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Self-Landmarking for Robotics Applications 

Yanfei Liu and Carlos Pomalaza-Ráez 
Indiana University – Purdue University Fort Wayne 

USA 

1. Introduction 

This chapter discusses the use of self-landmarking with autonomous mobile robots. Of 
particular interest are outdoor applications where a group of robots can only rely on 
themselves for purposes of self-localization and camera calibration, e.g. planetary 
exploration missions. Recently we have proposed a method of active self-landmarking 
which takes full advantage of the technology that is expected to be available in current and 
future autonomous robots, e.g. cameras, wireless transceivers, and inertial navigation 
systems (Liu, & Pomalaza-Ráez, 2010a).  
Mobile robots’ navigation in an unknown workspace can be divided into the following 

tasks; obstacle avoidance, path planning, map building and self-localization. Self-

localization is a problem which refers to the estimation of a robot’s current position. It is 

important to investigate technologies that can work in a variety of indoor and outdoor 

scenarios and that do not necessarily rely on a network of satellites or a fixed infrastructure 

of wireless access points.  In this chapter we present and discuss the use of active self-

landmarking for the case of a network of mobile robots. These robots have radio 

transceivers for communicating with each other and with a control node. They also have 

cameras and, at the minimum, a conventional inertial navigation system based on 

accelerometers, gyroscopes, etc. We present a methodology by which robots can use the 

landmarking information in conjunction with the navigation information, and in some cases, 

the strength of the signals of the wireless links to achieve high accuracy camera calibration 

tasks. Once a camera is properly calibrated, conventional image registration and image 

based techniques can be used to address the self-localization problem. 

The fast calibration model described in this chapter shares some characteristics with the 

model described in (Zhang, 2004) where closed-form solutions are presented for a method 

that uses 1D objects. In (Zhang, 2004) numerous (hundreds) observations of a 1D object are 

used to compute the camera calibration parameters. The 1D object is a set of 3 collinear well 

defined points. The distances between the points are known. The observations are taken 

while one of the end points remains fixed as the 1D object moves. Whereas this method is 

proven to work well in a well structured scenario it has several disadvantages it is to be 

used in an unstructured outdoors scenario. Depending on the nature of the outdoor 

scenario, e.g. planetary exploration, having a moving long 1D object might not be cost 

effective or even feasible. The method described in this chapter uses a network of mobile 

robots that can communicate with each other and can be implemented in a variety of 

outdoor environments. 
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2. Landmarks 

Humans and animals use several mechanisms to navigate space. The nature of these 
mechanisms depends on the particular navigational problem. In general, global and local 
landmarks are needed for successful navigation (Vlasak, 2006; Steck & Mallot, 2000). As 
their biological counterparts, robots use landmarks that can be recognized by their sensory 
systems. Landmarks can be natural or artificial and they are carefully chosen to be easy to 
identify. Natural landmarks are those objects or features that are already in the environment 
and their nature is independent of the presence or not of a robotic application, e.g. a 
building, a rock formation. Artificial landmarks are specially designed objects that are 
placed in the environment with the objective of enabling robot navigation.   

2.1 Natural landmarks 

Natural landmarks are selected from some salient regions in the scene. The processing of 
natural landmarks is usually a difficult computational task. The main problem when 
using natural landmarks is to efficiently detect and match the features present in the 
sensed data. The most common type of sensor being used is a camera-based system. 
Within indoor environments, landmark extraction has been focused on well defined 
objects or features, e.g. doors, windows (Hayet et al., 2006). Whereas these methods have 
provided good results within indoor scenarios their application to unstructured outdoor 
environments is complicated by the presence of time varying illumination conditions as 
well as dynamic objects present in the images. The difficulty of this problem is further 
increased when there is little or no a priori knowledge of the environment e.g., planetary 
exploration missions. 

2.2 Artificial landmarks 

Artificial landmarks are manmade, fixed at certain locations, and of certain pattern, such as 
circular (Lin & Tummala, 1997; Zitova & Flusser, 1999), patterns with barcodes (Briggs et al., 
2000), or colour pattern with symmetric and repetitive arrangement of colour patches (Yoon 
& Kweon, 2001). Compared with natural landmarks, artificial landmarks usually are 
simpler; provide a more reliable performance; and work very well for indoor navigation. 
Unfortunately artificial landmarks are not an option for many outdoor navigation 
applications due to the complexity and expansiveness of the fields that robots traverse. Since 
the size and shape of the artificial landmarks are known in advance their detection and 
matching is simpler than when using natural landmarks. Assuming that the position of the 
landmarks is known to a robot, once a landmark is recognized, the robot can use that 
information to calculate its own position. 

