44 research outputs found

    Maintaining Communication Links Using a Team of Mobile Robots

    Get PDF
    This paper presents a comprehensive metric to evaluate the link quality and the corresponding control schemes for the distributed control of a team of robots to maintain the communication links. The mobile robots dynamically reconfigure themselves to maintain reliable end-to-end communication links. Such applications require online measurements of communication quality in real time and require a mapping between link quality and robot positions. In this paper, we present the empirical results and analysis of a link variability study for an indoor and outdoor environments including received signal strength indicator (RSSI), throughput and packet loss rate. The distributed control algorithms consider the environmental constrains and obstacles. Moreover, the self-deployment algorithms allow a team of robots to recognize the coverage gap by monitoring link qualities, and deploy the mobile robots for a variety of applications including self-healing, tethering, intelligent relaying. The assessment of link quality acts as the feedback for cooperative control of mobile robots. The experimental results have shown the effectiveness of evaluation for communication links and the related control schemes

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Target localization and autonomous navigation using wireless sensor networks -a pseudogradient algorithm approach

    Get PDF
    pre-printAutonomous mobile robots (AMRs) operating in unknown environments face twin challenges: 1) localization and 2) efficient directed navigation. This paper describes a two-tiered approach to solving these challenges: 1) by developing novel wireless-sensor-network (WSN)-based localization methods and 2) by using WSN-AMR interaction for navigation. The goal is to have an AMR travel from any point within a WSN-covered region to an identified target location without the aid of global sensing and position information. In this research, the target is reached as follows: 1) by producing a magnitude distribution within the WSN region that has a target-directed pseudogradient (PG) and 2) by having the WSN efficiently navigate the AMRs using the PG. This approach utilizes only the topology of the network and the received signal strength (RSS) among the sensor nodes to create the PG. This research shows that, even in the absence of global positioning information, AMRs can successfully navigate toward a target location using only the RSS in their local neighborhood to compute an optimal path. The utility of the proposed scheme is proved through extensive simulation and hardware experiments

    Adaptive sampling for spatial prediction in environmental monitoring using wireless sensor networks: A review

    Full text link
    © 2018 IEEE. The paper presents a review of the spatial prediction problem in the environmental monitoring applications by utilizing stationary and mobile robotic wireless sensor networks. First, the problem of selecting the best subset of stationary wireless sensors monitoring environmental phenomena in terms of sensing quality is surveyed. Then, predictive inference approaches and sampling algorithms for mobile sensing agents to optimally observe spatially physical processes in the existing works are analysed

    Target Localization and Autonomous Navigation Using Wireless Sensor Networks-A Pseudogradient Algorithm Approach

    Get PDF
    Abstract-Autonomous mobile robots (AMRs) operating in unknown environments face twin challenges: 1) localization and 2) efficient directed navigation. This paper describes a two-tiered approach to solving these challenges: 1) by developing novel wireless-sensor-network (WSN)-based localization methods and 2) by using WSN-AMR interaction for navigation. The goal is to have an AMR travel from any point within a WSN-covered region to an identified target location without the aid of global sensing and position information. In this research, the target is reached as follows: 1) by producing a magnitude distribution within the WSN region that has a target-directed pseudogradient (PG) and 2) by having the WSN efficiently navigate the AMRs using the PG. This approach utilizes only the topology of the network and the received signal strength (RSS) among the sensor nodes to create the PG. This research shows that, even in the absence of global positioning information, AMRs can successfully navigate toward a target location using only the RSS in their local neighborhood to compute an optimal path. The utility of the proposed scheme is proved through extensive simulation and hardware experiments. Index Terms-Goal-directed navigation, pseudo topological gradient, wireless received signal strength (RSS), wireless-sensornetwork (WSN)-assisted target localization

    Small scale implementation of a robotic urban search and rescue network

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2012With the advancement of robotics technologies, it is now possible to use robots for high risk jobs that have historically been accomplished by humans. One such example is the use of robots for Urban Search and Rescue (USR): finding chemical spills, fires, or human survivors in disaster areas. With the ability to include inexpensive wireless transceivers, it is possible to network numerous robots as part of a swarm that can explore an area much more expeditiously than a single robot can. With the inclusion of wireless capabilities comes the necessity to create a protocol for the communication between robots. Also necessary is the creation of an exploration protocol that allows the network of robots to explore such a building or search area in as little time as possible yet as accurately as possible. This thesis covers the development of such a network of robots, starting with the hardware/software co-design, the individual robots' control mechanisms, and their mapping and communications protocols

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces
    corecore