602 research outputs found

    GIS and Health: Enhancing Disease Surveillance and Intervention through Spatial Epidemiology

    Get PDF
    The success of an evidence-based intervention depends on precise and accurate evaluation of available data and information. Here, the use of robust methods for evidence evaluation is important. Epidemiology, in its conventional form, relies on statistics and mathematics to draw inferences on disease dynamics in affected populations. Interestingly, most of the data used tend to have spatial aspects to them. However, most of these statistical and mathematical methods tend to either neglect these spatial aspects or consider them as artefacts, thereby biasing the resultant estimates. Thankfully, spatial methods allow for evidence evaluation and prediction in epidemiologic data while considering their inherent spatial characteristics. This, thus, promises more precise and accurate estimates.This thesis documents and illustrates the contribution spatial methods and spatial thinking makes to epidemiology through studies carried out in two countries with different heath-data quality realities, Uganda and Sweden. To be able to use spatial methods for epidemiology studies, proper spatial data need to be available, which is not the case in Uganda. Consequently, this study had two main aims: (1) It proposed and implemented a novel way of spatially-enabling patient registry systems in settings where the existing infrastructures do not allow for the collection of patient-level spatial details, prerequisites for fine-scale spatial analyses; (2) Where spatial data were available, spatial methods were used to study associative relationships between health outcomes and exposure factors. Spatial econometrics approaches, especially spatially autoregressive regression models were adopted. Also, consistent with location-specific epidemiologic intervention, the advantages of using spatial scan statistics, Geographically Weighted (Poisson) Regression and local entropy maps to distil model parameter estimates into their inherent spatial heterogeneities were illustrated. Our results illustrated that through the use of mobile and web technologies and leveraging on existing spatial data pools, systems that enable recording and storage of geospatially referenced patient records can be created. Also, spatial methods outperformed conventional statistical approaches, giving refined and more accurate parameter estimates. Finally, our study illustrates that the use of local spatial methods can inform policy and intervention better through the identification of areas with elevated disease burden or those areas worth additional scrutiny as illustrated by our study of HIV-TB coinfection areas in Uganda, the areas with high CVD-air pollution associations in Sweden, and areas with consistently high joint mortality burden for CVD and cancer among the Swedish elderly.Overall, the incorporation of spatial approaches and spatial thinking in epidemiology cannot be overemphasized. First, by enabling the capture of fine-scale personal-level spatial data, our study promises more robust analyses and seamless data integration. Secondly, associative analyses using spatial methods showed improved results. Thirdly, identification of the areas with elevated disease burden makes identifying the primary drivers of the observed local patterns more informed and focused. Ultimately, our results inform healthcare policy and strategic intervention as the most affected areas can easily be zoned out. Therefore, by illustrating these benefits, this study contributes to epidemiology, through spatial methods, especially in the aspects of disease surveillance, informing policy, and driving possible effective intervention

    Policy and Place: A Spatial Data Science Framework for Research and Decision-Making

    Get PDF
    abstract: A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation. The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.Dissertation/ThesisDoctoral Dissertation Geography 201

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. © 2019 American Psychological Association Inc. All rights reserved.Peer reviewe

    Preface

    Get PDF

    A model not a prophet:Operationalising patient-level prediction using observational data networks

    Get PDF
    Improving prediction model developement and evaluation processes using observational health data
    • …
    corecore