3. Camera calibration 

Camera calibration is the process of finding: (a) the internal parameters of a camera such as 
the position of the image centre in the image, the focal length, scaling factors for the row 
pixels and column pixels; and (b) the external parameters such as the position and 
orientation of the camera. These parameters are used to model the camera in a reference 
system called world coordinate system.  
The setup of the world coordinate system depends on the actual system. In computer vision 
applications involving industrial robotic systems (Liu et al., 2000), a world coordinate 
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system for the robot is often used since the robot is mounted on a fixed location. For 
autonomous mobile robotic network, there are two ways to incorporate a vision system. One 
is to have a distributed camera network located in fixed locations (Hoover & Olsen, 2000; 
Yokoya et al., 2008). The other one is to have the camera system mounted on the robots 
(Atiya & Hager, 2000). Either of these two methods has its own advantages and 
disadvantages. The fixed camera network can provide accurate and consistent visual 
information since the cameras don’t move at all. However, it has constraints on the size of 
the area being analysed. Also even for a small area at least four cameras are needed to form 
a map for the whole area. The camera-on-board configurations do not have limitations on 
how large the area needs to be and therefore are suited for outdoor navigation.  
The calibration task for a distributed camera network in a large area is challenging because 
they must be calibrated in a unified coordinate system. In (Yokoya et al., 2008), a group of 
mobile robots with one robot equipped with visual marker were developed to conduct the 
calibration. The robot with the marker was used as the calibration target. So as long as the 
cameras are mounted in fixed locations a fixed world coordinate system can be used to 
model the camera. However, for mobile autonomous robot systems with cameras on board, 
a still world coordinate system is difficult to find especially for outdoor navigation tasks due 
to the constantly changing robots’ workspace. Instead the camera coordinate system, i.e. a 
coordinate system on the robot, is chosen as the world coordinate system. In such case the 
external parameters are known. Hence the calibration process in this chapter only focuses on 
the internal parameters. 
The standard calibration process has two steps. First, a list of 3D world coordinates and their 
corresponding 2D image coordinates is established. Second, a set of equations using these 
correspondences is solved to model the camera. A target with certain pattern, such as grid, 
is often constructed and used to establish the correspondences (Tsai, 1987). There is a large 
body of work on camera calibration techniques developed by the photogrammetry 
community as well as by computer vision researchers. Most of the techniques assume that 
the calibration process takes place on a very structured environment, i.e. laboratory setup, 
and rely on well defined 2D (Tsai, 1987) or 3D calibration objects (Liu et al., 2000). The use of 
1D objects (Zhang, 2004; Wu et al., 2005) as well as self calibration techniques (Faugeras, 
2000) usually come at the price of an increase in the computation complexity. The method 
introduced in this chapter has low numerical complexity and thus its computation is 
relatively fast even when implemented in simple camera on-board processors.  

3.1 Camera calibration model  

The camera calibration model discussed in this section includes the mathematical equations 
to solve for the parameters and the method to establish a list of correspondences using a 
group of mobile robots. We use the camera pinhole model that was first introduced by the 
Chinese philosopher Mo-Di (470 BCE to 390 BCE), founder of Mohism (Needham, 1986). 
In a traditional camera, a lens is used to bend light waves into a narrow beam that produces 
an image on the film. With a pinhole camera, the hole acts like a lens by only allowing a 
narrow beam of light to enter. The pinhole camera produces the same type of upside-down, 
reversed image as a modern camera, but with significantly fewer parts.  

3.1.1 Notation  

For the pinhole camera model (Fig. 1) a 2D point is denoted as ࢏ࢇ = ሾܽ௜௫ ܽ௜௬ሿ். A 3D point 
is denoted as ࢏࡭ = ሾܣ௜௫ ௜௬ܣ ࢖  ௜௭ሿ். In Fig. 1ܣ = ሾ݌௬  ௬ሿ் is the point where the principal݌
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axis intersects the image plane. Note that the origin of the image coordinate system is in the 
corner. ݂ is the focal length. 
 

 

Fig. 1. Normalized camera coordinate system. 

The augmented vector ෤ܽ௜ is defined as ࢇ෥࢏ = ሾܽ௜௫ ܽ௜௬ ͳሿ். In the same manner ࡭෩࢏ is defined 

as ࡭෩࢏ = ሾܣ௜௫ ௜௬ܣ ௜௭ܣ ͳሿ். The relationship between the 3D point ࢏࡭ and its projection ࢏ࢇ 
is given by, 

෥௜ࢇ೔࡭ݖ	  = ࡾሾࡷ ෩௜࡭ሿ࢚ 		 (1) 

where ࡷ stands for the camera intrinsic matrix,  

ࡷ  = ቎ߙ ߛ ଴Ͳݑ ߚ ଴Ͳݒ Ͳ ͳ ቏ (2) 

and 

ଵିࡷ  = ێێێۏ
ଵఈۍ − 		ఊఈఉ ఊ௩బି௨బఉఈఉͲ ଵఉ − ௩బఉͲ Ͳ ͳ ۑۑۑے

 (3) 		ې

ሾݑ଴  are the scale factors for ߚ and ߙ ,଴ሿ are the coordinates of the principal point in pixelsݒ
the image ݑ and ݒ axes, and ߛ stands for the skew of the two image axes. ሾࡾ  ሿ stands for࢚
the extrinsic parameters and it represents the rotation and translation that relates the world 
coordinate system to the camera coordinate system. In our case, the camera coordinate 
system is assumed to be the world coordinate system, ࡾ = ࢚ and ࡵ = ૙.  
If ߛ = Ͳ as it is the case for CCD and CMOS cameras then, 

www.intechopen.com



 
Self-Landmarking for Robotics Applications 195 

ࡷ  = ቎ߙ Ͳ ଴Ͳݑ ߚ ଴Ͳݒ Ͳ ͳ ቏ (4) 

and 

ଵିࡷ  = ێێێۏ
ଵఈۍ Ͳ − ௨బఈͲ ଵఉ − ௩బఉͲ Ͳ ͳ ۑۑۑے

ې
 (5) 

The ܭ matrix can also be written as,  

ࡷ  = ቎݉௫݂ Ͳ ݉௫݌௫Ͳ ݉௬݂ ݉௬݌௬Ͳ Ͳ ͳ ቏ (6) 

Where ݉௫, ݉௬ are the number of pixels per meter in the horizontal and vertical directions. It 

should be mentioned that CMOS based cameras can be implemented with fewer 
components, use less power, and/or provide faster readout than CCDs. CMOS sensors are 
also less expensive to manufacture than CCD sensors. 

