of the pattern must be interpreted, a common
problem [BGCG+09]. In order to ensure that the unsupervised methods produce
results that are valuable for the human users, it is crucial that EI systems consider
a user-centric approach which emphasizes both: an assessment of the cluster quality,
and their representations - which is the focus of this work.

The problems to be addressed are: 1) detecting patterns that are meaningful as
epidemic events within EI, in an unsupervised manner; 2) presenting the detected pat-
terns to a human effectively; and thereby allowing domain experts to easily interpret
any epidemic patterns that are mined; and 3) enabling domain experts to analyze the
epidemic intelligence data. To address these problems, we present a novel framework
with which field practitioners can interact with the underlying data and assess the
results of complex unsupervised algorithms. The user-centric pattern assessment
framework constitutes: pattern mining, pattern pruning and a user-centric pattern
evaluation involving field practitioners. A key aspect of the framework is a feedback
interaction loop which involves; tuning a system to better help these users in their
epidemic investigation activities.

More specifically, we address the following questions:

1. How can we characterize a Disease Reporting Mention (DRM) as a cluster?

2. How do we measure the quality of Disease Reporting Mention Clusters?

3. When is one DRM cluster better than another?

4. How meaniful are DRM clusters and their word-cloud representations for do-
main experts?
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We first present related work is presented in Section 5.1. In Section 5.2, we
present our Field Practitioner-Assisted Assessment framework. Then, in Section 5.3,
experimental results are provided. In Section 5.4 we conclude, and provide directions
for future work.

5.1 Related Work

5.1.1 Rule-Based Systems

In the health domain, the most prevalent approaches for detecting public health events
are rule-based systems [SFvdG+08a, SFvdG+08b, CKJ+06, LNGB12, AHB+93, GHY02,
Yan06, KBHT09]. A rule is a conditional of the form: contextual pattern → action. If
the contextual pattern matches an input text, then the action part of the rule fires. A
contextual pattern is intended to describe the context in which a pair of entities ap-
pear. Pattern matching techniques are used to capture the lexical (surface) structure
of a sentence; and are most commonly represented by regular expression. The action
part of the rule is used to denote various kinds of tagging or replacement actions such
as: assigning an entity type to a sequence of tokens.

Proteus-BIO: Proteus-BIO [GHY02], is a cascaded set of finite-state trans-
ducers [AHB+93]. A set of task-specific rules are constructed to capture the possible
patterns that are used to express an outbreak. For example, the pattern [disease
killed victim] would match the string “cholera killed 7 inhabitants”. When a pattern
matches a string within the text, the result is consider to be a public health event. To
simplify the pattern construction process, preprocessing steps are employed to first
identify the major linguistic constituents such as: names and dates; noun and verb
groups; and noun phrases. The pattern base is then built using these constructs.

MedISys / PULS MedISys is an example of a rule-based system [SFvdG+08a].
The work done in the PULS system [Yan06] also uses a pattern-based approach to
identify the disease and the location of a reported event. PULS is integrated into
MedISys. Pattern matching includes the use of keywords and string deformations
rules to capture the morphorlogical variations of a term in the text. An example rule
used by MedISys is denoted in the Table 5.1.

BioCaster: Another prevalent rule based system is BioCaster [CDK+08]. Bio-
Caster rules are performed by using regular expressions with the Simple Rule Lan-
guage (SRL) parser and is capable of matching co-occurring entity mentions. Example
SRL named entity rules that defines two instances of a DISEASE event are given
in Table 5.2.
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Table 5.1 Example rules for detecting the mention of Avian Influenza Med-
ical Condition from unstructured text. In the table, a ’+’ symbols represents
any amount of white space; a ’%’ represents zero or more characters; a ’ ’
represents exactly one character.

Pattern Example String Matches

avian+flu avian flu
avian+influenza avian influenza
bird+flu bird flu
bird+influenza bird influenza
gripa+porcin gripa porcina, gripa porcinǎ
schweinegrippe% schweinegrippe-h1n1
svinjsk%+grip% svinjski grip!

Table 5.2 Example SRL rules and the patterns that are matched. The
SRL construct “words(,1)” defines at least one white space. The SRL
variables birdName and fluName define two sets corresponding, respec-
tively, to a set of bird names and a set of flu names, for example: %bird-
Name=(”avian”,”bird”) and %fluName=(”flu”,”influenza”).

Pattern DISEASE Example String Matches

gripa words(,1) porcin? gripa porcina
list(%birdName) list(%fluName) avian flu, avian influenza, bird

flu, bird influenza
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Using SRL, simple inferred relationships can be modeled. For example, in Ta-
ble 5.2, the SRL expression list(%birdName) list(%fluName) would tag any phrase
that contained a word from the set birdName followed by any word from the set
fluName, as a DISEASE event. More patterns are obtainable through syntactic gen-
eralization, for example, by specifying base forms of verb. As one can note from the
examples in both Tables 5.1 and 5.2, all variations on an entity name, including its
representation in different languages, can be modeled.

In general, the advantages of rule based systems are that they can be updated on-
the-fly, for example, to include a previously unknown disease name [CDK+08]. One
of the major drawbacks of rule-based approaches is in building (and maintaining) the
pattern base. Also, data on the Web is not clean, and in the presence of “dirty” data,
rule-based systems do not work well. Additionally, it is costly and labor intensive
to build a pattern base for rule systems: writing a few rules is easy, but writing
lots of rules to capture all contexts is hard. Even if rules are learned, at some point
additional rules actually hurt the performance of the system. The optimizations of
the system are difficult to manage, since the order in which rules were applied impacts
the performance. Also recall tends to be low if a large enough pattern base is not
constructed when relying upon and “all enumeration” approach to pattern detection.

We seek to go beyond these limitations by considering an unsupervised approach
to public health event detection and compare our work to the well established rule-
based system of MedISys.

5.1.2 Supervised and Unsupervised Systems

Numerous supervised classifiers exist for detecting public health events within un-
structured text [CCD09, KBHT09, Zha08]. A limitation however is that they all
also use manually labeled data to build their models. Although automatic labeling
is exploited in the work of Stewart et al. [SN11a], this approach has some limitations
since the full sentence parsing techniques is expensive, when it comes to extracting
parse tree classifier features.

Perhaps the most similar EI work to our unstructured approach is that of Paul et
al. which uses symptoms and treatments to define health related topics in an unsuper-
vised manner (Ailment Topic Aspect Model). Using messages that have been labeled
for relevance with regard to health, as well as a generative model, Paul et al. actually
bridge the gap between a fully supervised and unsupervised approach [PD11b, Dre12].

Also in the work of Nowcasting [LC12], the authors analyze correlated burst be-
havior of tokens to infer the existence of public health events.

However, many types of features that are relevant for public health event detection
(i.e. symptoms, victims, or medical conditions) are not modeled in the Nowcasting
system. Also, unlike previous work, we focus on assessing the results of using a
generative model for detecting disease reporting clusters from the perspective of the
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domain experts, which is largely ignored in all related works in EI.

5.2 Field Practitioner-Assisted Assessment

The underlying intuition behind our Field Practitioner-Assisted Assessment approach
is that with an appropriate feedback interaction loop, we can gain a better under-
standing of how end users in the domain of epidemic intelligence assess the pat-
terns that have been detected in an unsupervised manner. Further, mechanisms
can be built-in to help chart the success of the applications that have been built
with unsupervised event detection. In this section, we present our framework for
the Practitioner-Assisted assesment of unsupervised disease reporting events. An
overview of the framework is depicted in Figure 5.1 and each stage is presented in the
discussion that follows.

Figure 5.1 An overview of the Field Practitioner-Assisted Assessment
Framework.

5.2.1 Pattern Recognition

Starting with a finite set of text articles, A, we process the raw text; transforming each
article into a surrogate, vector format that consists of only relevant terms. The rele-
vance of a term is determined by the extraction of entities according to a type system,
T . The set of allowable EI entity types we consider are: Location, Medical Condition,
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and Victim. Each entry in the vector representation corresponds to the frequency with
which an entity, of the given type, appears in the bag-of-words representation of the
article. The document surrogates for the set of articles, DA := [|A|][|T |][|VT |] is thus
finally created from the vectors, VT .

How can we characterize a Disease Reporting Mention (DRM) as a cluster?
We consider an unsupervised disease reporting event, to be a type of pattern that is
recognizable by an event detection algorithm. In our framework, a Probabilistic

Event Detection algorithm is used. The type of pattern we consider is a (proba-
bilistic) clustering of documents; where each cluster represents and event. We define
an event, more formally as:

Definition 2 Unsupervised Event (Cluster): An unsupervised event, Ij, is consid-
ered an unlabeled class, cj, that represents a clustering of documents, which has been
detected by an probabilistic clustering algorithm, ΦK. The algorithm produces a weight
matrix, wij ∈ Wd, such that each document di, where i = {1,...N}, is assigned to ev-
ery unlabeled class, cj, where j = {1,..,K}, with some weight wij ≥ 0; where N is the
total number of documents, and K is the total number of or events (i.e., patterns or
clusters).

Numerous techniques exist for detecting events in an unsupervised way. In this
work, we base our unsupervised event detection algorithm on the Retrospective Event
Detection [LWLM05] algorithm of Li et al. This algorithm for event detection, pro-
vides a framework for handling the multiple entity types; and we extend it to handle
those defined by our EI-entity types and refer to the resulting clusterings as Dis-
ease Reporting Mention Cluster (DRMC). In general, the approach assumes that
a document contains the textual mention of real-world, temporal events. Events are
considered to be hidden variables whose likelihood is inferred by a generative model
from the vector representation of the article’s observable content (distribution of its
features). The generative model produces events using Multinomial distributions over
features of multiple EI entity types. The articles of the collection are clustered by
relying on the iterative EM algorithm.

For more details regarding the use of DRMC in the domain of public health,
including algorithm tuning; feature pruning; the selection of the number of events;
as well as other real-world case studies evaluating RED, the reader is referred to the
work of Fisichella et al. [FSDN10, FSCD11].

5.2.2 Pattern Validation

Pattern Validation allows the different parameters of a pattern recognition algo-
rithm to be iteratively tuned. For example, in unsupervised event detection, the
number of classes, K, is required to be given as input. A value for K can determined
using one of several intrinsic cluster validation metrics [HBV10, NJT07]. Different
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types of validations, other than the choice of K, may be required. For example, using
precision and recall, the quality of the generated clusters, or Reference set (Ref), can
be assessed with respect to a manual clustering, or Response set (Res) [BB98] as
followings:

Precision(Ref,Res) =

∑
ci∈CRes

|ci| − overlap(ci, Ref)∑
ci∈CRes

|ci| − 1
(5.1)

Recall(Ref,Res) =

∑
ci∈CRef

|ci| − overlap(ci, Res)∑
ci∈CRef

|ci| − 1
(5.2)

5.2.3 Pattern Pruning

When is one DRMC better than another? As noted in Definition 2, many pat-
terns may be produced, since the event detection algorithm associates each document
with every class, with some weight. In practice, associating every documents to a
class will not provide meaningful results for everyday tasks, so some of the clusters
produced by the Pattern Validation stage, are eliminated before being presented to
the user. Clusters are pruned at three levels of granularity: term-level and document-
level (intra-pattern); and cluster level (intra-pattern). The definitions for inter- and
intra- pattern pruning are given in Definitions 3 and 4, respectively.

