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ABSTRACT 

One of the main issues in the OS security is providing trusted code execution in an untrusted 
environment. During execution, kernel-mode drivers dynamically allocate memory to store and 
process their data: Windows core kernel structures, users' private information, and sensitive data 
of third-party drivers. All this data can be tampered with by kernel-mode malware. Attacks on 
Windows-based computers can cause not just hiding a malware driver, process privilege escalation, 
and stealing private data, but also failures of industrial CNC machines. Windows built-in security 
and existing approaches do not provide the integrity and confidentiality of the allocated memory of 
third-party drivers. The proposed hypervisor-based system (AllMemPro) protects allocated data 
from being modified or stolen. AllMemPro prevents access to even one byte of allocated data, adapts 
for newly allocated memory in real time, and protects the driver without its source code. AllMemPro 
works well on newest Windows 10 1709 x64. 

Keywords: hypervisor-based protection, Windows kernel, Intel, CNC security, rootkits, dynamic 
data protection. 

1. INTRODUCTION 

Currently, protection of data in computer 
memory is becoming essential. Growing 
integration of ubiquitous Windows-based 
computers into industrial automation makes 
this security issue critically important. Windows 
machines can be attacked when malware kernel
mode code manipulates the memory content of 
legal drivers and their dynamically allocated 
memory pools, which store critical data. 

Intruders can tamper with this data by 
installing their own malware driver or using 
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vulnerabilities of the installed kernel mode 
modules (Adler, 2017). 

There are a number of vulnerabilities in 
Windows kernel core drivers, as well as in the 
third-party drivers such as NVIDIA Windows 
GPU Display Driver (NVIDIA Corporation, 
2017), Audio Driver ( Gee, 2017), keyboard 
driver ( CSO, 2017), Schneider Electric 
UnitelWay Device Driver (Langill, 2011). For 
example, an attacker could successfully exploit 
the CVE-2017-0155 vulnerability in the Win32k 
component and run arbitrary code in kernel 
mode (Microsoft , 2017). 
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The vulnerable VirtualBox driver 
(VBoxDrv.sys) has been exploited by Turla 
rootkit and allows to write arbitrary values to 
any kernel memory (Singh, 2015; Kirda, 2015). 

Another vulnerability of CPU-Z driver has 
been exploited in HandleMaster project change 
granted access rights for handles (MarkHC, 
2017). 

Additionally, m a recent paper 'Windows 
exploitation in 2016,' researchers from ESET 
underline the vulnerability of third-party 
drivers as a real vector of exploitation (Baranov, 
2016). 

DriverA f,or 
C C machine 

I read/write 
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This malicious code is running at the same 
privilege level as a Windows kernel. There are 
no built-in Windows security control policies to 
prevent illegal malware access in the kernel 
mode. 

As a result , intruders can tamper with the 
following allocated data in the kernel-mode, see 
Figure 1: 

Windows core kernel; 

User data; 
Industrial automation control software. 

-i\l""l'.).\~ ' tr ... -
Access 

Driver - ~ '.th ... · evention 

System linked list with 
dynamic;a,lly allocated stnictw-es 

( e.pr,ocess, driver_:ol; e.ct e.tc) 

Figure 1. Examples of driver's memory access attempts to the allocated memory: legitimate access attempts are in 
green, unauthorized ones are dashed red arrows 

Windows kernel security issues. Firstly, 
hackers patch allocated system data in 
Windows kernel to prevent the detection of 
installed malware drivers and escalate process 
privileges. Information about a loaded driver is 
collected in several system lists, which include 
allocated structures connected by linked lists. 
Hackers can unlink the structure of malware 
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drivers from all these lists to make them hidden. 
Consequently, bytes in these structures in 
memory can be deliberately changed and made 
useless in finding malware footprints. These 
rootkit techniques are known as 'DKOM. ' Also, 
rootkits can read the undocumented kernel
mode values. For example, DisPG disables 
Windows Kernel P atch Protection by using the 
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undocumented value nt!PoolBigPageTableSize, 
which needs to be protected (Korkin & Tanda, 
2017). 

Usually, malware processes are running with 
low privilege, and obtaining high privilege can 
allow the malware to perform more operations. 
Process privileges can be escalated by exploiting 
kernel mode driver bugs using SID List 
Patching, Privileges Patching, and Token 
Stealing payloads (Perla & Oldani, 2010; 
Hasherezade, 2017). The issue of finding and 
exploiting kernel-mode vulnerabilities is quite 
challenging and powerful because it could allow 
compromising the system completely ( Cisco, 
2017). 

Another example of escalating process 
privileges is the mimikatz framework, which 
loads its own driver and manipulates Token 
value from EPROCESS structure (Delpy, 2018). 

The ProjectSauron is one of the examples of 
kernel-mode malware drivers, which are 
classified as Advanced Persistent Threat. It 
supports commands to elevate privileges to a 
system account (Kaspersky, 2016). 

One more example is the CVE-2016-7255 
exploit, which uses type-confusion vulnerability 
in win32k.sys (CVE-2016-7255) to gain elevated 
privileges by patching EPROCESS structure 
( Oh & Florio, 2017). The similar Elevation-of
Privilege (EOP) attack was used in Duqu 2.0 
exploit (Wook & Florio, 2015). 

Another exploit overwrites the Server 
Message Block (SMB) connection session 
structures to gain Admin/ SYSTEM session 
(Rapid7, 2018). 

Apart from EPROCESS structures, 
attackers are also patching other allocated 
Windows objects. 

TDL bootkit conceals its presence in the 
system by modifying the Startlo field of the 
target device 's driver and excluding the target 
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device from the DRIVER OBJECT's linked 
list (Rodionov & Matrosov, 2011). 

Win32/ Gapz and ProxyBox hook IRP 
handlers from 
DRIVER_ OBJECT.MajorFunction[I array to 
protect itself from being removed from the 
system. (Rodionov & Matrosov, 2013; Bingham, 
2012). 

Another technique is to manipulate IRP 
structure and IO STACK LOCATION. For 
example, by changing CompletionRoutine 
pointer, it is possible to avoid the calling of 
completion routine of a filter driver, which 
prevents collecting evidence of suspicious 
activity (Blunden, 2009). 

Windows 10 supports Supervisor Mode 
Execution Prevention (SMEP), which prevents 
the kernel from executing code in user mode, a 
common technique used for local kernel 
elevation of privilege (EOP). SMEP requires 
processor support found in Intel Ivy Bridge or 
later processors, and it also can be bypassed 
(Shahat, 2018). 

The protection system needs to provide 
integrity for the sensitive memory objects, 
linked lists as well as preventing modification of 
each data structure in these lists, which has 
been dynamically allocated by Windows kernel. 
Additionally, the security software needs to 
prevent illegal reading of critical Windows 
kernel values. 