3.1.2 Mathematical model 

The model described in this section is illustrated in Fig. 2. The reference camera is at 
position ࢏ࡾ while the landmark is located at position ࢏࡭. 
The projection of the landmark in the image plane of the reference camera changes when the 
camera moves from position 0 to position 1 as illustrated in Fig. 2.  
 

 

Fig. 2. Changes in the image coordinates when the reference camera or the landmark moves. 
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This motion is represented by the vector ࡰ૙૚. If instead the landmark moves according to −ܦ଴ଵ, as shown in Fig. 2, and the reference camera does not move, then both the location of 

the landmark, ࡭૚, and its projection on the image, ࢇ૚, would be the same as in the case when 

the reference camera moves.  

For any location of the landmark, ࢏࡭, and its projection on the image, ࢏ࢇ. 
If ࢇ෥࢏ = ൣܽ௜௫		ܽ௜௬		ͳ൧்

  with ࡾ = ࢚ and ࡵ = ૙ from eq. (1), then 

௜࡭  =  ෥௜ (7)ࢇଵିࡷ೔࡭ݖ

also define 

௜௝ࡰ  = ௝࡭ − ௜࡭ = ൣ݀௜௝௫		݀௜௝௬		݀௜௝௭൧்		 (8) 

The magnitudes of ࡭௜ , ௝࡭ ,	and	ࡰ௜௝ (ܮ஺೔ , ஺ೕܮ ,	and	ܮ஽೔ೕ , respectively) can be estimated using the 

strength of the received signal. Also for ܦ௜௝ it is possible to estimate ܮ஽೔ೕ  using the data from 

the robot navigational systems. Both estimation methods, signal strength on a wireless link 

and navigational system data, have certain amount of error that should be taken into 

account in the overall estimation process. 

ೕଶ࡭ܮ  = ௝࡭௝்࡭ = ൫࡭௜் + ௜࡭௜௝்൯൫ࡰ +   ௜௝൯ࡰ

 							= 	 ௜࡭௜்࡭ + ௜௝ࡰ௜்࡭ + ௜࡭௜௝்ࡰ + ௜௝ࡰ௜௝்ࡰ 			 (9) 

ೕଶ࡭ܮ  = ೔ଶ࡭ܮ + ೔ೕଶࡰܮ + ௜࡭௜௝்ࡰʹ 				 (10) 

௜࡭௜௝்ࡰ  = ௅࡭ೕమ ି௅࡭೔మ ି௅ࡰ೔ೕమଶ   

 														= ೔࡭ݖ	௜௝்ࡰ ൦ଵఈ Ͳ − ௨బఈͲ ଵఉ − ௩బఉͲ Ͳ ͳ൪ ൥ܽ௜௫ܽ௜௬ͳ ൩	 (11) 

Define ߜ௜௝ as, 

௜௝ߜ  = ௅࡭ೕమ ି௅࡭೔మ ି௅ࡰ೔ೕమଶ =  

 							= ݀௜௝௭൧		݀௜௝௬		೔ൣ݀௜௝௫࡭ݖ ൥ܯଵ Ͳ ଶͲܯ ଷܯ ସͲܯ Ͳ ͳ ൩ ൥ܽ௜௫ܽ௜௬ͳ ൩ (12) 

where, 

ଵܯ  = ଵఈ 		 ଶܯ		 = − ௨బఈ ଷܯ				 = ଵఉ 		 ସܯ		 = − ௩బఉ  (13) for			Ͳ ≤ ݅ < ݆ ≤ ܰ 
Where N is the number of locations where the landmark moves to 

௜௝ߜ  = 	 ଵܯ೔ൣܽ௜௫݀௜௝௫࡭ݖ + ݀௜௝௫ܯଶ +	ܽ௜௬݀௜௝௬ܯଷ + ݀௜௝௬ܯସ + ݀௜௝௭൧ (14) 
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At the end of this section it is shown that ࡭ݖ೔  can be separately estimated from the values of 

the ܯ௜ parameters. Assuming then that ࡭ݖ೔  has been estimated, 

 
ఋ೔ೕ௭࡭೔ − ݀௜௝௭ = ൣܽ௜௫݀௜௝௫				݀௜௝௫				ܽ௜௬݀௜௝௬				݀௜௝௬൧ ൦ܯଵܯଶܯଷܯସ൪ (15) 

Let’s define ߣ௜௝ as, 

௜௝ߣ  = ఋ೔ೕ௭࡭೔ − ݀௜௝௭ (16) for			Ͳ ≤ ݅ < ݆ ≤ ܰ 
Then, 

௜௝ߣ  = ࢐࢏ࢉ	where (17) 		࢞௜௝்ࢉ = ൣܽ௜௫݀௜௝௫					݀௜௝௫					ܽ௜௬݀௜௝௬					݀௜௝௬൧்	and	࢞ = ሾܯଵ		ܯଶ		ܯଷ		ܯସ		ሿ் 