Definition 3 Inter-Pattern Pruning: A pattern, Ij, is pruned if Quality(Ij) ≤ α,
for some given quality measure; and 0 ≤ α ≤ 1.0 .

Definition 4 Intra-Pattern Pruning: Given a weight matrix, Wd, and a cluster, Ij;
a document di , is pruned if wij ≤ β. Likewise, a term is pruned from the cluster if
wjk ≤ γ, where wjk ∈ Wt; 0 ≤ β ≤ 1.0 ; and 0 ≤ γ ≤ 1.0 ;

In Definitions 3 and 4, the values of α, β and γ represent the cluster, document,
and term threshold probabilities. The Quality(Ij), and values for α, β and γ are
chosen according to task and algorithm-specific criteria. In our experiments we select
the threshold probabilities for α, β and γ based on the quartile distributions [Lan06].
The quartiles of a ranked set of probability values are the three points that divide
the data set into four equal groups, each group comprising a quarter of the data.

5.2.4 Practitioner-Assisted Feedback

The Field Practitioner-Assisted Assessment stage takes pruned patterns as in-
put for the user to assess their quality. The feedback interaction loops (denoted by
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L1, L2, L3 in Figure 5.1) signify that: the features of the algorithm in the Pattern

Recognition stage (L1), the validation technique in the Pattern Validation stage
(L2), or the pruning criteria in the Pattern Pruning stage (L3) are all subject to
adaptation, based on feedback from the user assessment. This is intended to improve
the quality of disease reporting event, as well as the documents and words that make
up a DRMC. In the next section, we describe the experimental results when applying
this framework.

5.3 Experiments

5.3.1 Experimental Goals

The objectives of the experiments is threefold. First, in Section 5.3.3, we address the
question: How do we measure the quality of Disease Reporting Mention Clusters? We
assess the quality of our DRMC extrinsically, by comparing them against a set of
clusters whose events have been extracted with a state-of-the-art, rule-based system.
Our DRMC have been detected with the Retrospective Event Detection (RED) of
Li, et al. [LWLM05] that has been extended to use EI-Entity types.

Second, in Section 5.3.4, we address the question: How meaniful are DRM
clusters for domain experts? We assess the quality of our DRMC with respect to
field practitioners, for a given pruning strategy, which eliminates a subset of DRMC
from consideration. The chosen pruning criteria allows us to gain a better insight into
the question: When is one set of DRMC better than another? Our pruning
strategy is based on a choice for an intrinsic validation metric; and threshold values
of α (cluster threshold value); β (document threshold value); and γ (term or feature
threshold value). We also examine if different combination of weights properly group
documents into logical clusters, and whether these clusters are meaningful to the
users.

Third, in Section 5.3.5, we address the question: How meaniful are DRMC
word-cloud representations for domain experts? We are interested in knowing
whether the representation of the patterns as word clouds are actually useful to the
users and consider how DRMC can be better represented for experts, based on their
remarks.

5.3.2 Data Sets Used

In our experiments, two types of data sets were used: news and blogs.
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News Data Set

The News Data Set was used for the experiments in Section 5.3.3 to make and extrinsic
evaluation of our clusters against a set of clusters whose events have been previously
filtered with a state-of-the-art, rule-based system. To build our document collection,
we downloaded the web pages for each urls listed in source column of the PULS fact
base [YvES08], for the period from, January 1 - December 31, 2009. Of the 2,587
documents collected, we used the 1,280 documents for which the PULS date column
could be automatically represented as a timestamp. For the same time period, we
also collected the cluster labels (medical condition-location pairs) present in the PULS
fact base, to use as benchmark clusters. The benchmark system aggregates facts into
the same group, or equivalence class, if they share the same medical condition and
location. Based on this criteria, the clusters of the PULS fact base that we collected,
yielded a total of 379 clusters of which we used those clusters that constrained at
least 10 documents; this amounted to 70 clusters.

Blog Data Set

The Blog Data Set was used for the experiments in Sections 5.3.4 and 5.3.5 to assess
the quality and representation of our clusters with respect to a field practitioner. The
blog data set consists of medical blogs from MedWorm, a moderated blog medical
blog aggregation, were collected via RSS during an eight month period from May
2009 through January 2010. This period is known to coincide with the 2009 Swine
Flu pandemic. We used this corpus so that users could have some familiarity with
the events detected, and used blogs so that the data set would contain noise from
events that were not prefiltered by any algorithm, as in the case of our News Data
Set.

In total, 30,822 documents were collected by retrieving documents from the sub-
categories under the heading of infectious disease. Since the RSS text contained only
summary short text, the urls from the RSS were used to crawl the website. The raw
html was processed by stripping all boilerplate and markup code using the method
introduced by Kohlschütter et.al. [KFN10]. A subset of the data collected and used
for experimentation consisted of the 2,532 documents, that contained relevant EI
entities types of medical condition and location.

5.3.3 Results I: Comparison with State-of-the-Art

The goal of this experiment was to compare the quality of DRMC i.e., clusters that
were discovered with our unsupervised, Retrospective Event Detection (RED) with
EI-Entity types (the Response Cluster Set) for various cluster sizes, K, ranging from
1 to 70, against the 70 clusters of a state-of-the-art rule-based method, MedISys (the
Reference Cluster Set). To accomplish the comparison among these clustering, we
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used precision and recall computed according to Equations 5.1 and 5.2. Figure 5.2
shows the precision and recall for various clusters sizes.
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Figure 5.2 Comparison of Precision and Recall for a document cluster-
ing based on Retrospective Event Detection (RED) with EI-Entity types
(Response Cluster) against the Rule-based Event Detection Clustering of
MedISys (Reference Cluster).

The first observation is that that there are several values of K for which precision
and recall are above 0.8%, as denoted by the large spikes in the graph, over different
values of K. Based on these values, we can see that a statistical DRMC produces good
quality clusters when compared with clusters that have been constructed from the
inferred events of a hand-crafted rule-based detection system. Upon closer inspection,
of these points we notice that when the precision or recall reaches a maximum value
of 1.0%, the victim entity type made a much smaller contribution. Example events
detected for the spikes are shown in Table 5.3.

The second observation we make is that overall, precision and recall are fairly low
for most of the clusters, the majority of the values falling in the range of .02 to .04.
This suggest that the some of the events detected differ significantly among the two
approaches. This can be explained in part by the fact that the MedISys benchmark set
used only two entity types (disease and location) for clustering, whereas we used three
entity types (disease, location, and victim). Also the DRMC uses a soft clustering,
whereas MedISys uses hard clustering. In cases where the information about an
outbreak is spread across multiple sentences, an event may also not be detected with
the rule-based system. In constrast, DRMC is more sensitive and forms clusters
based on latent co-occurances, between entities that are not explicitly in the same
sentence. Some example events for which the precision and recall are below 0.4 shown
in Table 5.4.
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Table 5.3 Example events detected using unsupervised event detection for
which precision reaches a maximum value of 1. The columns respectively
show: the extracted terms, number of documents and brief description of the
real-world events.

Event Event Terms No. Event
Id Docs Description

E8 manila, afghanistan, disease, in-
fection, people, father

57 In October 2009 there was an out-
break of leptospirosis in Manila,
the capital of Philippines. Fur-
ther, there was a typhoon which
led to an increase of several infec-
tious diseases.

E9 africa, united states, flu, disease,
female, people

44 In December 2009 a deadly out-
break of cholera in north-western
Kenya took place.

E10 delhi, united states, swine flu,
dengue, children, people

44 In November 2009 there was an
outbreak of Dengue in Delhi.

E15 surrey, london, infection, flu, chil-
dren, animals

50 In September 2009, there was an
outbreak of E. coli in England.
Mainly children were concerned
that visited the some farm in Sur-
rey.

Upon observation, we notice that although these clusters represent events, statis-
tically, they do not call for action on the part of any public health official. These
type of events, which contain relevant mentions of EI-entities, but do not semanti-
cally represent a threat to public health are not possible to filter out automatically
without additional criteria for defining the role of the entity. Two possible solutions
to automatically filter such events are with: (1) additional feature analysis and prun-
ing of terms apriori; or (2) constructing a hybrid Supervised-Unsupervised system in
which irrelevant documents are first eliminated based on their relevance for EI, using
techniques outlined in Chapters 3 and 4 and then applying DRMC.

We do not automatically tackle the semantic problem within DRMC. In the
remaining sections we present DRMC to domain experts for a semantic and qual-
itative assessment in order to better understand the extent to which these “noisy”
documents impact the usefulness of DRMC for domain experts. As we shall see, the
use of meaniful visualizations, such as word clouds, is in practice, is one useful way
to help experts better navigate to document clusters containing semantically relevant
disease reporting mentions.
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Table 5.4 Example events detected using unsupervised event detection for
which precision have a value of 0.2%. The columns respectively show: the
extracted terms, number of documents and brief description of the real-world
events.

Event Event Terms No. Event
Id Docs Description

E7 united states, russia, swine flu,
disease, people, female

24 Several news articles provide com-
parison of swine flu statistics
for various countries, comparing
mainly cases happening in Europe,
Russia and U.S.

E13 nigeria, russia, disease, infection,
children, people

31 Several studies found out that ba-
bies and children in Africa die
from infections (September 2009).
Further, there was a measles cam-
paign in South Africa (October
2009).

E14 japan, tokyo, disease, cholera,
people, children

44 In October 2009, Japan started
with swine flu vaccinations. An-
other event reported in the docu-
ments assigned to this cluster are
outbreaks of Cholera in several
parts of Africa.

5.3.4 Results II: Expert Assessment of Cluster Quality

In the previous section, we compared the clusters of the unsupervised event detection
algorithm with the clusters obtained from a rule-based extraction system. In this
section we present DRMC to experts in order to address the question of: How
meaniful are DRM clusters and their representations for domain experts?

Pattern Validation: In order to determine the number of clusters to use as input
for the algorithm, we run the event detection algorithm for values a K = {10...100}
and selected the K for which the cluster cohesion was the highest, this corresponded
to a value of K = 93. Since the detection algorithm uses a random initialization, the
results vary for each trial. We selected the best trial by running the algorithm for
100 trials and selected the trial having the highest log-likelihood.