User data issues. Secondly, malware can 

attack the user data located in the kernel 
memory. For example, malware could steal or 
overwrite private keys, which are used in 
cryptographic drivers and can be used to 
decrypt user data. Malware can also attack a 
user's privacy by reading Windows telemetry 
and other data collected by Windows OS. 

The protection system needs to prevent 
unauthorized access to memory data 
dynamically allocated by third-party drivers. 
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Security of industrial automation 
control software. Thirdly, malware can cause 
considerable damage by attacking industrial 
control software. Stuxnet is a famous example 
of kernel-mode malware, which took out 1000 
centrifuges at Iran's nuclear facility. Its driver 
deliberately attacked Windows-based Industrial 
Control Systems (ICS) , which is used with 
Siemens PLC ( Anderson et al., 2017). 

A similar vector for cyber-attacks is the 
software for the machines with computer 
numerical control ( CNC), which use computers 
to handle various machine tools: lathes, 
grinders, drilling machines etc. CNC machines 
are extremely popular in the cutting-edge 
manufacturing, for example, they are used by 
NASA, Boeing, SpaceX etc. (Isakovic, 2018). 

Cybersecurity researchers emphasize a 
substantial risk of cyber-attacks against 
manufacturing systems and CNC machines 
(Vincent et al., 2015; Chhetri et al. , 2016). 
Researchers illustrate various threatening 
scenarios related to remote maintenance of CNC 
machines (Mehnen et al., 2017). Security 
experts from the USA stress the serious security 
risks for CNC machines and provide nine basic 
protection tasks to do before connecting 
machine tools to the network. One is to "install 
a Windows anti-virus protection service" 
(Johnson, 2017). However, there are no specific 
AV services to protect industrial CNC 
machines, and it is obvious that basic desktop 
AV s cannot provide full protection for CN C 
machines. 

The recent report from a German IT 
association says that more than a half of 
companies in Germany "have been victims of 
industrial espionage, sabotage or data theft in 
the last two years" and these "companies had 
incurred a loss of around 55 billion euros per 
year," which is around 64 billion USD (Burgess, 
2017). 
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Another report released by Trend Micro 
Threat Research and Polytechnic University of 
Milan demonstrates the cyber-attack 
implementations on actual industrial robots. 
(Maggi et al., 2017) 

There are several Windows-based CN C 
control systems such as Fanuc (Fanuc, 2017), 
MACH series (Mach, 2018), UCCNC 
(CNCdrive, 2018), MicroSystems (WinCNC, 
2018) , which use kernel-mode drivers and 
dynamically allocate data in kernel mode to 
send the control codes to the machines. For 
example, UCCNC software provides an 
opportunity to control professional CNC 
machines using a tablet PC running on 
Windows 8.1. (Stoney CNC, 2015; Bozso777, 
2015). Another example is Fanuc software, 
which leverages a WinIO library and a parallel 
port to manage CNC machines (DSP , 2011). 

All this industry control software can be 
potentially attacked by a malware driver, which 
can accomplish both types of attacks: sabotage 
and industrial espionage. The first type of 
attacks can result in crashing the machine or 
"workpiece damage such as spalling or 
delamination" (Schulze et al., 2011). The second 
type of attacks can result in sensitive 
information being stolen to reconstruct the 
workpiece or the technologies of processing, such 
as know-how, trade secrets, and confidential 
information. 

The Deutsche Welle reports that one of the 
CN C machines in a German engineering firm 
was attacked by spyware: "it turns out their 
computer controlled molding cutter came spiked 
with sophisticated malware that automatically 
transferred sensitive data about the new 
prototype to Asian-based Internet Protocol 
Addresses" (Knigge, 2013). The CNC machines 
security is a sensitive topic and existing hush
hush culture makes it very difficult to come up 
with concrete examples of the incidents of 
cyber-attacks. 
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The protection software needs to prevent 
illegitimate access to dynamically allocated 
buffers m kernel-mode used by industry 
software drivers to control CNC machines. 

Threat model. Summing up all malware 
actions, I would like to introduce a threat 
model. The following malware activities will be 
considered in this paper, see Figure 1: 

Intruders avoid all prevention measures 
and can install kernel-mode malware; 
Malware driver easily finds the memory 
content with sensitive data and code; 

Malware driver reads and writes the 
memory data allocated by Windows 
kernel and any third-party drivers; 

Malware reads and writes code sections 
of kernel modules. 

The Windows operating system includes 
several features to prevent illegal memory 
access. However, these features provide only the 
integrity of code sections of kernel modules and 
check the integrity of systems linked lists. They 
do not provide the integrity of each structure 
from these lists and do not prevent reading of 
any kernel memory. 

There are several research projects, which 
partially solve the problem with protection of 
allocated data in the kernel. 

In the paper Kernel Data Integrity 
Protection via Memory Access Control by 
Srivastava et al., 2009 the authors proposed 
using a hypervisor to mediate the execution of 
instructions attempting to write protected 
kernel data. Their system prevents overwriting 
only Windows OS critical data: process 
credentials for privilege escalation and detects 
illegal removing structures from linked lists. 
This system does not prevent confidentiality 
breach of kernel data and code nor does it track 
allocation of memory pools to protect them. 

In the paper HAGS: A Hypervisor-Based 
Access Control Strategy to Protect Security-
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Critical Kernel Data by Wang et al., ( 2017) the 
authors focus on rootkits that place a malicious 
code in their installation procedure. HACS 
maintains a module whitelist: only the modules 
in the whitelist are legal to modify the protected 
region. Consequently, HACS does not have an 
opportunity to provide various memory access 
policies for various kernel modules. Given this 
opportunity, HACS could prevent illegal 
memory access if one of the trusted drivers is 
compromised. 

Another system DADE (Yi et al., 2017) 
provides kernel integrity via periodically 
scanning invariant properties and checking 
backtraces of kernel function calls. The 
invariants describe the behavior expected from 
an uncompromised kernel using the source code 
of OS kernel. Authors admit that DADE has 
only a probabilistic chance to detect integrity 
attacks. Neither does DADE protect the 
memory of third-party drivers. 

As a result, the issue of providing the 
integrity and confidentiality of dynamically 
allocated data in the kernel mode is unsolved. 
At the same time, the illegal memory access to 
this data can result in not only hiding malware 
drivers and stealing users' private data, but also 
in damaging industrial process and stealing 
know-how. 

The goal of this paper is to tackle this issue. 
First, I propose an active data policy to deal 
with kernel-mode malware, which has the 
following main principles: 

Trap each memory access and grant full 
access only to the memory data, which 
has been allocated by this driver before; 

Prevent unauthorized access even to one 
byte of memory allocated by another 
driver; 

Provide integrity and/ or confidentiality 
of the allocated data according to the 
principle of least privilege; 
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Recover memory content after it was 
modified. 

This active data policy has to be adapted to 
changing situations in the OS and help to 
restore the original data: 

Separate access memory policies for each 
kernel-mode driver; 
Automatically update memory access 
policies when a new driver is loaded or 
any module calls allocation or 
deallocation routines. 