If the landmark moves to ܰ locations, ࡭૚, ,૛࡭ ⋯ ,  the corresponding equations can be ,ࡺ࡭
written as, 

 ઩ = ઩	where (18) ࢞۱ = ଵଷߣ			ଵଶߣൣ ଶଷߣ			ଵேߣ	⋯	 ۱		 and	ሺேିଵሻே൧்ߣ					⋯			 = ൣܿଵଶ			ܿଵଷ 		⋯ 		ܿଵே				ܿଶଷ 		⋯		ܿሺேିଵሻே൧்
 

The N locations are cross-listed to generate a number of ܰሺܰ − ͳሻ ʹ⁄  pair of points (as shown 
in Fig. 3) in the equations. 
 

 

Fig. 3. Cross-listed locations. 
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The least-squares solution for ݔ	is, 

࢞  = ሾ۱்۱ሿିଵ۱்઩ (19) 

Once ݔ is estimated the camera intrinsic parameters can be easily computed. Next we will 
describe two ways to compute ݖ஺೔. ܣ௜௭ =  .௜ on the z-axisܣ ஺೔, is the projection of the vectorݖ

Also ݖ஺೔ = ஺బݖ + ௜ܵ where, 

 ௜ܵ = ∑ ͳ			for			ሺ௝ିଵሻ௝௭ߜ ≤ ݅ ≤ ܰ௜௝ୀଵ  (20) 

Thus one way to compute ݖ஺೔ is to first estimate ݖ஺బ and then to use the robot navigation 

system to obtain the values of ߜሺ௝ିଵሻ௝௭ (the displacement along the z-axis as the robot moves) 

to compute  ௜ܵ in equation (20). The value of ݖ஺బ itself can be using the navigation system as 

the robot takes the first measurement position. 
A second way to compute ݖ஺೔ relying only on the distance measurement is as follows. From 

equation (12), 

௜௝ߜ  = ݀௜௝௭൧		݀௜௝௬		೔ൣ݀௜௝௫࡭ݖ ൥ܯଵܽ௜௫ + ଷܽ௜௬ܯଶܯ + ସͳܯ ൩ (21) 

௜௝ߜ  = ൣ݀௜௝௫		݀௜௝௬		݀௜௝௭൧ ቎ݖ஺೔ሺܯଵܽ௜௫ + ଷܽ௜௬ܯ஺೔ሺݖଶሻܯ + ஺೔ݖସሻܯ ቏ =  (22) ࢞௜௝்ࢉ

As the landmark moves to ܰ locations ࡭૚, ,૛࡭ ⋯ ,  the corresponding equations can be ,ࡺ࡭
written as 

 ઢ =  (23) ࢞۱

where 

 ઢ = ሾߜ௜ଵ ௜ଶߜ ௜௝ߜ … ݆      for	௜ேሿ்ߜ ≠ ݅ (24) 

and 

 ۱ = ሾࢉ୧ଵ		ࢉ௜ଶ ݆ ௜ேሿ்     forࢉ		⋯		 ≠ ݅ (25) 

The least-squares solution for ݔ	is, 

࢞  = ሾ۱்۱ሿିଵ۱்ઢ  

Once ݔ is estimated, ࡭ݖ೔  is also estimated. 

4. Self-landmarking 

Our system utilizes the paradigm where a group of mobile robots equipped with sensors 

measure their positions relative to one another. This paradigm can be used to directly 

address the self-localization problem as it is done in (Kurazume et al., 1996).  In this chapter 

we use self-landmarking as the underlying framework to develop and implement the fast 

camera calibration procedure described in the previous section. In our case a network of 

mobile robots travel together as illustrated in Fig. 4. It is assumed that the robots have 
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cameras and are equipped with radio transceivers that allow for communications among 

them and with a control node. 

 

 

Fig. 4. Self-landmarking mobile robots. 

Having decided on using the robots themselves as landmarks to each other the next step is 

to choose the type of artificial landmark that can be mounted on a robot’s body. One 

possible choice is to use passive landmarks with invariant features such as circular shapes 

(Zitova & Flusser, 1999) or with simple patterns (Briggs et al., 2000) that are quickly 

recognizable under a variety of viewing conditions. Whereas these methods have provided 

good results within indoor scenarios their application to unstructured outdoor 

environments is complicated by the presence of time varying illumination conditions as well 

as dynamic objects present in the images. To overcome these drawbacks we have proposed 

the use of active landmarks.  

The current state of LED technology allows for low-power and relative high luminance from 

these devices. Depending on the constraints imposed by the robot’s shape and dimensions 

one or more LEDs can be located on its outer surface. Since the robots have communication 

capabilities they can schedule when the LEDs can be turned on and off to match the periods 

when the cameras are capturing images for image differencing. Power can thus be saved by 

having the LEDs ON intervals as short as possible. Short ON intervals can also greatly 

simplify the detection and estimation of the landmarks (the LEDs) in the images since it 

minimizes the effects of time varying illumination conditions and the motion of other 

objects in the scene. 

