143 research outputs found

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    Near-Memory Address Translation

    Full text link
    Memory and logic integration on the same chip is becoming increasingly cost effective, creating the opportunity to offload data-intensive functionality to processing units placed inside memory chips. The introduction of memory-side processing units (MPUs) into conventional systems faces virtual memory as the first big showstopper: without efficient hardware support for address translation MPUs have highly limited applicability. Unfortunately, conventional translation mechanisms fall short of providing fast translations as contemporary memories exceed the reach of TLBs, making expensive page walks common. In this paper, we are the first to show that the historically important flexibility to map any virtual page to any page frame is unnecessary in today's servers. We find that while limiting the associativity of the virtual-to-physical mapping incurs no penalty, it can break the translate-then-fetch serialization if combined with careful data placement in the MPU's memory, allowing for translation and data fetch to proceed independently and in parallel. We propose the Distributed Inverted Page Table (DIPTA), a near-memory structure in which the smallest memory partition keeps the translation information for its data share, ensuring that the translation completes together with the data fetch. DIPTA completely eliminates the performance overhead of translation, achieving speedups of up to 3.81x and 2.13x over conventional translation using 4KB and 1GB pages respectively.Comment: 15 pages, 9 figure

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    Memory hierarchies for future HPC architectures

    Get PDF
    Efficiently managing the memory subsystem of modern multi/manycore architectures is increasingly becoming a challenge as systems grow in complexity and heterogeneity. In the field of high performance computing (HPC) in particular, where massively parallel architectures are used and input sets of several terabytes are common, careful management of the memory hierarchy is crucial to exploit the full computing power of these systems. The goal of this thesis is to provide computer architects with valuable information to guide the design of future systems, and in particular of those more widely used in the field of HPC, i.e., symmetric multicore processors (SMPs) and GPUs. With that aim, we present an analysis of some of the inefficiencies and shortcomings of current memory management techniques and propose two novel schemes leveraging the opportunities that arise from the use of new and emerging programming models and computing paradigms. The first contribution of this thesis is a block prefetching mechanism for task-based programming models. Using a task-based programming model simplifies parallel programming and allows for better resource utilization in the supercomputers used in the field of HPC, while enabling sophisticated memory management techniques. The scheme proposed relies on a memory-aware runtime system to guide prefetching while avoiding the main drawbacks of traditional prefetching mechanisms, i.e., cache pollution and lack of timeliness. It leverages the information provided by the user about tasks¿ input data to prefetch contiguous blocks of memory that are certain to be useful. The proposed scheme targets SMPs with large cache hierarchies and uses heuristics to dynamically decide the best cache level to prefetch into without evicting useful data. The focus of this thesis then turns to heterogeneous architectures combining GPUs and traditional multicore processors. The current trend towards tighter coupling of GPU and CPU enables new collaborative computations that tax the memory subsystem in a different manner than previous heterogeneous computations did, and requires careful analysis to understand the trade-offs that are to be expected when designing future memory organizations. The second contribution is an in-depth analysis on the impact of sharing the last-level cache between GPU and CPU cores on a system where the GPU is integrated on the same die as the CPU. The analysis focuses on the effect that a shared cache can have on collaborative computations where GPU and CPU threads concurrently work on a problem and share data at fine granularities. The results presented here show that sharing the last-level cache is largely beneficial as it allows for better resource utilization. In addition, the evaluation shows that collaborative computations benefit significantly from the faster CPU-GPU communication and higher cache hit rates that a shared cache level provides. The final contribution of this thesis analyzes the inefficiencies and drawbacks of demand paging as currently implemented in discrete GPUs by NVIDIA. Then, it proposes a novel memory organization and dynamic migration scheme that allows for efficient data sharing between GPU and CPU, specially when executing collaborative computations where data is migrated back and forth between the two separate