The purpose of this paper is to present the 
design, implementation, and evaluation of a new 
hypervisor-based system that protects the 
dynamically allocated data in Windows kernel 
from being accessed without authorization. 

The remainder of the paper proceeds is as 
follows: 

Section 2 provides the review of newest 
kernel mode memory protection features , which 
have been integrated into Windows 10 1709. 
The comparative analysis of the existing 
memory protection approaches will be given 
according to the proposed threat model. 

Section 3 contains the architecture of 
proposed allocated memory protection system -
AllMemPro and the experimental results . 

Section 4 focuses on the main conclusions 
and further research directions. 

2. BACKGROUND 

This chapter presents the analysis of the 
existing papers and software tools that are 
focused on allocated memory protection in OS 
kernel. Popular research projects are compared 
by their capability to provide integrity and 
confidentiality to dynamically allocated memory 
and code in kernel-mode for OS core kernel and 
third-party drivers. 

There are several new protection facilities 
which have been integrated on Windows 10 
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1709 and have significantly improved the 
security of the OS: Device Guard, Credential 
Guard, UEFI Secure Boot, updated Kernel 
Patch Protection (PatchGuard) , Supervisor 
Mode Execution Prevention (SMEP), Early 
Launch Antimalware (ELAM), Windows 
Defender Exploit Guard (WDEG) etc. Device 
Guard and PatchGuard are dealing with the 
issues of memory protection in kernel-mode 
memory (Zylva, 2016; Hall et al., 2017). 

Device Guard includes three basic 
components, one of them being the Kernel Mode 
Code Integrity (KMCI) which prevents 
patching executable pages m the kernel 
memory. According to the "Driver compatibility 
with Device Guard in Windows 10" memory 
pages and sections can never be writable and 
executable simultaneously and executable code 
cannot be directly modified (Baxter, 2017). 

PatchGuard protects critical structures m 
the Windows kernel from modification by 
unknown code. It stores and periodically verifies 
checksums of specific kernel memory areas. 
PatchGuard causes a BSOD if a mismatch is 
found. "Kernel patching can result m 
unpredictable behavior, system instability, and 
performance problems like the Blue Screen of 
Death" (Field, 2006). For linked lists, 
PatchGuard checks only the integrity of the 
links between structures and has 4 various types 
of BSOD (Marshall, 2017), without preventing 
the structure modification. In addition, 
PatchGuard reveals the corruption of 
MajorFunction table in DRIVER_ OBJECT, 
but whether it protects other fields or not is 
undocumented (Mei, 2014; OSR, 2016). 

In summary, Windows built-in security 
features provide the integrity of the following: 

code sections of kernel-mode modules; 

undocumented internal lists with 
allocated structures. 

Windows security features do not support 
the integrity and confidentiality of allocated 
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memory of third-party drivers. In addition, 
Windows PatchGuard does not prevent illegal 
memory modifications; it just causes a BSOD in 
case of them. These BSODs are not appropriate 
for use in critical infrastructure, like CNC
machines and industry. 

Security experts investigate these security 
issues and propose various solutions to protect 
sensitive data in the kernel mode. All projects 
can be divided into two groups that are based 
on kernel-mode drivers and hardware 
virtualization. The scope of this paper is the 
hypervisor-based solutions because they work in 
a more privileged mode than kernel-mode 
malware and are resilient to its attacks. 

All hypervisor-based approaches can be 
divided into two subgroups according to the 
technologies which they use to intercept 
memory access in the kernel-mode (Korkin & 
Tanda, 2017). 

The first subgroup controls memory access 
to the sensitive data by marking a memory page 
with this data as non-present. Next, each access 
to this page generates a page-fault exception 
(# PF), which will be trapped and dispatched 
by the hypervisor. 

The second subgroup leverages a new Intel 
VT-x with Extended Page Tables (EPT) 
technology. EPT mechanism can separately 
intercept read-, write-, and execute access. The 
hypervisor allows or disallows access to the 
memory page by setting bits in the EPT 
memory structures. Thus, any disallowed access 
will involve EPT violation and will be processed 
by the hypervisor. 

EPT mechanism is faster than # PF-based 
one. EFT-based approach can intercept, for 
example, only write- access and skip others, 
while # PF-based one always intercepts all 
access to the memory page. At the same time, 
# PF-based approaches are working on all 
computers, while EPT has been integrated into 
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the Intel CPUs since Nehalem 
microarchi tecture. 

Srivastava et al. , (2009) confirm that 
"kernel-level malicious software has full access 
to the data and operations of all kernel 
components." Their protection system is based 
on page-fault exceptions and protects kernel 
variable and system data structure elements 
from being patched by malware. Their system 
Sentry provides only integrity of dynamically 
allocated data by partitioning kernel memory 
into two parts: protected and unprotected 
regions. The authors assume that the core 
kernel has full trust , while other drivers hold 
only limited trust. Sentry mediates the 
execution of instructions attempting to write 
protected kernel data and verifies memory 
access at the granularity of high-level language 
variables in the kernel 's source code. Sentry has 
been developed using Linux and Xen hypervisor. 

Thus, Sentry does not provide the following: 

flexible memory access policy to 
protected new allocated data by third
party drivers; 

confidentiality of data; 
kernel-mode code integrity. 

Additionally, Sentry requires the kernel 's 
source code, which is not applicable for 
Windows OS. 

Another system, HACS (Hypervisor-Based 
Access Control Strategy) by Wang et al., 
( 2017) , leverages EPT technology to intercept 
write requests to the protected regions. HACS 
can detect modifications of security-critical 
kernel data and escalation process privileges by 
setting read-only access rights to the 
corresponding memory pages. Authors proposed 
to use a whitelist-based access control strategy. 
The whitelist, which is made by user experience, 
contains only credible kernel modules. One of 
HACS's features is detecting memory 
modifications from a malware code located in 
the initialization procedures. This system is 
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implemented on BitVisor version 1.4 and tested 
on Ubuntu version 14. This project includes the 
same disadvantages as the previous one and 
HACS provides just two levels of trust: 
legitimate or illegitimate modules. As a result, 
this system cannot prevent access from a 
legitimate module to the memory area, allocated 
by another legitimate one. 

The project DADE (Data Anomaly 
Detection Engine) by Yi et al. , (2017) performs 
memory introspection and verifies the integrity 
of kernel data by checking whether certain 
integrity specifications hold or not. Authors 
propose to use EPT facilities to intercept write 
access . DADE marks memory pages with 
protected data as read-only, and then any write 
access to this page generates a page fault, which 
is handled by the hypervisor. The key idea of 
DADE design is to leverage the information 
available at object allocation events, namely 
backtraces of kernel function calls. For example, 
a malware module attempts to remove their 
structure from a system list and produces a 
specific deallocation event backtrace. DADE 
compares this backtrace with a legitimate one, 
which is produced by core kernel when a module 
is unloaded. It is obvious that these backtraces 
are different and DADE reveals the unlinking 
attack. The DADE prototype has been 
implemented using KVM hypervisor with Linux 
version 3.8.0. DADE requires a source code of 
OS kernel. 