Further savings in power can be achieved by using smart cameras. These cameras feature 
camera-on-a-chip integration (Rinner et al., 2008).  For distributed sensing applications this 
feature allows the cameras to perform a fair amount of on-chip image processing before the 
information is sent to a central node, e.g. through a wireless channel. For applications where 
the communications’ bandwidth is limited the image processing and data fusion operations 
carried out on the cameras need to be fast and efficient (Rinner & Wolf, 2008). For our work 
the detection and location estimation of the landmarks can be reduced to the analysis of a 
binary image that is obtained by thresholding the difference of the images just before the 
landmark is turned on and then when it is on. A blob finding algorithm (Liu & Pomalaza-

www.intechopen.com



 
Advances in Mechatronics 200 

Ráez, 2010b) can be applied to the task of detecting the landmark. This algorithm is very 
efficient, i.e. low-complexity, and can be performed on the camera processor. The on-camera 
chip only needs to report the location (pixel coordinates) of the blob. 

5. Wireless localization 

Measurements of the strength of the received radio signals can be used to estimate the 
distance between a transmitter and a receiver. The received signal strength indicator (RSSI) 
is a measurement that is readily available even in the simple transceivers used in a variety of 
wireless sensor networks (WSNs). Another common measurement is the link quality 
indicator (LQI). Both RSSI and LQI can be used for localization by correlating them with 
distance values. However most of the methods using those estimates have relative large 
errors in particular within indoor environments (Luthy et al., 2007; Whitehouse et al., 2005).  
By combining signal time-of-flight and phase measurements and making use of the full ISM 
(Industrial, Scientific, Medical) spectrum band it is possible to have estimation errors of less 
than 20 cm with standard deviations less than 3 cm when using IEEE 802.15.4 devices 
(Schwarzer et al., 2008). This latter method requires the addition of a low-cost 
hardware/software that is not part of the 802.15.4 standard. Likewise for IEEE 802.11 
devices it is possible, with an extra hardware, to achieve distance estimation measurements 
with errors less than one meter (Bahillo et al., 2009). The consensus of most researchers is 
that it is very difficult to guarantee distance estimation errors of less than 10 cm when using 
802.11 (Wi-Fi) or 802.15.4 (ZigBee) devices in both indoor and outdoor environments that 
have many feature rich objects.  
Communication systems using Ultra-wide Bandwidth (UWB) signals have shown excellent 
accuracy in terms of distance measurements (Shimuzi & Sanada, 2003). Using time of arrival 
(ToA) methods several researchers have reported estimation errors of less than 5 cm in a 
variety of outdoor and indoor environments (Falsi et al., 2006). UWB signals have been 
proposed for the detection of vegetation, which can be very useful for outdoor navigation 
(Liang et al., 2008), and of people behind walls (Zetik et al., 2006) which can be useful in 
rescue missions. It is then expected that in many applications mobile robots will be 
equipped with UWB transceivers. It should be noted that the accuracy of common GPS 
devices is usually more than 10 meters. The Wide Area Augmentation System (WAAS) 
developed by the Federal Aviation Administration uses a network of GPS reference 
receivers to increase the accuracy to around 1 meter. 

6. Experimental validation 

The paradigm described in this chapter is suitable for a wireless mobile robotic network. In 

principle, the distance from a landmark to a reference camera can be estimated using the 

wireless communication transceiver that each robot is equipped with. Depending on the 

type of transceiver, the error in this estimation can be in the order of meters, e.g. for the IEEE 

805.15.4 protocol, or in centimeters, e.g. when using UWB technology. Errors in the order of 

meters are not acceptable for any camera calibration method, including the one presented 

here. We want to test the calibration method independent of a particular wireless 

transceiver technology. Thus in order to have measurements with errors in the centimeters 

range we used common construction tools, such as tape measures, rulers, plumb-blob, to 

carefully measure the coordinates of each landmark location in the camera coordinate 
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system and the distances between the reference camera and the landmark. Using a laser 

range finder we estimated that the errors incurred using those construction tools are in the 

order of ± 2 or 3 cm, which are in the same range the estimation errors one has when using 

UWB technology (Dardari et al., 2009). 

Unless a global localization method is used, such as using GPS devices, the actual 

coordinates at each location of a roaming robot is usually not known. In our mathematical 

model (Section 3.1.2), the variables assumed to be known are the vectors between the 

landmarks’ locations in the reference camera coordinate system and the image coordinates 

of each landmark location. In our experiments, the measurements of the landmarks’ 

coordinates are not used directly in the calculations. These measurements are used to 

calculate the vectors between the landmarks. When this calibration method is used in a 

mobile robotic network, these vectors can be obtained from the robots’ navigation system. It 

should be noted that with current GPS technology localization errors in the order of 

centimeters is not possible unless additional hardware is included.  

The CMUcam3 used for the experiments was mounted in a regular office environment. A 

wood frame was built to support the camera in a way that the Z axis (principle axis) is in the 

horizontal direction. Fig. 5 shows the front and top view of the CMUcam3 and the mounting 

structure. 

 

 
  Front view    Top view 

Fig. 5. The CMUcam3. 

The active landmark was built using the metal structure parts from the VEX robotics design 

system (Cass, 2006) and LEGO bricks with holes. With the wireless communication 

capabilities, the robots can turn on and off the LEDs whenever needed to form visible 

landmarks. Fig. 6 shows the pictures of the robot frame where the LEDs are in ON and OFF 

state. 