Pattern Pruning: The 93 clusters, were pruned by using intra-patten and inter-
patten pruning. The threshold values for pruning the clusters (α), documents (β),
terms (γ) were selected based on a quartile distribution of their probabilities as de-
scribed by Table 5.5.

In order to determine the impact of using quartiles as a pruning criteria, we se-
lected two different quartile ranges for the documents and clusters. We used the
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Table 5.5 Pruning Criteria based on a quartile probability distribution,
where the first quartile (L) contains the lowest probability values and the
fourth quartile (H) contains the highest probability values. HH contains
cluster with the least noise; HL contains cluster having mixed noise; and LH
contains clusters with the most noise.

Pruning Criteria Description

HH
both the cluster and document probability belong to the
fourth quartile range

HL
cluster probability belong to the fourth quartile range and
the document probabilities belong to the first quartile range

LH
cluster probability belong to the first quartile range and the
document probabilities belong to the fourth quartile range

notation L and H to correspond to the range of probabilities in the first quartile (low
probability values), and the fourth quartile (high probability values), respectively.
Using a combinations of these quartiles, three pruning criteria: HH, HL, and LH,
were used to prune the clusters and documents. The ordering: HH, HL and LH,
reflects the increasing noise, with respect to the probability values. All term prob-
abilities were taken from the H quartile range and in total, 9 of the 93 clusters (3
clusters for each pruning criteria), were presented to the users for evaluation.

Experimental Setting

User Groups: Two user groups were asked to assess the quality of the 9 clusters,
and their representation as word clouds. The first group consisted of five practitioners
in the field of epidemiology. We label this group as the “Expert” group. The second
group, as a basis for comparison, consisted of non-practitioners, five individuals with
backgrounds in the area of user centered design; we label this group as the “Non-
Expert”. Figure 5.3 shows an example of two words clouds, and a document snippet
that was presented to the users. Each cluster was presented to the users as a set of 5
documents; each document consisting of an ordered list of 4 representative sentences.
A sentence was considered representative, if it contained a term, whose probability
was in the fourth quartile range a preference was given to those sentences appearing
towards the top of the document.

Table 5.6, shows each of the questions that was posed to the user and the order in
which there were asked. For each of the nine clusters, they users were instructed to
read the sentences for a set of documents within a single cluster, and then, complete
each question.

Metrics Used: Three metrics were used in for obtaining the quantitative results.
For the questions that required a user rating, a 5-point Likert scale and the percent
agreement metrics were used.
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Figure 5.3 Example words clouds, and a document snippet that was pre-
sented to the users during evaluation.

Table 5.6 Assessment Questions posed to the domain experts to assess the
quality of the disease reporting clusters.

Id Assessment Question

Q1: Write 3 to 5 keywords that best describe the set of documents for
the group

Q2: Extent to which the set of documents for the group makes sense to
you. Scale: 1=confusing,5=clear

Q3: Indicate the word cloud that best describes the set of documents for
the group Choice: Term Frequency, Named Entities

Q4: Extent to which each document fits the group. Scale: 1=does not
fit at all,5=fits very well

Q5: What other representations would meet your expectations

Clustering Clarity

[Question 2]: Figure 5.4, depicts the results for Assessment Question-Q2. We were
interested in knowing whether the high probability clusters correspond to clusters that
actually make sense to the users. In order to do this, each cluster was evaluated by
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the user for its overall clarity. It shows the frequency of each rating, for each pruning
criteria among each user group. Quite noticeable for the HH-pruning criteria, is that
the shapes of the two graphs for the experts and non-experts are quite similar. Both
user groups found the clusters within the HH-pruning criteria to be rather clear (see
Figure 5.4a).

(a) HH

(b) HL (c) LH

Figure 5.4 Overall Clarity for Pruning Criteria HH (5.4a); HL (5.4b); and
LH (5.4c) based on the extent to which the set of documents for the group
makes sense to the user; using the scale: 1=confusing,5=clear.

In contrast, for the LH-pruning criteria in Figure 5.4c, the experts seem to be
quite neutral and do not rate strongly for, or against the clarity of the clusters. This
suggests that in the presence of lower probability clusters, in the LH category, the
experts are more unclear about what constitutes a pattern, unlike the non-expert
users. For the HL-pruning criteria (Figure 5.4b) one can notice that there is a clear
overlapping (that splits around the most neutral rating of 3). This suggests that
given the mixture of low probability documents with high probability clusters, the
users are completely mixed, about the clarity of the clusters. Finally, we also notice
in the Figures 5.4b and 5.4c, that in the presence of increasing noise, the expert users
are more conservative about their ratings, unlike the non-experts, who still rate the
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clarity of the cluster comparatively higher (in the range of 3 · · · 5), than the experts.
The Expert group, assesses the quality of the clusters differently than the Non-Expert
group in the presence of more noise (i.e., lower probability).

Document Fit within a Cluster

[Question 4]: Figure 5.5, depicts the results for Assessment Question-Q4. In this
experiment, we are interested in assessing the quality of clusters, with respect to the
documents contained therein. The users were asked to rate the extent to which the
five documents in each of the three pruning criteria fit the cluster. Figure 5.5a, 5.5b
and 5.5c represent the results of the percent for trial 1 using the HH, HL and LH
pruning criteria, respectively.

(a) HH (b) HL

(c) LH

Figure 5.5 Percent agreement for the extent to which the documents of the
HH, HL, and LH pruning criterial fit the cluster.

In Figure 5.5a, we notice that the percent agreement is is stratified across the
values of (1.0, 0.6 and 0.4) for both user groups. This stratification suggests that
users saw distinct sub-clusters of documents as belonging to the same equivalence
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class. In Figure 5.5b, we see a similar stratification. In contrast, however to the HH
criteria, here we see that the peak stratification is significantly lower: at a value of
0.6 compared with 1.0 in Figure 5.5a. This suggests that, again, users perceive sub-
clusters, yet, they were less confident about the meaningfulness of the document with
respect to the cluster. This can be explained by the fact that the documents that were
included, were taken from the low probability range of the quartile. This means that
low probability documents do, in fact, lead to less meaningful and less clear clusters
from the users perspective. Quite remarkably, in Figure 5.5c, we notice that for nearly
four out of the five documents, both user groups, show the least agreement about the
fit of the document within the cluster. This lead us to believe that when using high
probability documents with a low probability cluster, the users do not perceive that
the documents fit the clusters well. In our instantiation of the framework, we relied
up the cohesion of the documents with the cluster to validate the cluster. We believe
that alternative metrics should be considered. The silhouette metric, for example,
takes into account, not only the cohesion of the document within the cluster, but also
its separation, with respect to the other clusters. Validating the clusters according to
other criteria, would bring further insights into the task of assigning documents to a
cluster.

Practitioner Assisted Feedback Loop (L2): Based on the stratification in
the percent agreement scores we propose that another cohesion metric for intrinsic
validation in Pattern Validation stage, be considered. We conclude that the HH
Pruning Criteria is meaningful for the users, whereas the HL and LH clusters are less
clear and meaningful.

5.3.5 Results III: Expert Assessment of Cluster Representa-
tion

[Question 3]: In order to ensure that the unsupervised methods produce results
that are valuable for the human users, it is crucial that systems also provide a means
to represent the clusters so users can interpret them with ease. We consider a cluster
representation based on two different types of word clouds and seek to know which
one the users find useful, if any. Figure 5.6 shows the results when users, were asked
to choose which type of word cloud they thought best represents the cluster. The
results overwhelmingly show that the users preferred the term frequency word cloud
over the named entity word cloud. The term frequency clouds was constructed using
the frequency for all terms that were present in the documents for, the given cluster.
In contrast, the named entity word clouds were constructed by using the named
entities with a threshold probability as determined by the fourth quartile of the term
probability distribution.

Practitioner Assisted Feedback Loop (L2): Since the term frequency word
cloud was preferred to the named entity word cloud, we propose that the choice of
features for the event detection algorithm should not only contain entity types such as
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medical condition and location, but also include non-entity terms.

Figure 5.6 Number of Ratings indicating the word cloud that users thought
best describes the set of documents for the group. The choice of words cloud
representations where: Term Frequency and Named.

User’s Description of a Cluster

[Question 1]: The overlap between the terms in the word cloud and the keywords
entered by all users for each pruning criteria was computed. The results show that,
although the event detection algorithm was capable of suggesting words that the user
would have selected to represent the cluster, there is still some room for improvement.
A closer examination showed that the types of terms entered by the users, consisted
of entities types that we did not include as input into the algorithm.

Practitioner Assisted Feedback Loop #1: Since the overlap between the
entity types in the word cloud and the keywords entered by all the users is low, we
propose that the selection of features for the event detection algorithm should contain
additional entity types such as victims and symptoms.

User Remarks and Feedback

[Question 5]: In this section, qualitative feedback based on the users remarks are
presented. All users found the word clouds effective. However, when asked what other
representations would meet their expectations, they thought it useful to have more
robust and interactive word clouds. Some user’s comments for more interactivity,
include: a) the use of color coding to identify different entity types in the cloud; b)
interactive clouds to remove words and redraw word clouds; c) the use of an ontology
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to collapse semantically related terms that are in the cloud; and d) the elimination
of very small cloud terms.

Practitioner Assisted Feedback Loop (L3): Since the users wanted to
eliminate very small terms and collapse semantically related terms: we propose that:
1) more pruning should be considered for the term pruning phase, and 2) the terms
that are semantically related should be aggregated before they are used as input into
the pattern recognition algorithm.

Although the experts in the study are not trained in the use of Web 2.0 tools, they
were quite clear about the ways in which the system can help them to better manage
and manipulate the complexity of the outputs for unsupervised disease reporting
events, in a Web 2.0 style.

Practitioner Assisted Feedback Loop (L1): Based on the desire for the users
to have more control over the terms that appear in the word cloud, more interactivity
should be produced to help users manipulate and digest the content.

Finally, users thought other types of representations could be considered. These
representations dealt mostly with alternative ways to see the same underlying data.
Users even suggested having a toggle button, so that they could decide which alternate
representation, they could see, for a given situation.

In summary our results show that:

1. Field practitioners can identify clear cluster that have been produced by an
unsupervised event detection algorithm,

2. patterns with a high cluster probability and high document probability are
better suited for field practitioners, in digesting and interpreting the meaning
of the pattern,

3. the use of term frequency word clouds can help field practitioners to distinguish
patterns with respect to their quality.