The issues of preventing commodity OS 
kernel from vulnerable loadable kernel modules 
are analyzed in the project LKMG (Loadable 
Kernel Module Guard) by Tian et al. (2018), 
which is related to the second subgroup and uses 
EPT technology. LKMG can reveal the 
following malware activities in the kernel: 
modification of code and data, calling 
unauthorized kernel functions and stealing 
kernel sensitive information. The authors 
propose to use a policy-centric system to isolate 
various loadable drivers from the rest of the 
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kernel. These security policies are generated 
automatically from source codes. LKMG utilizes 
the general security policy for dynamic data 
access: a driver can only access its own allocated 
kernel mode regions. LKMG is based on the Xen 
hypervisor and protects only Linux OS. 

In comparison with Sentry, HACS, and 
DADE, LKMG provides integrity and 
confidentiality for allocated data as well as code 
integrity. However, all of these require a source 
code of OS kernel , which is impossible for 
Windows OS. 

Hypervisor-based system HUKO (Liu et al., 
2011) protects the kernel integrity for 
commodity OS from untrusted extensions. It 
uses VT-x and EPT technologies and is able to 
track dynamic contents such as dynamic kernel 
data, stack and heap region, and loadable 
extensions. It is able to protect the integrity of 
both kernel code and data. HUKO prevents the 
OS data from being modified by kernel-mode 
drivers by isolating untrusted extensions from 
the OS kernel. HUKO considers three different 
categories of memory access subjects: OS kernel , 
trusted extensions, and untrusted extensions. 
HUKO does not restrict the OS kernel. Authors 
admit "it is possible that attackers can exploit 
the legitimate kernel interface to subvert the 
integrity of kernel," for example, by exploiting 
bugs of the kernel API functions. In addition, 
HUKO does not protect privacy and integrity of 
the kernel-mode data of third-party drivers from 
being tampered. 

There are several research projects InkTag 
by Hofmann et al. (2013), AppGuard by Zha et 
al. (2015), which apply EPT technology to 
guarantee data security. However, they protect 
user-mode application contexts with code and 
data from the OS kernel and other apps and do 
not guarantee the security of kernel-mode 
memory. 

The following research prototypes ExOShim 
by Brookes et al. (2016), HyperForce by 
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Gadaleta et al. (2012), and Sprobes by Ge et al. 
(2014) prevent memory disclosure attacks and 
provide kernel-mode code integrity, without 
data protection. These projects only partially 
solve the goals of this paper. 

Authors proposed to apply the hypervisor
based system to reveal new DKOM attacks, 
which tamper with dynamic data structures. 
They considered the scenarios when malware 
subverts the OS scheduler and proposed an idea 
of detecting these anomalies by monitoring and 
checking the execution time of all processes. 
Their solution can only detect any unauthorized 
data modifications, without preventing or 
repairing them (Graziano et.al. , 2016). 

Security researcher A. Zabrocki proposed an 
advanced analog of Patch Guard for Linux-based 
OSes. Named Linux Kernel Runtime Guard 
(LKRG) , it is a loadable kernel module that 
performs runtime integrity checking of the 
Linux kernel. LKRG supports from being loaded 

@ 2018 ADFSL 

CDFSL Proceedings 2018 

at early boot stage and "protects the system by 
comparing hashes which are calculated from the 
most important kernel region/ 
sections/ structures with the internal database 
hashes." A current version of LKMG provides 
code integrity and exploit detection. But, it does 
not protect allocated memory of third-party 
drivers (Zabrocki, 2018). 

The summary table with the comparative 
analysis of the major papers and projects is 
given in 

Table 1. 

In addition, the vast majority of analyzed 
methods require the driver's source code to 
protect allocated data. The proposed 
AllMemPro system can protect the compiled 
code without its source code. 

The next section will present the proposed 
system, which is said to be free from all the 
drawbacks mentioned above . 
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Title, year 

OS Kernel Third-Party Kernel-Mode Drivers 

OS 
Integrity Integrity Confidentiality 

Allocated 
Data 

Code 
Allocated 

Data 
Code 

Allocated 

Data 
Code 

Device Guard and Patch 

Guard in Windows 10 1709, 

2017 

+–A + – + – – Windows 

Sentry, 2009 + – + – – – Linux  

HUKO, 2011 + + +–B – – – 
Windows 

Linux 

HyperForce, 2012; Sprobes, 

2014; ExOShim, 2016 
– + – – – – Linux 

HACS, 2017 + – – – – – Linux  

DADE, 2017 + – + – – – Linux  

LKMG, 2018 + + +–B + +–B – Linux  

LKRG, 2018 + + – + – – Linux 

AllMemPro, 2018 + –C + –C + –C Windows 

 

 

                                                           
A Windows security features reveal only unlinking critical structures; but they do not prevent changing the 

content of these structures; 
B HUKO and LKMG systems do not restrict the OS kernel, and as a result, they only partially protect data, 

which have been allocated by third party drivers; 
C The current version of AllMemPro protects only allocated data in the kernel mode. The protection of code 

integrity and confidentiality will be implemented further. 
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Table 1 
Summary table of memory protection projects 

3. PROPOSED 
ALLOCATED JVlEMORY 

PROTECTION -
ALLJVlEMPRO 

This section covers the details of the proposed 
hypervisor-based system to guarantee the 
confidentiality and integrity of dynamically 
allocated data. 

To start with, I will show how to apply a 
hypervisor and EPT technologies to prevent 
three main scenarios of attacks in kernel-mode 
memory using active data protection. 
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Afterward, I will present the architecture of 
AllMemPro, which realizes the proposed ideas 
and will give some details about how to prevent 
unauthorized access to the allocated memory 
and grant access to the legitimate kernel-mode 
module. 

Finally, I will show three cases of using the 
developed proof of concept prototype to protect 
allocated memory for both third-party driver 
and Windows kernel. 
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3.1 Apply EPT to Guarantee 
futegrity and Confidentiality of 

Dynamically Allocated Data. 

This section suggests using EPT technology to 
prevent typical malware attacks. 

As was stated above, the dynamically 
allocated data can contain sensitive 
information, such as crypto keys, users' private 
data, parameters of CNC machines, process 
privileges and drivers' information. 

Three Scenarios of Attacks. Attackers 
try to tamper all this data and it is possible to 
define three main scenarios, see Figure 1. First, 
attackers can steal/ read and modify / write the 
allocated data of third-party drivers. Second, 
they are also able to steal/ read and patch/ write 
the code sections of third-party drivers and 
Windows core drivers. Finally, they could 
unlink and modify the allocated structures in 
Windows internal lists. 