The metal frame with the active landmark was placed in different locations in the room. For 

our experiment twelve locations were chosen so that the landmarks were spread out in the 

image plane. A newly developed efficient blob finding algorithm (Liu & Pomalaza-Ráez, 

2010b) was used to automatically find the landmark anywhere in a scene and then calculate 

the centroid of the landmark. Fig. 7 shows the picture of one of the landmark locations and 

the output from the blob finding algorithm.  

www.intechopen.com



 
Advances in Mechatronics 202 

    
            LEDs OFF      LEDs ON 

Fig. 6. Active landmarks. 

The measurements of the landmarks in the twelve locations are shown in Table 1. ܣ௫, ܣ௬, 

and ܣ௭ are the coordinates in the camera coordinate system. L is the magnitude of the ࡭ 
vector, ܽ௫ and ܽ௬ are the image coordinates. To make full use of the measurements ݊ሺ݊ − ͳሻ ʹ⁄  equations can be generated from the n locations as shown in Fig. 3. 
 

 
 Landmark OFF      Landmark ON   Centroid of the landmark 

Fig. 7. Pre- and post-processed images by the CMUcam3. 

 

 ௭ (cm) L (cm) ܽ௫ (pixels) ܽ௬ (pixels)ܣ ௬ (cm)ܣ ௫ (cm)ܣ 

1 -3.4 -41.0 184.5 188.0 166 45 

2 -61.0 -41.0 189.0 199.0 47 49 

3 -21.0 -41.0 230.0 232.0 145 63 

4 -66.0 -41.0 229.0 239.0 61 65 

5 -10.0 2.0 176.6 176.6 153 149 

6 -74.0 2.0 177.8 189.6 11 147 

7 -12.0 2.0 224.0 224.0 151 148 

8 -67.0 2.0 228.4 235.2 56 147 

9 33.0 -46.0 264.4 271.5 228 70 

10 29.0 -3.0 287.0 287.7 218 143 

11 50.0 31.5 272.5 281.3 251 197 

12 -66.0 36.5 223.5 232.7 60 215 

Table 1. Measurements. 
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Thus the twelve points listed in Table 1 can be used to generate a maximum of (12x11)/2=66 
equations. In order to compare the results of the calibration model using different numbers 
of measurements and their corresponding equations, our calculation used 5 to 12 locations 
that generate 10 to 66 equations. The calculation results are shown in Table 2.  
In the datasheet of the CMUcam3, the range of values for the focal length f is (2.8~4.9mm). 
With the value of ݉௫ and ݉௬, we can calculate the range for ߙ to be (311.1~544.4) and for ߚ	to be (341.5~597.6). It is difficult to know what the exact value of f is, thus the exact values 
of ߙ and ߚ cannot be known either. However, the ratio of ߚ/ߙ is known and is equal to ݉௫/݉௬	(0.91). The relative errors of the estimation of the intrinsic parameters are shown in 

Fig. 8. The estimation results show that the estimates of the parameters converge to the 
correct values as more measurements are used. 
 

No. of data 
points 

Image sets 
used 

 ┚/┙ ଴ݒ ଴ݑ ┚ ┙

10 1 → 5 391.9 440.0 174.6 143.0 0.89 

15 1 → 6 392.6 368.1 175.4 128.3 1.07 

21 1 → 7 394.0 386.1 175.5 132.0 1.02 

28 1 → 8 393.3 371.2 175.3 130.0 1.06 

36 1 → 9 395.0 452.6 175.2 145.3 0.87 

45 1 →10 396.0 451.0 175.0 145.4 0.88 

55 1 →11 397.5 442.0 175.3 144.4 0.90 

66 1 →12 399.7 442.5 176.0 144.0 0.90 

Intrinsic 
parameters 

   176 143 0.91 

Table 2. Calibration results. 
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Fig. 8. Relative errors when computing the camera intrinsic parameters. 
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More than one landmark suited robot can be used in this model to collect a larger number of 

samples without increasing the amount of time needed to have enough measurements. The 

mathematical model itself is unchanged when using multiple robots. One advantage when 

using two or more robots is that it is possible to estimate the distance between the various 

locations by just using the measurements of the strength of the wireless communication 

signals between the robots. This type of estimation is possible if for each pair of location 

points one can position a robot at each point. A minimum of two mobile robots is then 

needed to obtain a set of measurements.  

7. Future developments 

The active self-landmarking described in this chapter requires energy efficient LED devices. 

Currently there is a lot of interest in organic LEDs (OLED). They can be fabricated on 

flexible substrates which can better fit a variety of robot shapes. Once OLEDs are at the stage 

to be used in outdoors they will be good candidates for active-landmarking applications. 

UWB transceivers have shown to provide distances estimation accuracy with errors less 

than 5 cm which makes them ideal for many localization applications. There are only few 

commercial suppliers of UWB devices for particular applications. Research in UWB 

antennas and signal processing is still an active area. It is expected that in the coming years 

UWB transceivers suitable for robotics applications will be readily available.   

To further our research in autonomous mobile robots we are currently building two 

platforms, equipped with cameras and wireless communication capabilities. Unlike other 

robot platforms which usually have a computer on board, each of these robots has a single-

board RIO (reconfiguration I/O) based microcontroller. The wireless router integrated with 

the robot is Linksys WRT160N, which is 802.11b/g/n compatible. The choice of cameras is 

still not finalized. Our goal is to have real-time mobile robot platforms. In order to fully 

control the image grabbing and transmitting process, we have decided to build the vision 

system on our own by integrating a FIFO memory with the camera. 

