20 research outputs found

    Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    Get PDF
    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks

    A multichannel relay MAC protocol for IEEE 802.11 wireless LANs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109605/1/dac2526.pd

    In Defense of Wireless Carrier Sense

    Get PDF
    Carrier sense is often used to regulate concurrency in wireless medium access control (MAC) protocols, balancing interference protection and spatial reuse. Carrier sense is known to be imperfect, and many improved techniques have been proposed. Is the search for a replacement justified? This paper presents a theoretical model for average case two-sender carrier sense based on radio propagation theory and Shannon capacity. Analysis using the model shows that carrier sense performance is surprisingly close to optimal for radios with adaptive bitrate. The model suggests that hidden and exposed terminals usually cause modest reductions in throughput rather than dramatic decreases. Finally, it is possible to choose a fixed sense threshold which performs well across a wide range of scenarios, in large part due to the role of the noise floor. Experimental results from an indoor 802.11 testbed support these claims

    Maximizing Communication Concurrency via Link-Layer Packet Salvaging in Mobile Ad Hoc Networks

    Get PDF
    Carrier-sense medium access control (MAC) protocols such as the IEEE 802.11 distributed coordination function (DCF) avoid collisions by holding up pending packet transmission requests when a carrier signal is observed above a certain threshold. However, this often results in unnecessarily conservative communication, thus making it difficult to maximize the utilization of the spatial spectral resource. This paper shows that a higher aggregate throughput can be achieved by allowing more concurrent communications and adjusting the communication distance on the fly, which needs provisions for the following two areas. On the one hand, carrier sense-based MAC protocols do not allow aggressive communication attempts when they are within the carrier senseable area. On the other hand, the communication distance is generally neither short nor adjustable because multihop routing protocols strive for providing minimum hop paths. This paper proposes a new MAC algorithm, called multiple access with salvation army (MASA), which adopts less sensitive carrier sensing to promote more concurrent communications and adjusts the communication distance adaptively via packet salvaging at the MAC layer. Extensive simulation based on the ns-2 has shown MASA to outperform the DCF, particularly in terms of packet delay. We also discuss the implementation of MASA based on the DCF specification
    corecore