To prevent all these three scenarios, I 
propose to use an active data policy, which has 
a separate rule to protect dynamically allocated 
data from being stolen or modified illegally. This 
policy can also be applied to guarantee the 
integrity and confidentiality of kernel-mode 
modules, which are loaded in the memory. The 
key feature of the active data policy is that it 
avoids illegal access to the protected memory 
without deliberately generating BSOD like 
Windows built-in security systems (Field, 2006). 
It also allows protecting newly allocated 
memory regions. 

To grant only legal access and prevent all 
others it is needed to intercept each memory 
access to the sensitive memory regions. The 
EPT technology provides an excellent 
opportunity to trap and process each read-, 
write-, and execute- access on the 4-kilobyte 
memory page. 

Scenario 1. Stealing and modifying the 
allocated data of third-party drivers. Let 
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us consider the first case when malware tries to 
access the allocated memory for the third-party 
driver. 

To protect the dynamically allocated data I 
propose to use the active data policy, which 
includes the rules, according to which the 
hypervisor will grant or prevent particular 
access. The hypervisor controls only the 
memory regions, whose data is in the list of 
rules. 

This rule includes the following five values: 
DriverStartAddr, 
AllocatedStartAddr, 

DriverSize, 
AllocatedSize, and 

SharedAccess. As a result , access attempt to the 
memory, which is located between 
AllocatedStartAddr and AllocatedStartAddr + 
AllocatedSize is granted only to the code from 
DriverStartAddr to DriverStartAddr + 
DriverSize. An example of such a rule is given 
in Table 2. 

The default shared access policy prevents 
read access (R= 0) and write access (W= 0) to 
the memory from other drivers and Windows 
kernel. 

If this allocated memory needs to be 
accessed by another kernel-mode module or 
Windows kernel I have to add a similar rule. To 
automatically add a corresponding rule, I use a 
pre-configured list of driver names, which share 
the memory with the protected driver, e.g. for 
sharing allocated memory with Windows Kernel 
I use ntosknl.exe. Provided I have only a binary 
code of the driver module, whose allocated 
memory is critical for stealing and modifying I 
can apply reverse-engineering analysis to get 
such a list of driver names. 

The list of rules needs to be updated for each 
kernel-mode module, whose memory is 
protected. To achieve this, I trap the following 
events: 

the protected driver is loaded and 
unloaded; 
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the protected module allocates and frees 
memory. 

To realize the aforementioned active data 
policy, I leverage the hypervisor facilities and 
EPT technology using five steps. 

Step 1. Start: trap loading drivers. 
First, the hypervisor is loaded before the 
protected driver is loaded to the memory. The 

Table 2 
A n example of an active data polic rules 

Hypervisor-Based Active Data Protection for ... 

hypervisor will be notified whenever an image is 
loaded into the memory using 
PsSetLoadlmageNotifyRoutine and choose, 
which kernel-mode driver will be protected 
using its name. Apart from module names, the 
hypervisor can also use the IMAGE_INFO 
structure content; all these parameters need to 
be pre-configured. 

DriverStartAddr DriverSiz AllocatedStartAdd AllocatedSize SharedAcces 

e r s 

fffff8016f670000 

( mem _ allocator_ driver .sys 0000B000 FFFF A400AF3C3F80 40 R= 0, W = 0 
) 

fffff80170201000 
008D2000 FFFF A400AF3C3F80 40 R=0, W=0 

( ntosknl.exe) 

Step 2. Trap memory allocation 
(deallocation) and update EPT pages 
permissions. Second, the hypervisor traps each 

memory allocation ( deallocation) routines. The 
hypervisor will choose only those routines from 
all that have been called from the code 
belonging to the protected driver. Without the 
loss of generality, this paper is essentially 
concerned with the use of 
ExAllocatePoolWithTag routine to allocate 
memory pool and ExFreePoolWithTag to free 
allocated memory. This function is used in all 
other memory allocation routines, for example, 
by ExAllocatePool*, FsRtlAllocatePool*. Also, 
it is considered that MiAllocatePoolPages 
routine, which is used by 
ExAllocatePoolWithTag, has not been called 
directly by a kernel-mode driver. 

The corresponding rules for active data 
policy will be added (removed) in real time each 
time when the protected driver calls the 
allocation ( deallocation) routine. 

By applying EPT technology and EPT 
paging structures the hypervisor can intercept, 
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process, and control each access to the memory. 
The proposed algorithm of using EPT facilities 
is taken from the paper by Korkin & Tanda 
(2017). 

I create EPT paging structures with default 
page access bits to permit all access. Next using 
the active data policy rules, I limit the access to 
the fixed data in the kernel mode memory. 

After adding a new rule, t he hypervisor 
updates the EPT paging structures: it clears 
read- and write- permissions on the pages with 
the protected data and it clears read- and write 
permissions on the pages with the protected 
module. After t he driver has freed memory, the 
hypervisor double fills this memory block with 
zeroes and removes the corresponding active 
data access rule. Removing the rule will cause 
restoring the corresponding EPT memory access 
permissions. 

As a result, each read- and write- access to 
the protected memory will cause an EPT 
violation. 
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The hypervisor checks firstly whether an 
intercepted access belongs to the protected 
memory. Next, it checks which module has 
accessed the protected memory, according to 
the active data policy rules. 

Step 3. Grant a legitimate access. The 
hypervisor grants access to the memory region 
only for the protected module, which has 
allocated this memory before, see Table 2. To 
achieve it the hypervisor temporarily sets read
or write- permission of the protected page and 
sets a Monitor Trap Flag (MTF) . Setting MTF 
enables the system to generate VM Exit after 
executing each instruction. 

After the legitimate code accesses the 
memory, the control goes to the hypervisor 
again because of VM Exit. At this step, the 
hypervisor restores page permission by clearing 
access bits and clears MTF. 

Step 4. Prevent an unauthorized 
access. If a module not mentioned in the active 
data policy tries to access the protected 
memory, the hypervisor needs to prevent it. To 
achieve it, the hypervisor changes the page 
frame number (PFN) to the corresponding Page 
Table Entry (PTE) for the protected memory 
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and temporarily grants access to the replaced 
memory by setting a read- or write- permission. 
The hypervisor also sets an MTF. 

After an unauthorized module reads or 
writes to the replaced page and executes just 
one instruction, the control goes to the 
hypervisor, because of VM Exit. Next , the 
hypervisor restores initial configuration: by 
setting an original PFN value for the protected 
memory, clearing access bits, and clearing MTF. 

Step 5. Finish: trap unloading the 
protected driver. After the protected driver 

has been unloaded the hypervisor zeroes out the 
memory, where this driver had been loaded. 

To be notified whenever an image is 
unloaded the hypervisor overwrites the function 
address of the DriverUnload from the 
DRIVER OBJECT (MSDN, n.d.-a; OSR, 
2017). 