8. Conclusion 

In this chapter, a new method for fast camera calibration is presented and tested using a 
smart-camera, the CMUcam3 camera. This method can be easily implemented in a camera-
equipped wireless mobile robotic network, where the robots use each other as landmarks. 
The distances between the robots can be estimated using the wireless signals supported by 
standard communication protocols. Active landmarks made of LEDs are proposed. The 
LEDs can be turned on and off through wireless communications commands. One of the 
limitations of this method is that it relies on the ranging accuracy of the wireless signals 
measurements. Signals using the protocol 802.15.4 will give errors in the order of meters 
(not acceptable for calibration tasks). UWB technology, which has errors in the order of 
centimetres, is more appropriate for this type of application.        

9. Acknowledgment 

The authors would like to thank the Indiana Space Consortium for their support of the work 

presented in this chapter.  

www.intechopen.com



 
Self-Landmarking for Robotics Applications 205 

10. References 

Atiya, S. & Hager, G. D.(2000) . Real-time vision-based robot localization, IEEE Transactions 
on Robotics and Automation, pp. 785-800, Vol. 9, No. 6, ISSN :  1042-296X, Dec 1993 . 

Bahillo, A.; Prieto, J.; Mazuelas, S.; Lorenzo, R.; Blas, J. & Fernández, P. (2009). IEEE 802.11 
Distance Estimation Based on RTS/CTS Two-Frame Exchange Mechanism. 
Proceedings of the 2009 IEEE 69th Vehicular Technology Conference, pp. 1-5, ISBN: 978-
1-4244-2517-4, Barcelona, Spain, April 26-29, 2009 

Briggs, A.; Scharstein, D.; Braziunas, D.; Dima, C. & Wall, P. (2000). Mobile Robot 
Navigation Using Self-Similar Landmarks, Proceeding of the 2000 IEEE International 
Conference on Robotics and Automation (ICRA 2000), pp. 1428-1434, ISBN: 0-7803-
5889-9 San Francisco, California, USA, April 24-28, 2000. 

Cass, S (2006). Getting Vexed, IEEE Spectrum, Vol. 43, No. 5, pp. 68-69, ISSN: 0018-9235, May 
2006. 

Dardari, D.; Conti, A.; Ferner, U.; Giorgetti, A. & Win (2009). Ranging With Ultrawide 
Bandwidth Signals in Multipath Environments, Proceedings of the IEEE, Vol. 97, No. 
2, pp. 404-426, February 2009 

Falsi, C.; Dardari, D.; Mucchi, L. & Win, M. (2006). Time of Arrival Estimation for UWB 
Localizers in Realistic Environments, EURASIP Journal on Applied Signal Processing, 
Vol. 2006, 01 January, pp. 1-13, ISSN:1110-8657. 

Faugeras, O.; Quan, L. & Strum, P. (2000).  Self-calibration of a 1D projective camera and its 
application to the self-calibration of a 2D projective camera, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, pp. 1179-1185, ISSN: 0162-
8828, October 2000 

Hoover, A. &  Olsen, B. (2000). Sensor network perception for mobile robotics, Proceedings of 
the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), Vol. 1, 
pp. 342-347, ISBN: 0-7803-5886-4, San Francisco, California, USA, April 24-28, 2000 

Kurazume, R.; Hirose, S.; Nagata, S. & Sahida, N. (1996). Study on Cooperative Positioning 
System: Basic Principle and Measurement Experiment, Proceedings of the 1996 IEEE 
International Conference on Robotics and Automation, Vol. 2, pp. 1421-1426, ISBN: 0-
7803-2988-0, Minneapolis, Minnesota, USA, April 22-28, 1996 

Liang, Q.; Samn, S. & Cheng, X. (2008). UWB Radar Sensor Networks for Sense-through-
Foliage Target Detection, Proceedings of the 2008 IEEE International Conference on 
Communications, pp. 2228-2232, ISBN: 978-1-4244-2075-9, Beijing, China, May 19-23, 
2008 

Lin, C. & Tummala, R. (1997). Mobile Robot Navigation Using Artificial Landmarks, Journal 
of Robotics Systems, Vol. 14, pp. 93-106, February 1997 

Liu, Y.; Hoover, A. & Walker, I. (2000).  Sensor Network Based Workcell for Industrial 
Robots, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems, pp. 1434-1439, ISBN: 0-7803-6348-5, Hawaii, USA, October 2001. 

Liu, Y. & Pomalaza-Ráez, C. (2010a). Application of Active Self-Landmarking to Camera 
Calibration, Proceedings of the International Conference on Machine Vision (ICMV 
2010), ISBN: 978-1-4244-8888-9, Hong Kong, China, December 28-30, 2010 

Liu, Y. & Pomalaza-Ráez, C. (2010b). On-Chip Body Posture Detection for Medical Care 
Applications Using Low-Cost CMOS Cameras, Journal of Integrated Computer-Aided 
Engineering, Vol. 17, No. 1. pp. 3-13, ISBN: 1069-2509, 2010 