5.3.6 Discussion

These results suggest that an unsupervised approach to detecting disease reporting
clusters can, at least, align with clusters that have been detected with a rule based
approach. Also, based on an extrinsic qualitative evaluation, we would prune clusters
that have a precision and recall below 80%. In the DRMC, we produce many more
clusters than in the rule-based approach. Work in this direction includes an extensive
case study to explore this question by comparing the unsupervised approach with the
rule-based approach of MedISys[FSN]. Finally we note that numerous systems exist
to detect disease reporting events [HNW+09, LSW+09]. None of these existing EI
systems use an unsupervised event detection approach. As such, they do not allow
for disease reporting events to be identified in the absence of predefined matching
keywords or linguistic rules.
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One limitation of this work is that it is an instance-based approach. Since no
model is built that can be reused on new data, we must re-run the event detection
for each new set of results. In future work, we plan to consider an on-line alternative
to this instance based approach. Finally, given the exploratory nature of EI, better
mechanisms are needed to support the aggregation of events for statistical models,
as well as navigation for epidemic intelligence gathering. On the one hand, public
health officials are only interested in receiving a limited number of events per session;
yet on the other hand, they want to be adequately informed, and not miss potentially
relevant ones. Identifying the balance for this trade-off is a challenge and currently
not handled.

In future work, a more detailed evaluation of the proposed algorithm will be
undertaken. This includes additional measures, such as the B-Cube for computing
precision and recall. Also, it should be noted that many factors influence the quality
of disease reporting clusters. For example, the existing prevalence levels of a disease
or even the personal preference, of the information seeker: such as their geographical
location or occupation. Assessing the quality of an clusters based on such factors
requires a more robust qualitative evaluation with input from domain experts. We
plan this as future work.

5.4 Chapter Summary and Outlook

We realized the approach by discovering clusters in an unsupervised manner and
further present a framework to evaluate the their quality. We also presented a novel
framework with which field practitioners can assess the results harnessed from the EI
for intelligence gathering to detect public health events from unstructured text. We
presented formalizations for characterizing disease reporting events and how this is
embedded in the user-centric framework. We presented a study including over 30,000
documents and numerous domain experts to validate the both the components and
the underlying unsupervised event detection algorithm and the feedback interaction
loop between the two. We have shown that 1) field practitioners are able to find clear
clusters that have been produced by an unsupervised event detection algorithm, 2)
patterns with a high cluster probability and high document probability are better
suited for field practitioners, in digesting and interpreting the meaning of the pattern
and 3) the use of term frequency word clouds can help field practitioners to distinguish
patterns with respect to their quality.

In this work, we draw attention to some of the problems faced in the area of Epi-
demic Intelligence. Particularly, we shed a new light on the task of disease reporting
clustering and posit that disease reporting events can be detected in an unsupervised
manner, but it requires a filtering mechanisms and additional support that help ex-
perts interpret and navigate the clusters that are produced. The impact of such work
in practice and research is two-fold. First, is an improved understanding of the types
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of visualization and representations that are useful to domain experts in the areas of
epidemiology. Second, is bridging the gap between system mining and filtering, and
the domain experts in the field, who must rely upon a summarized interpretation and
an elucidation of facts for Social Media-Based Epidemic Intelligence systems. The
practical impact is that such frameworks as the one proposed in this work, will allow
field practitioners to gain a better trust for the outputs of Epidemic Intelligence sys-
tems. This also implies that a mechanism for ensuring users trust in the results can
be envisioned.

Future work will include incorporating the information from the practitioner as-
sisted feedback loops. We also plan as extension of the social media sources to, more
noisy data, in a streaming setting, to further stress test the ability of our framework
to represent this complex data in a human understandable way. Finally an interesting
area for future research is to include official sources of information from EI as a base-
line such as the WHO or ProMED-mail database statistics, to enable an automated
correlation between human-centric data and other EI data.



Summary and Open Directions

Laboriously annotating training data for building supervised learners is a common
problem faced in many domains. In this thesis, we explored various approaches
to Limited Supervision learning with the intension of tackling the label bottleneck
problem in the domain of Epidemic Intelligence (EI). Our aim was to provide a means
of filtering disease reporting mentions from unstructured web text without relying
upon large volumes of labeled training data to build the classifier.

We described three important types of limited supervision approaches, namely:
(1) Semi-Supervised Learning with Weak labels, in which we exploited the properties
of an auxiliary domain to acquire labels for relevant patterns, that could then be
propagated to bootstrap a self-trained classifier within a desired, target domain; (2)
Active Learning with Label Resolution, with the aim of reducing the budget associ-
ated with requesting labels from an oracle; and (3) Unsupervised Dection of Disease
Reporting Mentions to detect disease reporting mentions without using any labels at
all.

We first summarize our major contributions with respect to the three above men-
tioned domains, provide a scenario in a more global context to show the benefits of
an entire system in which limited supervision is used; and then we discuss some issues
which remain open for future investigation.

6.1 Summary of Contributions

(1) Semi-Supervised Learning with Weak labels. In Chapter 3, we explored
the extent to which semi-supervised learning (SSL) could be used to filter disease
reporting mentions for the short text of sentences. SSL have the advantage of only
requiring small amounts of labeled data, and assumes the existence of much larger
quantities of unlabeled data. We found a SSL to be quite effective when compared
with a traditional learner, that relies upon a much larger amounts of labeled data
apriori.

Weak Labeling and Cross-Corpora Learning. Though a SSL only requires
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a small amount of labeled data, the question still remains, from where do we obtain
even these small labeled data? Inspired by the work done in the domain of distant
supervision, we address the problem of building a semi-supervised learner from EI
knowledge bases in an automated manner, i.e., with weak labels. The motivation for
doing so is that huge volumes of disease mentioning patterns exist in these knowledge
bases; but these patterns are themselves unlabeled. We were able to exploit a simple
set of heuristics, which allowed us to bootstrap a auxiliary short text classifier for
filtering similar types of mentions in a comparable corpus.

Structural Kernels for Tackling Recall Gating. A key aspect of our ap-
proach is the use of structural features, and a kernel-driven method for classification.
Kernel-based methods allow linguistic structures to maintains their discreet, struc-
tural properties during classifier training. We found structural representations to be
useful in overcoming the recall-gating problem in short text cross-corpora bootstrap-
ping.

Named Entity Recognition. In addition to the use of structural features for
overcoming the recall-gating problem, we obtained significant performance boosts in
recall when using entity bearing features within the short text. Although a num-
ber of tools exist for detecting basic entity types (person, location, organization),
we found that an appropriate infectious disease and organism tagger to be lacking.
Our organism tagging extracts Organism-by-Family, Organism-by-Occupation and
Organism-by-Geography and animals. The medical condition tagger focuses specif-
ically on infectious diseases, their pathogens and associated symptoms. We provide
to the community a dictionary of terms that we constructed, with the help of domain
experts, for building these taggers.

Expert Feedback. We notice with the exception of a few systems, most EI
filtering systems do not employ the assessment of the domain experts to judge the
final quality of the results. We solicited the feedback from prominent experts in the
domain and was able to draw many conclusions about the feasibility of our approach.
One of the main insights is the need to build an ensemble of classifiers as opposed
to a single, monolithic one. This is motivated by our assessment results and the fact
that relevance for a domain expert depends heavily upon their specific task, which
can change, depending on their investigative needs.

(2) Active Learning with Label Resolution In Chapter 4, we approached the
label bottleneck problem from the perspective of a limited budget strategy, or active
learning (AL). We used even sparser text than sentences, namely, Twitter messages
(or tweets). In AL, the labels are hidden, and each of them can be revealed only
at a cost. The active learner is allowed to pro-actively select the most productive
training instances, without having to label and supply the learner with more data
than necessary. The label bottleneck is overcome by only asking the oracle for advice
when the utility of doing so is high.

Label-Aligned Clustering in Active Learning. The most common approach
to using clustering in active learning is the consider a cluster over the entire set of
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unlabeled documents. These approaches have been known to suffer when: (i) no
obvious clustering exists; (ii) clusterings exist, but are at an unknown granularities;
(iii) the classifier labels themselves are not be aligned with the active learner clus-
ters (label-cluster alignment problem). In this thesis we tackle the label-alignment
problem with semi-supervised clustering, using the machinery of Partially Labeled
Dirichlet Allocation (PLDA). PLDA offer us the ability to incrementally cluster and
labeled the most uncertain (i.e., productive) instances in a quantitative manner. In
this way we resolve many labels automatically, and only defer to the the oracle when
automated predictions are below a certain level of confidence.

Mutual Exclusion. A key aspect of our approach is the feature space used in
handling the mutual exclusion between training instances. Using the labels of the
current seeds, the Partially Labeled Dirichlet Allocation (PLDA) models the context
that overlaps among the seeds as background knowledge that is commonly shared by
all training instances for the current iteration, while maintaining their polarity. A
new feature space for the once overlapping view is constructed by excluding common
background clusters. Exploiting such a model allows us to resolve more of the un-
certain instances automatically with less human intervention than a global clustering
strategy.

Domain Expert and Crowdsourcing. Active Learning assumes that an or-
acle, one who is preferably a domain-matter expert, is present to provide labels. In
practice, however, domain experts in EI are far to busy to regularly provide labels
for filtering disease reporting mentions, particularly at the volume and speed that
might be required for maintaining a classifier. For this reason, we assessed the poten-
tial of for-hire or Human Intelligence Task Workers to provide relevance judgments
for building disease reporting mention classifier. We found that compared to expert
judgments, the crowdsourcing judgments are comparable to those provided by an
expert. We find that the benefit of using crowdsourcing outweighs any limitations;
since we are able to obtain a: high volume, with rapid results, and multiple judg-
ments from a crowd, which is simply not possible from domain experts. Moreover,
the potential cost of employing HIT workers can be attenuated when combined with
label resolution strategies presented in this chapter.

(3) Unsupervised Dection of Disease Reporting Mentions In Chapter 5, we
tackled the label bottleneck problem from the perspective of unsupervised learning.
In unsupervised learning, one seeks to find salient patterns in the data, which are
above and beyond what would be considered pure unstructured noise. In particular,
we focused on the use of generative models (mixture models) for clustering documents
that are represented as a sparse feature vector of entities relevant to our task. Gener-
ative models represent a hypothesis about how instances are generated for each class
(cluster). Little or work has been done in filtering disease reporting mentions in this
way.

Domain Expert Interpretable. One of the challenges faced in producing clus-
ters, in general, is that it can leads to very complex results. This complexity poses
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a significant challenge for an epidemic investigator, given the number of potential
clusters. Additionally, since the pattern is not labeled apriori, the significance and
meaning of the pattern must be interpreted. We have shown that: 1) field practi-
tioners are able to find clear clusters that have been produced by a retrospective,
unsupervised event detection algorithm; 2) patterns with a high cluster probability
and high document probability are better suited for field practitioners in digesting
and interpreting the meaning of the pattern; and 3) the use of term frequency word
clouds can help field practitioners to distinguish patterns with respect to their qual-
ity. We showed that experts were in fact able to use the results to check outbreaks,
summarize the corpus, and guide exploration of its contents.