These five steps provide the integrity and 
confidentiality for the dynamically allocated 
data in Windows kernel, see Figure 2. 

The proposed approach can be used for 
three malware scenarios, mentioned above. 
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VMX non-root VMX-root 
mode mode Inititl EPr paging strucrures 

AilP8fJ!,&read = true 
AJIPages.write = true 

AJIPages.- = true 

{Kernel-nm.el 

read/ 
write 

~sl&2 

r------------------~ 
Acc:ess I ADocatedMemory.read = FALSE 1 

1 Alloc:atedMemory.wrne = FALSE : _ 
1ADoc atedMemory.PFN= ORIGINAL1 

AII.OiherMemory.read = true 
AilOtherMemo:i:y.write = tru.e 
AII.Otherl\,lemory,e:\2C = true 

MfF=FALSE 
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LiriofActwe 
Memory Polii:e 

R-ules 

EPr paging strucrures on~ 3 

Alloc:atedMemory.read = TRUE 
ADocaedl\,lem.ory.write = TRUE 

ADocatedMernory.PFN= ORIGINAL 

AII.OiherMemory.read = true 
AIOtherMemo:i:y.write = true 

AII.Otherl\,lemory,e:\2C = true 

MTF=TRUE 

EPr paging muctures on~ 4 

Alloc:atedMemory.read = TRUE 
ADocaedl\,lernory.write = TRUE 
ADoc atedMemory.PFN=F AKE 

AII.OiherMemory.read = true 
AilOtherl\,lemo:i:y.write = tru.e 
AII.Otherl\,lernory.e:\2C = true 

MTF=TRUE 

Figure 2. The proposed method of preventing allocated memory from being illegally read or overwritten 

Scenario 2. Stealing and patching code 
sections. One of the new protection 

mechanisms, which has been integrated into 
Windows Device Guard in Windows 10, is the 
Kernel Mode Code Integrity (KMCI) 
component. This component prevents 
modification of executable code directly and 
does not stop code reading. As a result, the code 
confidentiality is still becoming vulnerable. 

The preliminary testing of AllMemPro 
shows that the proposed approach of 
dynamically data protection cannot be used for 
code protection because it causes a serious 
overhead. One of the possible ideas for code 
protection is to apply two EPT structures: first 
EPT structure allows execution of the protected 
driver and blocks execution from all other 
memory; second EPT structure blocks access to 
the protected data and allows execution from all 
memory apart from the protected driver. 

The code protection will be implemented in 
further versions of AllMemPro. 

Scenario 3. Tampering Windows 
Data. To prevent unlinking and modifying the 

allocated structures in Windows internal lists, I 
add a rule for each structure (Sherer, 2017). 
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For example, to avoid hiding EPROCESS 
structure by DKOM patching: structure 
unlinking and replacing its content (Korkin & 
Nesterow, 2016) , the hypervisor adds rules for 
the existing structures. The hypervisor updates 
the list of rules and traps newly allocated 
structures using 
PsSetCreateProcessN otify Routine routine 
(MSDN, n.d.-c). The AllocatedDataAddress 
and AllocatedDataSize are the address and the 
size of an EPROCESS structure; the 
ModuleStartAddress and ModuleSize 
correspond to the ntosknl.exe. 

This section has covered a way of 
maintaining the integrity and confidentiality of 
dynamically allocated data by using active data 
policy and leveraging the hardware-based 
hypervisor and EPT technology. 

The next section covers the architecture of 
the developed prototype, which realizes active 
data policy. 

3. 2 Architecture of AllMemPro 

This section covers the design and architecture 
of the developed hardware-based hypervisor 
AllMemPro, which realized the active data 
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policy to protect the dynamically allocated 
memory in Windows kernel. 

The proposed system includes three main 
components: the Controller, Trigger, and 
Policy. 

The Controller traps loading drivers and 
allocation of data. To trap loading of each 
driver, the Controller uses 
PsSetLoadimageN otify Routine routine, which 
registers a driver-supplied callback to notify 
whenever a new driver is loaded. A 
corresponding callback function gets three basic 
values, which are used to separate the protected 
drivers from others: full name to the loaded 
image file; an ImageBase and an ImageSize of 
the loaded driver in the memory (MSDN, n.d.-
b). 

In the current version, the Controller 
chooses, which driver has to be protected using 
its name, but it is also possible to choose the 
protected driver using the calculated CRC from 
its file in the memory. The Controller intercepts 
memory allocation routine 
ExAllocatePoolWithTag and memory 
deallocation routine ExFreePoolWithTag using 
DdiMon developed by Tanda (2016). DdiMon 
monitors and controls kernel API calls with 
stealth hook using EPT technology. 

The Controller intercepts that the protected 
driver allocates memory and automatically 
sends the following rule structure to the Trigger 
and to the Policy, see Figure 3. 

The Trigger intercepts access to the 
protected memory data using the hypervisor 
and EPT facilities. The code of the Trigger is 
based on the MemoryMonRWX hypervisor 
(Kor kin & Tanda, 2017). 

In the beginning, the Trigger allocates EPT 
paging structure for all kernel-mode memory 
pages and sets default access right to skip all 
read-, write-, and execute- accesses. After 
receiving a rule from the Controller, it changes 
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memory access permissions to the pages, which 
include the protected data by clearing read- and 
write- bits. As a result , each memory access 
attempt to the protected data will cause EPT 
violation. 

The Trigger processes all EPT violation and 
chooses between using two possible scenarios: 
grant and prevent access to the data by calling 
the Policy. 

In the first case, the Trigger allows access to 
the protected data and sets Monitor Trap Flag 
(MTF), see EPT structure on step 4 on 
Figure 2. As a result, after executing just one 
instruction the Trigger traps control again and 
restores page permission by clearing read- and 
write- bits and clears MTF. 

In the second case, as you can see EPT 
structure on step 4 Figure 2, the Trigger 
redirects access to the fake page by changing 
PFN value on the EPT page, which corresponds 
to the protected data. The Trigger also allows 
access to this data and sets MTF. As a result, 
after an unknown code accesses the fake data 
and executes just one instruction, the control 
goes to the Trigger again. Now the Trigger 
restores the original EPT configuration, see 
steps 1 & 2 in Figure 2. 

The Trigger decides which case is processed 
according to the Policy module. 

The Policy provides logic to grant and 

prevent access to the data according to the 
active data policy rules. 

The Policy grants full privileges to the 
owner of allocated memory. If an unregistered 
or unknown code accesses the protected data, 
the logic of processing will be the following: 

if 'is readable==0' a code cannot read 
the data, otherwise it can read them; 

if 'is overwritable==0' a code cannot 
write to this memory, otherwise it can 
write there; 
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To allow another driver or Windows Kernel 
to read or to write to the protected data, the 
similar memory policy rule needs to be added. 

In a nutshell, the Policy uses the discrete 
access control to prevent illegal access even to 
one byte of the protected data. 

