2,138 research outputs found

    Track, then Decide: Category-Agnostic Vision-based Multi-Object Tracking

    Full text link
    The most common paradigm for vision-based multi-object tracking is tracking-by-detection, due to the availability of reliable detectors for several important object categories such as cars and pedestrians. However, future mobile systems will need a capability to cope with rich human-made environments, in which obtaining detectors for every possible object category would be infeasible. In this paper, we propose a model-free multi-object tracking approach that uses a category-agnostic image segmentation method to track objects. We present an efficient segmentation mask-based tracker which associates pixel-precise masks reported by the segmentation. Our approach can utilize semantic information whenever it is available for classifying objects at the track level, while retaining the capability to track generic unknown objects in the absence of such information. We demonstrate experimentally that our approach achieves performance comparable to state-of-the-art tracking-by-detection methods for popular object categories such as cars and pedestrians. Additionally, we show that the proposed method can discover and robustly track a large variety of other objects.Comment: ICRA'18 submissio

    MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking

    Full text link
    Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure of performance and are therefore important guides for research. We present MOTChallenge, a benchmark for single-camera Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data, and create a framework for the standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to self-driving cars. This paper collects the first three releases of the benchmark: (i) MOT15, along with numerous state-of-the-art results that were submitted in the last years, (ii) MOT16, which contains new challenging videos, and (iii) MOT17, that extends MOT16 sequences with more precise labels and evaluates tracking performance on three different object detectors. The second and third release not only offers a significant increase in the number of labeled boxes but also provide labels for multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest. We finally provide a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work and research trends in the MOT community, and hopefully shed some light on potential future research directions.Comment: Accepted at IJC

    Applications of a Graph Theoretic Based Clustering Framework in Computer Vision and Pattern Recognition

    Full text link
    Recently, several clustering algorithms have been used to solve variety of problems from different discipline. This dissertation aims to address different challenging tasks in computer vision and pattern recognition by casting the problems as a clustering problem. We proposed novel approaches to solve multi-target tracking, visual geo-localization and outlier detection problems using a unified underlining clustering framework, i.e., dominant set clustering and its extensions, and presented a superior result over several state-of-the-art approaches.Comment: doctoral dissertatio

    Novel Aggregated Solutions for Robust Visual Tracking in Traffic Scenarios

    Get PDF
    This work proposes novel approaches for object tracking in challenging scenarios like severe occlusion, deteriorated vision and long range multi-object reidentification. All these solutions are only based on image sequence captured by a monocular camera and do not require additional sensors. Experiments on standard benchmarks demonstrate an improved state-of-the-art performance of these approaches. Since all the presented approaches are smartly designed, they can run at a real-time speed
    corecore