memories. This scheme migrates data at cache line granularities transparently to the user and operating system, avoiding false sharing and the unnecessary data transfers that occur with demand paging. The results show that the proposed scheme is able to outperform the baseline system by reducing the migration latency of data that is copied multiple times between the two memories. In addition, analysis of different interconnect latencies shows that fine-grained data sharing between GPU and CPU is feasible as long as future interconnect technologies achieve four to five times lower round-trip times than PCI-Express 3.0.La gestión eficiente del subsistema de memoria se ha convertido en un problema complejo a la vez que los sistemas crecen en complejidad y heterogeneidad. En el campo de la computación de altas prestaciones (HPC) en particular, donde arquitecturas masivamente paralelas son usadas y entradas de varios terabytes son comunes, una gestión cuidadosa de la jerarquía de memoria es crucial para conseguir explotar todo el potencial de estas arquitecturas. El objetivo de esta tesis es proporcionar a los arquitectos de computadores información valiosa para el diseño de los sistemas del futuro, y en concreto de los más comúnmente usados en el campo de HPC, los procesadores multinúcleo simétricos (SMP) y las tarjetas gráficas (GPU). Para ello, presentamos un análisis de las ineficiencias y los inconvenientes de los sistemas de gestión de memoria actuales, y proponemos dos técnicas nuevas que aprovechan las oportunidades surgidas del uso de nuevos y emergentes modelos de programación y paradigmas de computación. La primera contribución de esta tesis es un mecanismo de prefetch de bloques para modelos de programación basados en tareas. Usando modelos de programación orientados a tareas simplifica la programación paralela y permite hacer un mejor uso de los recursos en los supercomputadores usados en HPC, mientras permiten el uso de sofisticados mecanismos de gestión de memoria. La técnica propuesta se basa en un sistema de runtime para guiar el prefetch de datos mientras evita los principales inconvenientes tradicionalmente asociados con prefetching, la polución de cache y la medida incorrecta de los tiempos. El mecanismo utiliza la información sobre las entradas de las tareas proporcionada por el usuario para prefetchear bloques contiguos de memoria sobre los que hay certeza que serán utilizados. El mecanismo está dirigido a arquitecturas SMP con amplias jerarquías de cache, y usa heurísticas para decidir dinámicamente en qué nivel de caché colocar los datos sin desplazar datos útiles. El focus de la tesis gira luego a arquitecturas heterogéneas que combinan GPUs con procesadores multinúcleo tradicionales. La actual tendencia a unir GPU y CPU permite el uso de una nueva serie de computaciones colaborativas que afectan al subsistema de memoria de forma diferente que las computaciones heterogéneas anteriores, y requiere de un cuidadoso análisis para entender las consecuencias que esto tiene en el diseño de las organizaciones de memoria futuras. La segunda contribución de la tesis es un análisis detallado del impacto que supone compartir el último nivel de cache entre núcleos de GPU y CPU en sistemas donde la GPU está integrada en el mismo chip que la CPU. El análisis se centra en el efecto que la cache compartida tiene en colaboraciones colaborativas donde hilos de GPU y CPU trabajan concurrentemente en un problema y comparten datos a grano fino. Los resultados presentados en esta tesis muestran que compartir el último nivel de cache es mayormente beneficioso ya que permite un mejor uso de los recursos. Además, la evaluación muestra que las computaciones colaborativas se benefician en gran medida de la comunicación más rápida entre GPU y CPU y las mayores tasas de acierto de cache que un nivel de cache compartido proporcionan

    Hypervisor-Based Active Data Protection for Integrity and Confidentiality Of Dynamically Allocated Memory in Windows Kernel

    Get PDF
    One of the main issues in the OS security is providing trusted code execution in an untrusted environment. During executing, kernel-mode drivers dynamically allocate memory to store and process their data: Windows core kernel structures, users’ private information, and sensitive data of third-party drivers. All this data can be tampered with by kernel-mode malware. Attacks on Windows-based computers can cause not just hiding a malware driver, process privilege escalation, and stealing private data but also failures of industrial CNC machines. Windows built-in security and existing approaches do not provide the integrity and confidentiality of the allocated memory of third-party drivers. The proposed hypervisor-based system (AllMemPro) protects allocated data from being modified or stolen. AllMemPro prevents access to even 1 byte of allocated data, adapts for newly allocated memory in real time, and protects the driver without its source code. AllMemPro works well on newest Windows 10 1709 x64

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers
    corecore