AllMemPro system is developed using 
Microsoft Visual c++ 2015 with integrated 
Windows Driver Kit (WDK). It is tested using 
Vmware Workstation 14 and Windows 10 1709 
Build 16299.15 64-bit and multi-core CPU. The 
source code of AllMemPro is here Korkin 
(2018). 

I can conclude that the proposed hypervisor
based system has the following three 
advantages: 

it can protect newly allocated memory 
using the Controller component; 
it can prevent read- and write- access 
even to 1 byte of the protected data 
using the Trigger and the Policy; 

it works even without the source code of 
the protected driver. 

The next section will cover the three 
scenarios to demonstrate the facilities of 
AllMemPro. 

• typeder •struct · MEKJRY POLICY· { i 
• void*• • • ~ ;i 
• 11msigned · int64 • drvSize; i 
• void*• • • ~ ;i 
• 11msigned · int64 • al locSize; i 
• int • • • ~ ;i 
• int • • • ~ ;i 

}MEKJRY POLICY , ·APMEKJRY_POLICT;a 

Figure 3. A structure to store a memory control 
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3 .3 Demos of AllMeniPro 

This section covers the demonstrations of 
applying AllMemPro hypervisor to protect 
kernel-mode memory. I show how AllMemPro 
isolates the dynamically allocated memory of 
third-party driver by read- and write- access 
from another one. 

Firstly, I load the kernel-mode driver 
(mem_allocator_driver.sys), which allocates 
memory fragment and reads this memory in the 
loop as well as updates the content of this 
memory after receiving the IOCTL-code from 
the console control app 
( mem _ allocator_ console.exe). 

Next, I load the second kernel-mode driver 
( mem _attacker_ driver.sys) , which plays the 
role of a spyware driver. This driver reads and 
writes to the content of memory, which was 
allocated by the first driver. Let me assume that 
a spyware driver can find the allocated data 
from mem allocator driver.sys without any 
issues. I control the second driver using another 
console program. 

Figure 4 shows the main scheme. The 
addresses and sizes of loaded drivers and 
allocated data are in Table 3. 

This unauthorized access demonstrates the 
fact that the allocated memory is not isolated 
from unauthorized access from others. 

The source 
mem allocator driver.sys 

code of 
and 

mem _ attacker_ driver.sys with control console 
apps is here Korkin (2018). 
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,------------------------------------------------ , 
I ,S I 

1 o me1m aUocator consde_,e,:.,e mem attac~er cons.oJ,e_,e..x,e 1 

1 6 - ---~------........1 ----~~-~----- I I ,• I 
1 M ]oadl Send foadl Send 1 

1 :::, 11m]oodl IOCTL codes un]oad IOCTL codes 1 
--------- -------------------- --- __________ I 

mem_aU~~~r_driv er_s.y s. I 
(] egitimat,e) 

AUocate 
memory _ 

A]focated data. I 

mem _ attad~er _driv er_ s.y s. 
( a. demo s.pyv.r ru:,e driiv,er) 

I 

W'ii ndow s. I 
Kemd 

Other 
Th:irvers 

________________________________________________ IC 

Figure 4. Illegal driver reads and writes the memory alloca ted by the other driver 

Table 3 
T he details of objects in m emory for the Fiqure 4 

Object in memory Start address Size 

mem _ allocator_ driver .sys FFFFF8016F630000 0xb000 

Allocated dat a by 
FFFF A400AC479FD0 

0xlO 

mem _ allocator_ driver .sys 

mem attacker _ driver. sys.sys FFFFF8016F650000 0x9000 -

Secondly, I load a hypervisor AllMemPro, 
see Figure 5 and Table 4 and the following rule 
is added automatically, see 

Table 5. After that , I restore the allocated 
data content using control app for the first 
driver and try to read and write this data using 
the second driver. I can see that all access 

attempts from the second driver fail: after 
reading, I get a zero value and writing access 
does not change the content. The corresponding 
debug output fragments of AllMemPro are in 
Figure 6. 
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I can conclude that AllMemPro provides 
integrity and confidentiality for the dynamically 
allocated memory. 
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1- - --~---- - -- - --- - ~- - - - - - - ~- - - -- - ---- - -- - ---- - -- -
: ] mem_.:allocator:_oonsole..e~e mem_:_attac~er_oonsol,e.ex,e I : 
I S ._ _____________ _. ~-------r---.--------~ I 
I II . I 
I 55 load/ Send load/ Send 1 
1 ~ unload IOCTL oodes unload IOC1L oodes 1 

t----------- ------------------- ---------· 

1 .... ,.-..., 
I o Q) 

mem _.:allocator~driver..sys 
{liegi ti mate) 

mem _:attacker~driver..sys 
(a demo spyvvare driver) 

O'"d 
I 1-; o 
I 6 S 
I ,.... ' -Ill 
I >,< ~ 
I ;g_ ~ 
l >d 
I 
I 
I 
I 

Allocate 
mem,ory 

Allocated data 
Windows 

Kemd 
Other 

Drivers 

~---- -------------------1 

I ------ I I >,<b I 
1 ;g o Alll\1 e1nPr o 1 

I > 1-; """"'------------' -~--~ I 
1------------------------------------------------k 
Figure 5. AllMemPro grants access to the allocated memory only to the first 
kernel-mode driver according to the rule 

Table 4 
T he details of objects in memory for the Fiqure 5 

Object in memory Start address 

mem _ allocator_ driver .sys FFFFFS0 16F630000 

Allocated data by mem _ allocator_ driver .sys FFFF A400AC4 79FD0 

mem _ attacker_ driver .sys FFFFFS0 16F650000 

nt (ntkrnlmp.exe) FFFFF80170201000 

Table 5 
The rule allows the mem allocator driver. sys access to the allocated data 

rule FFFFF8016F630000 B000 FFFFA400AC479FD0 10 
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Size 

0xb000 

0xlO 

0x9000 

0x8D2000 
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Debug Output Fragment for legal read- access: 

22:34:47.513 INF # 0 4 7732 System 
8= FFFFF8016F6317C8 (FFFFF8016F630000), D= FFFFA400AC479FD8 (0000000000000000), T = R 

Debug Output Fragment for legal write- access: 

22:34:50.357 INF # 0 8020 8144 mem _ allocator 
8= FFFFF8016F6314EA (FFFFF8016F630000), D= FFFF A400AC479FD8 (0000000000000000), T = W, 
00 00 00 00 00 00 00 00 01 0a 00 00 00 00 00 00 => 00 00 00 00 00 00 00 00 ba 0a 00 00 00 00 00 00 

Debug Output Fragment for illegal read-access: 

illegal access FFFFF8016F651228 =>> FFFFA400AC479FD8 
** RweHandleMonitorTrapFlag FFFFF8016F651228 FFFF A400AC479FD8 ** 

22:35:05.952 INF # 0 76 8060 mem allocator 
[Protected via ActiveMemPolice] Memory is being READ. Returning fake contents. 
22:35:05.952 INF # 0 76 8060 mem _ allocator 
8= FFFFF8016F651228 (FFFFF8016F650000) , D= FFFF A400AC479FD8 (0000000000000000), T= R 

Debug Output Fragment: for illegal write-access: 

illegal access FFFFF8016F651257 = > > FFFF A400AC479FD8 
** RweHandleMonitorTrapFlag FFFFF8016F651257 FFFF A400AC479FD8 ** 

22:35:20.405 INF # 0 76 8060 mem _ allocator 
8= FFFFF8016F651257 (FFFFF8016F650000), D= FFFFA400AC479FD8 (0000000000000000), T= W, 
0000000000000000~~000000000000 => 0000000000000000~~000000000000 

22:35:20.405 INF # 0 76 8060 mem allocator 
[Protected via ActiveMemPolice] Memory is being WRITTEN. Returning fake contents. 