In conclusion, we proved using limited supervision approaches for detecting disease
reporting mentions from unstructured short and sparse text is possible. We showed
three viable options for building a limited supervision classifier and assessed our re-
sults from the perspective of prominent domain experts in the field. The implications
for the work that has been done here is that if we could employ suitable mecha-
nisms for tackling the label bottleneck, then we could ease the costs of constructing
and maintaining a classifier in the domain of EI, thereby enabling investigators in
detecting potential threats from unstructured text on the Web.

6.2 Limited Supervision Learning in Context

Throughout this thesis, numerous results have been presented to show the extent
to which the aforementioned limited supervision approaches of: (1) Cross-Corpora
Learning; (2) Label-Aligned Clustering; and (3) Unsupervised Learning, can help
to tackle the label bottleneck problem. In this section, we provide a more global
context, to show the benefits of how the results presented here could be used within
an entire EI system that is devoted to building and maintaining a trainable classifier
for ensuring the veracity of unstructured text documents. Veracity underpins a web-
based intelligence system because it emphasizes the importance of screening out data
that is not useful for intelligence gathering.

In order for us to ensure veracity, we need to rely upon automatic, machine learn-
ing approaches to handle message filtering via classification and clustering. Also, we
assume a near-real-time intelligence gathering scenario, for which the EI pipeline re-
sults are not available immediately, but can be expected to be updated several times
a day, within a 24 hour period, and made available within the M-Eco GUI. In the
absence of large volumes of training data to support the data veracity for message
filtering module, we rely upon the limited supervision approached discussed in this
thesis.
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6.2.1 Data Sources and Variety

In Chapter 3, we assume that large volumes of revelant mentions of historical events
exist, from which we can glean labels. Numerous sources exist for the domain of
public health, particularly citizen journalists, hobbyists (Flutrackers, RSOE) who
serve as aggregators of public health related events. Using the large volumes of
past instances from these types of auxiliary sources, we are able to collect labels to
build filters for our desired target domain of unlabeled data, such as RSS news feeds
and blogs, with reasonable success. We accomplished this by wrapping the Support
Vector Machine with an incremental, bootstrapped, (or Semi-Supervised) learner.
In fact, in the presence of limited amounts of training data for the desired target
domain, we showed, in Section 3.5.6 Recall Boosting Strategy, that the steps taken
to generalize the structural features for training the auxiliary classifier, allowed us
to build a classifier for the target domain, using seeds from the auxiliary domain,
without overfitting, as demonstrated with by an F1-measure of 89.99% (Table 3.9).

It should be noted that not all algorithms are well suited for all varieties and
sources of data. For example, although the unsupervised approach to limited super-
vision, (Chapter 5) is language agnostic, it does not perform as well on the short
sparse text of Tweets due to the limited context. Likewise, the cross-corpora ap-
proach is not well suited for application to a target domain such as Twitter, even
when the topics are devoted to the same subject.

6.2.2 Document Label Acquisition Time

In Chapter 3, the time taken to acquire an initial set of labeled documents from
the auxiliary domain for seeding the semi-supervised learning is only limited by the
ability to process a given volume of relevant instances of disease reporting mentions.
When done once, the application of a model built from these training instances on the
target domain, is negligible. Since full-text models are not applicable for the short and
sparse text of Twitter, we address this issue of limited supervision learning for tweets
by relying upon crowdsourcing. In an Active Learning setting a number of benefits
are achievable. In our experiments with crowdsourcing, it took roughly six hours for
the CrowdFlower workers to label a set of 1,500 tweets (with any completed jobs being
available for use at any time). Even though this labeling time, using crowdsourcing,
is much greater than the time to obtain ad-hoc labels from the auxiliary domain, the
benefits makes a budget labeling for tackling the label bottleneck worthwhile for a
number of reasons: (1) a human (albeit non-expert) could at least make an assessment
on the validity of a label; (2) we were able to get multiple human judgments on a single
data instance; (3) some measure of quality control over the labels among crowdsource
workers could be realized; (4) the quality control over the labels, with respect to the
domain experts was comparable; and (5) we could process a larger variety of data
sources.
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The ability of the crowd to properly make an assessment, heavily depends on the
type of question posed. In our case, we were able to fine-tune the crowdsource question
posed, with the help and input of domain experts. Also, with respect to handling
quality control, among workers themselves, we interspersed gold labels among the raw
data and workers who failed to correctly label a minimum number of gold instances
could be excluded. In addition to filtering based on minimum number of correct gold
instances, worker agreement was also used to filter workers. Armed with labels from
the crowd, we showed that we could successfully grow a much larger labeled set of
data, with an accuracy of up to 90 percent.

For less sparse text, such as sentences, where deeper linguistic processing is possi-
ble for representing the context of named entities, there is clearly a trade-off in terms
of accuracy and document processing time. Although we do obtain a performance
boost with a composite kernel (structural and non-structural features), compared to
vector-based features alone, in practice, for a time-critical deployment strategy, using
tokens features is better trade-of, since a full sentential parsing can be costly.

6.2.3 Balancing Accuracy versus Batch Processing Time

The time series data used for signal generation can be noisy, incomplete and sparse,
in part, from propagation of errors within the message filtering stages, or simply due
to the nature of the data. For example, noise within the time series data can be due
to spurious events in which an entity is correctly detected, but its role is not relevant
with respect to a public health threat. Incomplete or sparse time series data implies
that instances of an event are missing or under-reported. This may occur due to:
1) the presence of processing errors - an acronyms or abbreviations not recognized as
EI entity type, 2) the fact that people who are actually suffering do not make a social
report of their condition, 3) the documents which contain these mentions have not
be collected by the system - i.e., based on the imbalance between the genre collected
(personal versus news), and 4) the minimum required entity types are not present.
Sparse time series data refers specifically to low aggregation counts - which impact
the anomaly detection algorithm.

In practice, when dealing with unstructured web text, no amount of data cleans-
ing can completely guarantee a veracity-pure system. Yet, in spite of the inherent
uncertainty, the data still contains valuable information. One step to handling un-
certainty can be to improve the named entity recognition particularly for symptoms.
The tradeoff of doing so, must be balanced against the cost. To help manage uncer-
tainty, data fusion, i.e., combining multiple (less reliable sources); or using multiple
languages, creates redundant, and often more accurate results.

The results presented in this thesis are important when is comes to dealing with
fundamental issues of a document filtering system, namely: 1) utilizing large amounts
of documents labelled as irrelevant (and non-relevant) in order to construct accurate
trainable classifier models; 2) detecting when a given classification model is no longer
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adequate; 3) acquiring new labelled data for updating a classifier, when needed; and
4) validating the results of a trainable classification models with respect to field practi-
tioners and domain experts. These aforementioned issues are fundamental challenges
faced by any long-term, automatic text filtering systems, not just one devoted to the
task of Epidemic Intelligence.

6.3 Open Directions

Effectiveness for Early detection. An EI system is only effective when it can
actually trigger a response as part of an Epidemic investigation. In order to measure
the effectiveness of our system under these conditions, the results presented in this
thesis would need a long-term commitment on the part of domain experts to monitor
and interact with an operational system. As part of the M-Eco project the EI system
we proposed, as whole, has not reached all of its full potential. In general, it seems
that the undertaking to build an, integrated, end-to-end system proved to be more
challenging than we had initially envisioned. Nonetheless, we feel that many of the
lessons learned as part of this work can provide guidance for similar endeavors. We
present a synopsis of these issues below.

Multi-Linguality. Public health is of concern to many individuals, as such is it nec-
essary to provide multi-lingual support for filtering. In this work, we have restricted
our analysis to the English language. Specifically for the weak labeling and Cross-
Corpora approach, we relied heavily upon the EI knowledge bases for bootstrapping
the learner for news and blogs. Different auxiliary domains, or machine translation
techniques would be needed to support mappings for languages other than English.

Visual Support. Given the exploratory nature of EI, better mechanisms are needed
to support the aggregation of cluster for statistical models. On the one hand, public
health officials are only interested in receiving a limited number of clusters per session;
yet on the other hand, they want to be adequately informed, and not miss potentially
relevant ones. Identifying the balance for this trade-off is a challenge and currently
not handled.

Domain Expert Feedback. The collaborations with different domain experts as
part of this work has been inspiring. All to often, systems are built without the actual
needs of end-users in mind, understandable, since it is a costly endeavor. In this work
we have only scratched the surface and more extensive end user evaluation is needed
and under more rigorous conditions. One such extension would be to use many more
domain experts and ensure that they are trained such that a robust inter-annotator
agreement among them (e.g., Cohen-Kappa) is achieved.

Temporal Dimensions. We also plan to take up the temporal aspects of dynamic
stream classification with limited supervision. In doing so, a number of new challenges
are faced. This includes: (1) detecting feature changes; as well as (2) handling these
changes once they are detected. The static classification methods presented here have
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not been tuned to consider temporal aspects such as those required for long-term
and time sensitive surveillance activities. Detecting changes within the classification
stream is needed so that we known when and if, it is time to retrain the classifier.
Specifically, when it is time to include new features; and remove outdated ones.
An important consideration for detecting feature change is that the processes for
extracting features is not too costly.

Data Velocity and Volume. Finally, as part of ongoing work, we consider the
aspects of our system that need to be adapted to handle large volumes of data (i.e.,
greater then 100 million training instances). The techniques presented in this work,
simply are not suitable for such data volumes. One promising step in this direction is
to tackle the label bottleneck by a large scale, and distributed redesign of the Partially
Labeled Dirichlet Allocation (PLDA). PLDA allowed us to automatically acquire
labels, via inference, with a label-aligned aware clustering model. Additionally, large
scale redesign of both, the classifier and clustering algorithms, would allow hybrid
predictors to be built, such that the additional types of features obtained from one
algorithm, could be used to enhance the other.

Given the scale of information within today’s Web, it is has becoming increasingly
difficult to adequately maintain a fully supervised learner - adapting the techniques
presented in this work, not only for EI, but also other domains as well, will help
bring us another step closer to better supporting the information needs of users in
the World of Web Science.