Luthy, K.; Grant, E. & Henderson, T. (2007). Leveraging RSSI for Robotic Repair of 
Disconnected Wireless Sensor Networks, Proceedings of the 2007 IEEE International 

www.intechopen.com



 
Advances in Mechatronics 206 

Conference in Robotics and Automation (ICRA), pp. 3659-3664, ISBN: 1-4244-0601-3, 
Roma, Italy, April, 2007 

Needham, J. (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, 
Part 1, Physics, Taipei, Caves Books Ltd 

Rinner, B.; Winkler, T.; Schriebl, W.; Quaritsch, M. & Wolf, W. (2008). The Evolution from 
Single to Pervasive Smart Cameras, Proceedings of the ACM/IEEE International 
Conference on Distributed Smart Cameras (ICDSC-08), pp. 1-10, ISBN: 978-1-4244-
2664-5, Stanford University, California, USA, September 7-11, 2008 

Rinner, B. & Wolf, W. (2008). An Introduction to Distributed Smart Cameras, Proceedings of 
the IEEE, Vol. 96, pp. 1565-1575, ISSN: 0018-9219, October 2008 

Shimizu, Y. & Sanada, Y. (2003). Accuracy of Relative Distance Measurement with Ultra 
Wideband System, Proceedings of 2003 IEEE Conference on Ultra Wideband Systems 
and Technologies, pp. 374-378, ISBN: 0-7803-8187-4, Reston, Virginia, USA, 
November 16-19, 2003 

Steck, S. & Mallot, H. (2000). The Role of Global and Local Landmarks in Virtual 
Environment Navigation, Presence: Teleoperators and Virtual Environments, Vol. 9, 
pp. 69-83, ISSN: 1054-7460, February 2000 

Schwarzer, S.; Vossiek, M.; Pichler, M. & Stelzer, A. (2008). Precise Distance Measurement 
with IEEE 802.15.4 (ZigBee) Devices, Proceedings of the 2008 IEEE Radio and Wireless 
Symposium, pp. 779-782, ISBN: 1-4244-1463-6, Orlando, Florida, USA, January 22-24, 
2008  

Tsai, R. (1987). A Versatile Camera Calibration Technique for 3D Machine Vision, IEEE 
Journal of Robotics & Automation, Vol. 3, No. 4, pp.323-344, ISSN: 0882-4967, August 
1987. 

Vlasak, A. (2006). The Relative Importance of Global and Local Landmarks in Navigation by 
Columbian Ground Squirrels (Spermophilus Columbianus), Journal of Comparative 
Psychology, Vol. 120, pp. 131-138  

Whitehouse, K.; Karlof, C.; Woo, F. Jiang, F. & Culler, D. (2005). The Effects of Ranging 
Noise on Multihop Localization: An Empirical Study, Proceedings of the 4th 
International Symposium on Information Processing in Sensor Networks, pp. 73-80, 
ISBN:0-7803-9202-7, Los Angeles, California, USA, April 25-27, 2005 

Wu, F.; Hu, Z. & Zhu, H. (2005). Camera calibration with moving one-dimensional objects, 
Pattern Recognition, Vol. 38, No. 5, pp. 755-765, ISSN: 0031-3203, May 2005.  

Yokoya, T.; Hasegawa, T. &  Kurazume, R. (2008). Calibration of distributed vision network 
in unified coordinate system by mobile robots, Proceedings of the 2008 International 
Conference on Robotics and Automation, pp. 1412-1417, ISBN 978-1-4244-1647-9, 
Pasadena, California, USA, May 19-23, 2008 

Yoon, K. & Kweon, I. (2001). Landmark design and real-time landmark tracking for mobile 
robot localization, Proceedings of The International Society for Optical Engineering 
(SPIE), Boston, USA, Vol. 4573-21, pp. 219-226, October 29-November 2, 2001 

Zetik, R.; Crabbe, S.; Krajnak, J.; Peyerl, P.; Sachs, J. & R. Thomä, R. Detection and 
localization of persons behind obstacles using M-sequence through-the-wall radar, 
Proceeding of the SPIE Defense and Security Symposium, Vol. 6201, ISBN: 
9780819462572, 2006, Orlando, Florida, USA, April 17-21, 2006. 

Zhang, Z. (2004). Camera Calibration with One-Dimensional Objects, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 26(7):892-899, 2004. 

Zitova, B. & Flusser, J. (1999). Landmark recognition using invariant features, Pattern 
Recognition Letters, Vol. 20, pp.  541-547 

www.intechopen.com



Advances in Mechatronics

Edited by Prof. Horacio Martinez-Alfaro

ISBN 978-953-307-373-6

Hard cover, 300 pages

Publisher InTech

Published online 29, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Numerous books have already been published specializing in one of the well known areas that comprise

Mechatronics: mechanical engineering, electronic control and systems. The goal of this book is to collect state-

of-the-art contributions that discuss recent developments which show a more coherent synergistic integration

between the mentioned areas.Â Â The book is divided in three sections. The first section, divided into five

chapters, deals with Automatic Control and Artificial Intelligence. The second section discusses Robotics and

Vision with six chapters, and the third section considers Other Applications and Theory with two chapters.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yanfei Liu and Carlos Pomalaza-Ra ́ez (2011). Self-Landmarking for Robotics Applications, Advances in

Mechatronics, Prof. Horacio Martinez-Alfaro (Ed.), ISBN: 978-953-307-373-6, InTech, Available from:

http://www.intechopen.com/books/advances-in-mechatronics/self-landmarking-for-robotics-applications



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