Dictionary of Terms Use for Named Entity
Extraction

A.1 Organism Entities

In this section, we provide the complete list of terms used to construct each of the or-
ganism named entities dictionaries, namely: (i) Non-Human Organisms; (ii) Persons-
by-Geography; (iii) Persons-by-Population; and (iv) Persons-by-Occupation. Each of
aforementioned types of organisms entities were extracted with a simple dictionary
based approach using LingPipe http://ir.exp.sis.pitt.edu/ne/lingpipe-2.4.0/

Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

heifers heifer animals animal insectivorouses
insectivorous horses horse aardvarks aardvark
albatrosses albatross alligators alligator alpacas
alpaca amphibians amphibian amurs amur
anacondas anaconda anemones anemone ants
ant anteaters anteater antelopes antelope
apes ape armadillos armadillo arthropods
arthropod asses ass audaxes audax
aye-ayes aye-aye baboons baboon badgers
badger bandicoots bandicoot bangles bangle
barnacles barnacle barracudas barracuda basilisks
basilisk basses bass bassets basset
bats bat bears bear beavers
beaver bees bee beetles beetle
belugas beluga billies billy birds
bird bisons bison blackbacks blackback
blackbirds blackbird blowfish boas boa

Non-Human Organisms: continued on next page
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Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

boars boar bob-cats bob-cat bobcats
bobcat herds herd bonoboes bonobo
boobies booby boomers boomer bovinaes
bovinae boxers boxer bucks buck
budgies budgie buffaloes buffalo bugs
bug bulls bull bunnies bunny
butterflies butterfly buzzards buzzard caimen
caiman calves calf camels camel
canaries canary canids canid canines
canine caribous caribou carnivores carnivore
carp cats cat caterpillars caterpillar
catfish cattles cattle centipedes centipede
cetaceans cetacean chameleons chameleon chamois
chantelles chantelle cheepers cheeper cheetahs
cheetah chicks chick chickens chicken
chihuahuas chihuahua chimpanzees chimpanzee chinchillas
chinchilla chipmunks chipmunk chordates chordate
chrysalises chrysalis chulengoes chulengo chupacabras
chupacabra clams clam cobs cob
cobras cobra cocks cock cockatiels
cockatiel cockatoos cockatoo cockers cocker
cockerels cockerel cockroaches cockroach cod
codfish codlings codling cohoes coho
collies collie colts colt cormorants
cormorant cossets cosset cougars cougar
cows cow coyotes coyote crabs
crab cranes crane crawfish crays
cray crias cria crickets cricket
crocodiles crocodile crocodilians crocodilian crows
crow cubs cub cuckoos cuckoo
cuttles cuttle cygnets cygnet dacshunds
dacshund dalmations dalmation dams dam
damsels damsel darts dart dears
dear deer mule deer bucks mule deer buck deguses
degus dik-diks dik-dik dingoes dingo
dobermen doberman dodoes dodo doe
dogs dog dogfish dogues dogue
dollies dolly dolphins dolphin donkeys
donkey dormice dormouse doves dove

Non-Human Organisms: continued on next page
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Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

dragons dragon dragonflies dragonfly drakes
drake drones drone ducks duck
duckbills duckbill ducklings duckling dugongs
dugong eagles eagle eaglets eaglet
earthworms earthworm earwigs earwig echidnas
echidna eclectuses eclectus eels eel
efts eft egrets egret elands
eland elephants elephant elks elk
emus emu ephyras ephyra equines
equine ernes erne ewes ewe
eyases eyas falcons falcon falconiformes
falconiforme farrows farrow fawns fawn
felidaes felidae felines feline ferrets
ferret fillies filly finches finch
fingerlings fingerling fireflies firefly fish
flamingoes flamingo flappers flapper flatworms
flatworm fledglings fledgling flies fly
foals foal fowls fowl foxes
fox frogs frog froglets froglet
fries fry ganders gander gastropods
gastropod gaurs gaur gazelles gazelle
gerbils gerbil giraffes giraffe gnats
gnat gnus gnu goats goat
gobblers gobbler geese goose gophers
gopher gorillas gorilla goslings gosling
grasshoppers grasshopper grilses grilse groundhogs
groundhog hogs hog grouses grouse
guanacoes guanaco guillemots guillemot guineas
guinea gulls gull hakes hake
hammerheads hammerhead hamsters hamster hares
hare harts hart hatchlings hatchling
hawks hawk hedgehogs hedgehog hembras
hembra hens hen herons heron
herrings herring hinds hind hippoes
hippo hippopotamuses hippopotamus hobs hob
hoglets hoglet hornets hornet hounds
hound hubs hub hummingbirds hummingbird
huskies husky hyenas hyena hyraxes
hyrax ibises ibise ibis iguanas

Non-Human Organisms: continued on next page
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Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

iguana iguanodons iguanodon impalas impala
inchworms inchworm insects insect irrawaddies
irrawaddy jacks jack jackals jackal
jackrabbits jackrabbit jaguars jaguar jakes
jake jays jay jellyfish jennies
jenny kangaroos kangaroo keets keet
kittens kitten koalas koala komodoes
komodo kookaburras kookaburra koupreys kouprey
krills krill kudus kudu lamas
lama lambs lamb lambkins lambkin
lancelets lancelet larks lark larvas
larva larvaes larvae leeches leech
lemurs lemur leopards leopard leverets
leveret lias lia lices lice
lions lion lionfish lizards lizard
llamas llama lobsters lobster loriss
loris louse lynxes lynx maggots
maggot magpies magpie mallards mallard
mammals mammal manatees manatee mantises
mantis mares mare marmots marmot
marsupials marsupial mastiffs mastiff meerkats
meerkat minks mink moles mole
mollusks mollusk mollies molly mongooses
mongoose monkeys monkey mooses moose
mosquitoes mosquito mice mouse mules
mule muskoxes muskox muskrats muskrat
narwhals narwhal nenes nene newts
newt nightingales nightingale nutrias nutria
nyalas nyala nymphs nymph ocelots
ocelot octopuses octopus okapis okapi
opossums opossum possums possum orangutans
orangutan orcas orca oryxes oryx
ospreys osprey otters otter owls
owl owlets owlet oxen ox
oysters oyster pandas panda pangolins
pangolin panthers panther parrs parr
parrots parrot partridges partridge peachicks
peachick peacocks peacock peafowls peafowl
peahens peahen peeps peep pelicans

Non-Human Organisms: continued on next page
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Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

pelican penguins penguin pigs pig
pigeons pigeon piglets piglet pikas
pika pinschers pinscher planulas planula
platypuses platypus polliwogs polliwog polyps
polyp ponies pony porcupines porcupine
poriferas porifera porpoises porpoise pottoes
potto poults poult prawns prawn
pronghorns pronghorn przewalskis przewalski puffins
puffin puggles puggle pumas puma
pups pup pupas pupa pupaes
pupae puppies puppy quails quail
queleas quelea quetzals quetzal rabbits
rabbit raccoons raccoon rails rail
rams ram rats rat rattlers
rattler ravens raven stingrays stingray
rays ray reeves reeve reindeer
reptiles reptile reynards reynard rhinos
rhino ringworms ringworm robins robin
rodents rodent roos roo rooks
rook roosters rooster roundworms roundworm
ruffs ruff salamanders salamander salmon
sandpipers sandpiper sapsuckers sapsucker scallops
scallop scorpions scorpion scorries scorrie
seafoals seafoal seahorses seahorse seals
seal seastallions seastallion seastars seastar
servals serval sharks shark wolves
wolf sheep shoats shoat shoebills
shoebill shrews shrew shrewlets shrewlet
shrimps shrimp snakes snake sires
sire skates skate skunks skunk
sloths sloth slugs slug smolts
smolt snails snail snakelets snakelet
sows sow spaniels spaniel spats
spat spiders spider sponges sponge
spoonbills spoonbill sprags sprag sprats
sprat squabs squab squamates squamate
squids squid squirrels squirrel stags
stag stallions stallion starfish steers
steer stinkbugs stinkbug storks stork

Non-Human Organisms: continued on next page
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Table A.1 Non-Human Organisms refers to the textual mention of a non-
human animal (e.g., swine, horse).

studs stud sucklings suckling swallows
swallow swans swan swordfish tadpoles
tadpole tamanduas tamandua tamarins tamarin
tapeworms tapeworm tapirs tapir tarantulas
tarantula tarpans tarpan tarsiers tarsier
tercels tercel termites termite terrapins
terrapin terriers terrier terzels terzel
tiercels tiercel tigers tiger tigresses
tigress toads toad toadlets toadlet
tods tod turkeys turkey tomcats
tomcat tortoises tortoise trout tuna
turtles turtle uakaris uakari ungulates
ungulate urchins urchin urutus urutu
vardens varden vervets vervet vicunas
vicuna vipers viper vixens vixen
voles vole vultures vulture wallabies
wallaby walruses walrus wapitis wapiti
warblers warbler warthogs warthog wasps
wasp waterfowls waterfowl weaners weaner
weasels weasel weevils weevil whales
whale whelps whelp whippets whippet
whoopers whooper wildcats wildcat wildebeasts
wildebeast wolverines wolverine wombats wombat
woodchucks woodchuck woodpeckers woodpecker worms
worm wormlets wormlet wrens wren
xantuses xantus xenops xenop xiphactinuses
xiphactinus yaks yak yetis yeti
zanders zander zebras zebra zebus
zebu zorillas zorilla tick ticks
flea fleas ruminants ruminant livestock
farm animal farm animals poultry

Table A.2 Persons-by-Geography refers to the textual mention of a human
by a geographical description (e.g., Moroccans, Brazilians).

Afghanistanians Afghanistanian Africans
Algerians Americans Angolans

Persons-by-Geography: continued on next page
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Table A.2 Persons-by-Geography refers to the textual mention of a human
by a geographical description (e.g., Moroccans, Brazilians).

Argentinians Armenians Australians
Austrians Azerbaijanians Bagians
Bangladeshians Bavarians Belarusians
Belgians Bolivians bolognians
Brazilians Britains Bulacans
Bulgarians Burundians Californians
Cambodians Cameroonians Canadians
Cape Verdians Caribbeans Chinese
Colombians Costa Ricans Croatians
Cubans East Africans Ecuadorians
Egyptians Eritreans Ethiopians
Europeans Europeans Finlandians
Floridians French Fujians
Gabonians Georgians Germans
Ghanian Hawaiians Hungarians
Indians Indonesians Iranians
Iraqis Israelis Italians
Jamaicans Japanese Jordanians
Jordanians Kenyans Koreans
Kosovans Kuwaitis Macedonians
Malasians Malaysians Maldives
Maltese Mediterraneans Mexicans
Mongolians Moroccans Nairobians
Namibians Nepalians Nigerians
Nimbanians North Americans Norwegians
Pakistanians Palestinians Papua New Guineans
Paraguays Polish Romanians
Romans Russians Rwandans
Saudi Arabians Scottish Senegalese
Serbians Singaporians Slovakians
South Africans South Koreans Spainards
Sudanese Swazilanders Swedens
Switzers Taiwanese Tanzanians
Tehranians Texans Thailanders
Tibetians Trinidadians Tunisians
Turkmenistanians Ugandans Ukrainians
Uzbekistanians Victorians Vietnamese
Yatengans Yemenese Yemens
Yerevans Yunlins Yunnans

Persons-by-Geography: continued on next page
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Table A.2 Persons-by-Geography refers to the textual mention of a human
by a geographical description (e.g., Moroccans, Brazilians).

Zaires Zambians Zambians
Zanzibarians Zhongshans Zimbabwians
Ziyoratuts

Table A.3 Persons-by-Population refers to the textual mention of a human
by a family relation (e.g., brother, father), or a general population group to
which a human belongs (e.g., elderly, group of children).

families family mothers mother adults
adult aunts aunt babies baby
boys boy brothers brother children
child cousins cousin daughters daughter
fathers father fellows fellow females
female gentlemen gentleman girls girl
god-child godchilds godchild grandchilds grandchild
granddaughters granddaughter grandfathers grandfather grandmothers
grandmother grandparents grandparent grandsons grandson
husbands husband infants infant kids
kid lads lad ladies lady
males male men man neonates
neonate nephews nephew newborns newborn
nieces niece offsprings offspring parents
parent siblings sibling sisters sister
sons son spouses spouse stepbrothers
stepbrother stepcaddlabelhilds stepchild stepdaughters stepdaughter
stepfathers stepfather stepmothers stepmother stepparents
stepparent stepsisters stepsister stepsons stepson
teens teen teenagers teenager toddlers
toddler tribes tribe twins twin
uncles uncle widows widow wives
wife women woman refugee refugees
tribal tribals tribesman tribesmen tribesperson
tribeswoman tribeswomen tribes man tribes men tribes person
tribes woman tribes women traveler travelers laborer
laborers staff staffers pilgrim pilgrims
people soldier soldiers resident residents
refugee refugees humans human person

Persons-by-Population: continued on next page
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Table A.3 Persons-by-Population refers to the textual mention of a human
by a family relation (e.g., brother, father), or a general population group to
which a human belongs (e.g., elderly, group of children).

guest individual tourist passenger traveller
villager laborer inmate pilgrim resident
dweller migrant

Table A.4 Persons-by-Occupation refers to the textual mention of a human
by their occupation (e.g., pilgrims, mine workers, nurse).

ederly students student
workers worker individuals
individual tourists tourist
passengers passenger travellers
traveller villagers villager
laborers laborer inmates
inmate pilgrims pilgrim
residents resident dwellers
dweller migrants migrant
pupils pupil guests
guest personell health care worker
healthcare worker health care workers healthcare workers
hospital worker hospital workers hospitalcare worker
hospitalcare workers hospital care worker hospital care workers
officials staff staffers
staffer farm worker farm workers
hospital worker hospital workers teacher
teachers businessman businessmen
businesswomen businesswomen businessperson
businesspeople business man business men
business women business women business person
business people researcher doctor
nurser
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A.2 Medical Condition Entities

In this section, we provide the complete list of terms used to construct each dictionary
for the domain expert supplied medical condition named entities.

Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

a sore throat abdominal cramps
abdominal distension abdominal pain
abdominal wall blister abdominal wall numbness
abdominal wall rash abdominal wall redness
abdominal wall tingling abrupt watery diarrhoea
absent abdominal reflexes absenteeism in children
acanthosis nigricans aches
acute colitis-like symptoms acute diarrhoea
acute hepatitis acute ibd-like diarrhea
acute ibs-like diarrhea acute ibs-like symptoms
acute virus hepatitis adenoids bleeding
adenoids blister adenoids rash
adenoids ulcer adenovirus
adenovirus infection adenovirus keratitis
adrenal adenoma adrenal carcinoma
agitation airway occlusion
altered respiratory pattern amebiasis
amenorrhea anal fissure
anal rash anatomic obstruction
ankle rash anthrax
anxiety aphthous ulcer
apnea appetite changes
ards arm pain
arm rash ascites
aseptic meningitis asparatate aminotransferase elevation
ataxia atypical bacteria - coxiella burnetti
avian influenza axillary swelling
bacillus anthracis back lump
back pain back rash
bad breath bilateral adnexal tenderness
bilateral crackles bilharziose
bladder burning sensation bladder infection
bladder inflammation bladder lump

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

bladder redness bladder swelling
bladder ulcer blebs
bleeding gums bleeding under skin
blood in stool blood in urine
blood streaked diarrhoea bloody diarrhea
bloody ejaculation bloody semen
bloody sputum bone pain
borrelia borrelia recurrentis
borreliosis botulism
bowel obstruction bradycardia in children
brain tumor brain tumour
brasilianisches hmorrhagisches fieber (sabia) brassy cough
breast rash breathing difficulties
breathing difficulty bronchial inflammation
bronchial redness bronchial stiffness
brucella brucella sp.
brucella spinal abscess brucellosis
bruising in pregnancy bubonic plaque
buttock rash cachexia
calf rash campylobacter
campylobacter enteritis campylobacter sp.
catatonia cervical lymphadenopathy
cervix ulcer cheek rash
chest infection chest inflammation
chest pain chest rash
chest tenderness chest weakness
chickenpox chikungunyafieber
chills chin rash
chinococcus chlamydia psittaci
choking cholera
chronic cough chronic crohns-like symptoms
chronic ibd-like diarrhea chronic ibd-like symptoms
chronic ibs-like diarrhea chronic ibs-like symptoms
chronic progressive dysarthria cirrhosis of liver
cjk clay coloured stools
clitoris rash clostridien
clostridium botulinum clostridium difficile
clubbed fingers clubbing in children

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

clubbing of fingers cold feet
cold-like symptoms colitis-like abdominal pain
colitis-like symptoms complete respiratory arrest
congenital rubella syndrome congenital toxoplasmosis
conjunctivitis constant diarrhea
constant throat pain constipation
continuous spine pain corynebacterium
corynebacterium diphtheriae cough
coxiella burnetii creutzfeldt-jakob disease
crohns-like abdominal symptoms crohns-like diarrhea symptoms
crohns-like symptoms cryptosporidiosis
cryptosporidium parvum cystic fibrosis-like symptoms
dactylitis dandy-fieber
decreased cardiac output decreased hair growth
decreased oxygen saturation decreased reflexes
decreased respiratory excursions delayed puberty
delirium in children dementia
dengue fever diabetes insipidus
diaphoresis diarrhea
diarrhea in children difficulty walking
diminished breath sounds diphtheria
diplopia double vision
drenching night sweats drooling
dull sounds dyarthria in children
dysarthria dysphagia
e.coli ear rash
early summer meningoencephalitis ebola fever
ebola virus ebolavirus
echinococcosis edema of larynx
ehec ejaculate blood
elbow rash elevated sedimentary rate
encephalitis enlarged lymph nodes
enlarged tonsils enteric fever
enterohemorrhagic e. coli enteropathisch
episcleritis erythema migrans
eschar escherichia coli
excessive watery diarrhea exercise symptoms
external os ulcer eye inflammation

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

eye pain eye rash
eyebrow rash eyelid rash
face swelling facial paralysis
facial rash failure to thrive
fast breathing fatigue
fatigue in children febris undulans
feet weakness female infertility
fever finger clubbing
finger rash fixed pupils
flu flu-like symptoms
foot rash foot weakness
foot-drop in children forearm rash
forehead rash foreskin rash
formation of necrosis foul smelling sputum
francisella tularensis frequency of urination
fsme-virus fuo
gangrene gas gangrene
gastroenteritis gastrointestinal symptoms
gi infection giardia lamblia
giardiasis green stool
groin rash gum rash
haematuria haemophilia influenza
haemophilus influenzae halitosis
hand rash hanta virus
hantavirus hantavirus pulmonary syndrome
head itch head rash
headache healing symptoms
hemolytic-uremic syndrome hemoptysis in children
hemoptysis in newborns hemorrhagic rash
hemorrhagic rashes hepatic failure
hepatitis hepatitis a
hepatitis a virus hepatitis b
hepatitis b virus hepatitis c
hepatitis d hepatitis d virus
hepatitis e hepatitis e virus
hepatitis epidemica high arched foot
high blood calcium high blood pressure
high fever hiv infection

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

hiv-infektion hoarseness in children
human spongiform enzephalopathy hypoactive dtrs
hypoalbuminemia hypogastric swelling
hyporeflexia hyporeflexia in children
hypotonia in children ibd-like abdominal pain
ibd-like symptoms ibs-like diarrhea
icterus impaired brain function
impaired motor movement impaired speaking
increased lactate increased salivation
increased thirst indigestion
inflammatory joint effusion influenza
influenza virus intermittent bacterial pneumonia
intermittent crohns-like symptoms intermittent foot weakness
intermittent generalised rashes intermittent ibd-like diarrhea
intermittent ibd-like symptoms intermittent ibs-like symptoms
intermittent palmar erythema intermittent rib pain
internal os ulcer interrupted urine flow
intestinal obstruction iritis
itchy rash jaundice
jaw rash joint symptoms
knee rash kneecap rash
knuckle rash kryptosporidiose
kyphosis kyphosis in children
lack of urine lacrimation
large tender liver laryngitis
laryngospasm larynx deformity
larynx infection larynx lump
larynx redness larynx ulcer
lassa fever lassa virus
leg paralysis leg ulcers
legionella legionella sp.
legionellose legionellosis
leprosy leptospira interrogans
leptospirosis leucocytosis
leucopenia leukopaenia
limp in children listeria monocytogenes
listeriosis liver cancer
liver enlargement liver failure

Medical condition: continued on next page



A.2 Medical Condition Entities 151

Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

liver infection liver mass
liver redness low-grade fever
lower back pain lower jaw rash
lumbar spasm lung abscess
lung inflammation lung redness
lung stiff lymphadenitis in children
lymphocytosis maculopapular rash
malaise malaria
male infertility malnutrition
marburg virus massive hemoptysis
massive hemorrhaging measles
measles virus mechanical intestinal obstruction
mechanical obstruction melena
memory changes meningitis
meningococcal disease meningoencephalitis
meningoenzephalitis meningomyelitis
menorrhagia menschliches immundefekt virus
menschliches immunschwche-virus methicillin-resistant staphylococcus aureus
methicillin-resistenter staphylokokkus aureus middle back pain
migratory arthritis mild colitis-like symptoms
mild crohns-like symptoms mild fever
mild ibs-like symptoms miliary tuberculosis
mouth infections mouth lesions
mouth lump mouth pigmentation
mouth ulcers mouth white patches
mrsa mucoid sputum
mucopurulent secretions mucopurulent sputum
mucous plugs mucus buildup
mucus in stool mucus symptoms
multi-organ dysfunction mumps
muscle atrophy muscle flaccidity
muscle pain muscle spasms
muscle weakness myalgia
mycobacterium mycobacterium tuberculosis
mydriasis myocarditis
nasal obstruction nasopharyngeal tonsil bleeding
nasopharyngeal tonsil blister nasopharyngeal tonsil rash
nasopharyngeal tonsil ulcer nausea

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

neck lump neck rash
neisseria meningitidis nerve root irritation
neurotoxic effects new variant of creutzfeldt-jakob disease
night sweats no appetite
noncardiogenic pulmonary edema nonproductive cough
norovirus norwalk-like virus
nostril ulcer not feeling hungry
nuchal rigidity ochropyra
ocular dysmetria ophthalmoplegia
opisthotonus optic neuritis
ornithosis other pathogens of hemorrhagic fever
pain pallor in children
palm rash pancreas inflammation
paralysis symptoms paraplegia
paratyphoid paratyphoid fever
peripheral neuropathy peripheral vasoconstriction
persistent cough persistent high fever
personality changes pertussis
pestsepsis petichiae in pregnancy
pharyngeal edema pharyngeal muscle spasms
pharynx bleeding pharynx blister
pharynx ulcer photophobia
plague pleural effusion
pneumococcus poliomyelitis
poliovirus popliteal fossa blister
positive babinski sign progressive weakness
prolonged fever proprioception
ptosis in children pubic area rash
pulmonary inflammation pulmonary redness
pulmonary stiff purpura in adults
purulent sputum pus in stool
pustules pyelonephritis in pregnancy
pyuria pyuria in pregnancy
q fever quadriceps muscle weakness
quadriplegia rabies
rabiesvirus raised white cells
rapid respirations rapid respiratory rate
rash in children rectal bleeding

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

rectal mass rectal ulcer
recurrent fever recurring bouts of fever
recurring crohns-like symptoms recurring ibd-like diarrhea
recurring ibd-like symptoms recurring ibs-like symptoms
red spots red throat
reduced tendon reflexes relapsing fever
renal lump respiratory disorder
respiratory inflammation respiratory redness
respiratory stiff rib itch
rib pain rib rash
rickettsia rickettsia prowazekii
rose spots rotavirus
rubella rubeola rubella
rubula runny nose
rupture of blebs sacral spasm
salivary gland pain salmonella paratyphi
salmonella typhi salmonellosis
scarlet fever scarring alopecia
scleritis scoliosis
scoliosis in children scrotal rash
secondary infection sensory ataxia
severe acute respiratory syndrome severe colitis-like symptoms
severe crohns-like symptoms severe diarrhea
severe headache severe ibd-like diarrhea
severe ibd-like symptoms severe ibs-like diarrhoea
severe ibs-like symptoms severe weight loss
shigella shigella infection
shigella sp. shigellen
shigellosis shin rash
short stature shortness of breath
shoulder rash sick
sinus ulcer skin lesion
skin ulcer skull itch
smallpox sneezing
sole rash sore joints
sore throat speaking difficulty
speech abnormalities spinal blister
spinal itch spinal rash

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

spinal spasm spine pain
spitting blood spongiform cerebral degeneration
spongiform encephalopathy sputum
stertorous breathing stomach itch
stomach rash stool color
stridor in children succussion sounds
sudden onset suspected rabies exposures
swallowing difficulty sweating
swine flu swollen bone
swollen lymph glands swollen nail
swollen spleen syphilis
tearing in children temperature symptoms
temple itch temporal itch
testicle lump testicle swelling
testicular atrophy testicular pain
testis rash tetanus
thigh itch thigh paralysis
thigh rash thigh weakness
thoracic blister thoracic numbness
thoracic rash thoracic redness
thoracic tingling thoracic vertebrae blister
thoracic vertebrae itch thoracic vertebrae rash
thoracic vertebrae spasm thoracic wall blister
thoracic wall infection thoracic wall inflammation
thoracic wall weakness thorax infection
thorax inflammation thorax weakness
throat bleeding throat blister
throat infection throat pain
throat rash throat ulcer
thumb rash thyroid enlargement
tingling tiredness
toe rash tongue ulcers
toxoplasmosis tracheal stenosis
travellers diarrhoea trichinella spiralis
trichinella spiralis infection trichinosis
trismus trunk rash
tuberculosis tularaemia
typhoid and paratyphoid fever typhus

Medical condition: continued on next page
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Table A.5 Medical condition terms consisting of infectious diseases, their
synonyms, pathogens and symptoms in English, which was manually con-
structed by M-Eco domain experts.

ulcer underarm rash
unequal motor movement upper arm rash
urethral discharge urogenital triangle rash
urosepsis vaginal rash
varizellen vertebral blister
vertebral itch vertebral rash
vertebral spasm vibrio cholerae o 1 and o 139
viral haemorrhagic fever viral hemorrhagic fever
virushepatitis a virushepatitis b
virushepatitis d virushepatitis e
visible bleeding vision changes
vocal cord paralysis voice symptoms
voicebox deformity voicebox infection
voicebox lump voicebox redness
voicebox ulcer vomiting
vomiting in children vulva rash
vulval area rash watery diarrhea
watery stool weakness
weight loss wet cough
wheezing in children whooping cough
wrist pain wrist rash
wrist swelling yellow fever
yellow fever virus yersinia
yersinia enterocolitica yersinia pestis
yersiniosis
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Example Relevant and Non-Relevant Sentences

This Appendix present example sentences and the their corresponding sentence posi-
tion for sentences that have been labeld with weak labeling for the auxilary domains
of ProMED-mail. Additional examples are downloadable from the following web ad-
dress: http://pharos.l3s.uni-hannover.de/∼stewart/.

• Table B.1 shows examples of revelant sentences obtained with weak labeling
from ProMED-mail auxilary domain.

• Table B.2 shows examples non-revelant and non-medical condition bearing sen-
tences obtained with weak labeling from ProMED-mail auxilary domain.
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Table B.1 Examples of relevant weakly labeled sentences from ProMED-
mail without temporal filtering.

Pos. ProMED-mail Revelant / Non-Relevant Sentences

0 Cap Verde: Cholera has been reported every week since November 1994.
0 The number of cases of dengue and dengue hemorrhagic fever continued to rise

in November, and the epidemic spread to new areas in the Americas.
0 Cholera has also reported in Kwara 272 cases\/77 deaths , Niger 304\/97 , Ondo

no report , and Oyo 215\/7 .
1 No new cases of Ebola hemorrhagic fever have been reported in Gabon since the

death of the last case on 12 March 1996.
1 Introduction: last 17 April 1996, a local newspaper reported 2 monkeys from the

Philippines died from Ebola infection in Hazleton, Alice, Texas, USA.
1 An increased number of cases of meningococcal meningitis has been registered

since the beginning of February 1996, first in the District of Dioila, followed by
the District of Bamako.

2 Other countries reporting cholera in the past week are: Cameroon, Kenya, Liberia
and Niger.

1 An epidemic of cerebrospinal meningitis has been reported in Cabo Delgado
province in the Northern Region.

1 Since May, Tajikistan has faced an outbreak of typhoid fever, resulting in nearly
4 000 cases notified so far.

2 The health authorities in Cyprus have informed WHO of an outbreak of viral
meningitis which has affected a total of 223 persons 193 in children under 14.

1 The Ministry of Health and Social Welfare has announced a steady upward trend
in cholera figures in the city of Monrovia and its environs since April 1996.

1 EHEC infection in Sakai City has affected a total of 6 309 schoolchildren and 92
school staff members from 62 municipal elementary schools.

1 Communicable disease clinics in Bucharest have registered an increase in the
number of patients with meningoencephalitis since the beginning of August.

1 A press release from the Ministry of Health on 3 September reported an addi-
tional 22 cases of meningitis and viral meningoencephalitis hospitalized in the
communicable disease hospitals in Bucharest.
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Table B.2 Examples of non-relevant weakly labeled sentences from
ProMED-mail for the precision boosting strategy and no temporal filtering.

Pos. ProMED-mail Non-Relevant Sentences

37 Other possible infectious agents include Classical swine fever African swine fever
swine influenza anthrax more acute symptoms might be expected and others.

12 The article also mentions 34 outbreaks involving 222 cases in the preceding week.
38 World Wildlife Federation WWF Canada: Toxics: EDCs Canada Web Hormones.
7 This outbreak occurred within the observation zone set up around the zone that

was declared – on 22 Apr 2002 – infected with CSF in wild boar see Disease
Information 15 17 55 dated 26 Apr 2002.

15 There are also increasing problems with chloroquine resistance in the state and
apart from increased transmission as discussed in the article increasing resistance
to chloroquine without a switch to 2nd-line drugs like mefloquine Lariam and
sulfadoxine\/pyrimethamine Fansidar could also be a factor in the mortalities.

28 In September levels rose to 23 ppm which was above the action level and then
from 40 to 94 ppm.

14 Trypanosomiasis African - Dem.
10 But what is needed now is not opinions but good science comprehensive epidemi-

ology and a tremendous amount of work by USDA officials.
23 These birds were kept in a separate building and did not show any symptoms

which is why it was regarded as less risky to cull them later.
16 It clearly can occur anywhere around the world as the list of countries where this

has happened in swine now includes a pandemic type range of countries including
Canada Argentina Australia Singapore United Kingdom Ireland Norway Japan
Iceland USA Taiwan Indonesia Finland and now Italy see references below.

7 This is the 4th recall of olives this month March 2007 regarding botulism risk.
55 The name is said to come from comparison with a corpulent female tavern keeper

“ ale-wife ”.
19 The mortality reported in the press reports of the current HFMD outbreak in

the city of Linyi in Shandung province 26 deaths among 292 children if accurate
would be an unprecedented event.

8 Requests to contribute a paper or poster as well as accompanying abstracts should
be received by no later than 31 Jan 2005.

42 Viable bacteria can also be found for weeks to months in the carcasses and hides of
infected animals and in fomites including grain dust straw water soil and bedbugs.

25 “ We hope these initiatives will set the stage for other countries to adopt similar
approaches to the release of Influenza virus sequence data that they manage ”
Cox said.

97 Significant points are that during outbreak investigations up to 10 times more
cases have been identified than those notified to the local health authorities.

34 Few anglers eat muskies anyway said Greg Van Assche a fishing guide who says
he has caught more than 3000 muskies in his lifetime.
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[SN11b] Avaré Stewart and Wolfgang Nejdl. Self-supervised learning for medical
web disease reporting events detection. In Proc. of ACM WebSci’11,
June 14-17 2011, Koblenz, Germany, 2011.

[SOM10] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake
shakes twitter users: real-time event detection by social sensors. In
Proceedings of WWW’2010, 2010.

[SS11] A. Stewart and M. Smith. User centric public health event detection
within social medical ecosystems. In Proceedings of the 5th IEEE In-
ternational Conference on Digital Ecosystems and Technologies (IEEE
DEST 2011), 2011.
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