Figure 6. The fragments of debug output for the Figure 5 

Finally, I consider a general case, with 
shared memory. Now the first driver uses the 
allocated data to retrieve the system 
information using Windows Kernel routines, see 
Figure 7 and Table 6. To share the allocated 
data between the first driver and Windows 
Kernel, I use the following two rules, see 
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Table 7. The first line makes the allocated 
buffer available to the first driver, and the 
second line - for the Windows kernel , 
(ntoskrnl.exe). Windows routine has 
successfully written internal data to this 
memory. The AllMemPro isolates this data 
from the second driver. All illegal memory 
attempts fail, see Figure 8. 
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1-------------------------------------------------
: ] mem _:allocator_ console.eX:e I mem _:attacker~console.exe : 
I ~ ----~~-~----........., --- I 

: ~ oad/ send lo1adld Send de : 
1 P unload IOCTL oodes un oa IOCTL co s 1 

t----------- -----------, 

tnem _:allocator~driver..sys 
(legitimate) 

Allocate Read/ 
m,emory write data / 

·~ - - ,¥ 
Allocated data vvrite data l 

I 

mem _:attacker_:dri ver.sys 
(a demo spyware driver) 

Windovvs 
K:emel 

Other 
Drivers 

I 1---- -----------------------
' 1 >< . ...., AlllVI an Pro 
·~ e I _____________ _,,, I 

l-------------------------------------------------1 
Figure 7. AllMemPro grants access to the allocated memory to the first kernel-mode driver and 
Windows Kernel. AllMemPro prevents access to the second, which is not in the list rules 
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Table 6 
T he details of objects in memory for the Fiqure 7 

Object in memory Start address 

mem allocator _ driver.sys FFFFF8016F630000 

Shared Allocated data FFFF A400AC4 79F80 

mem attacker driver.sys FFFFF8016F650000 

nt (ntkrnlmp.exe) FFFFF80170201000 

Table 7 

Size 

0xb000 

0x40 

0x9000 

0x8D2000 

The rules allow mem allocator driver. sys and ntkmlmp. exe to access to the allocated memory 

/ / for mem _allocator_ driver.sys 
rule FFFFF8016F630000 B000 FFFFA400AC479F80 40 

/ / for ntkrnlmp.exe 
rule FFFFF80170201000 8D2000 FFFF A400AC4 79F80 40 
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Debug Output Fragment for illegal write- access 
** RweHandleMonitorTrapFlag FFFFF8016F651228 FFFFA400AC479F80 ** 

22:58:18.560 INF # 0 76 8060 mem_ allocator_ 
[Protected via ActiveMemPolice] Memory is being READ. Returning fake contents. 

22:58:18.560 INF # 0 76 8060 mem_ allocator_ 
8= FFFFF8016F651228 (FFFFF8016F650000), D= FFFFA400AC479F80 (0000000000000000), T = R 

Debug Output Fragment for legal write-access (mem allocator driver.sys, memset 
function fragment): 
22:51:03.306 INF # 0 4 7732 System 
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8B (0000000000000000), T= 
w, 
00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00 = > 00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00 

22:51:03.306 INF # 0 4 7732 System 
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8C (0000000000000000), T = 
w, 
00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00 = > 00 00 00 00 00 00 00 00 00 00 00 00 00 ff Of 00 

22:51:03.306 INF # 0 4 7732 System 
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8D (0000000000000000) , T = 
w, 
00000000000000000000000000fffil00 => 0000000000000000000000000000fil00 

22:51:03.306 INF # 0 4 7732 System 
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8E (0000000000000000) , T = 
w, 
0000000000000000000000000000fil00=> 00000000000000000000000000000000 

22:51:03.306 INF # 0 4 7732 System 
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8F (0000000000000000), T = 
w, 
00000000000000000000000000000000=> 00000000000000000000000000000000 

Debug Output Fragment for legal write-access (ntkrnlmp.exe, 
ZwQuerySystemlnformation): 
22:51:03.306 INF # 0 4 7732 System 
8= FFFFF801702FB65B (FFFFF80170201000), D= FFFF A400AC479F84 (0000000000000000), T = 
w, 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 = > 00 00 00 00 5a 62 02 00 00 00 00 00 00 00 00 00 

22:51:03.306 INF # 0 4 7732 System 
8= FFFFF801702FB65F (FFFFF80170201000), D= FFFF A400AC479F88 (0000000000000000), T = 
w, 

In a similar way, I have successfully checked 
AllMemPro possibility of preventing illegal 
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As a result, AllMemPro prevents stealing 
and modifying data, stores in the allocated 
memory pools in the kernel-mode and moderate 
performance overhead. 

4 . ALLJVlEJVIPRO: 
POINTS FOR 

DEVELOPJVlENT 

This chapter focuses on critical analysis of 
AllMemPro downsides and possible ways of its 
improvement. 

AllMemPro Overhead. AllMemPro 
causes overhead during accesses to the protected 
memory regions, 
several reasons, 
eliminated. 

and this occurs because of 
which can be partially 

The evaluation of overhead was performed 
by measuring the duration of 10 access attempts 
to the allocated memory in three cases: without 
hypervisor with enabled memory cache; without 
hypervisor and disabled cache; and finally, with 
AllMemPro hypervisor and time cheating. 

All these measures are processed on 
VMware Workstation Pro in the release version 
of all drivers. To get enough measurements, I 
use 200 repetitions, next I delete five maximum 
values and five minimum ones, and finally 
calculate the average and deviation values; see 
Table 8. 

In the first case, the latency is quite small 
because after first several memory access 
attempts, the corresponding virtual and 
physical addresses are cached, and further 
accesses were processed using these cache 
values. To make the comparison with hypervisor 
case a bit more appropriate, I applied the second 
case with the deliberately disabled cache. 

In the third case, I measured the latency of 
memory access to the protected memory from 

Page 28 

Hypervisor-Based Active Data Protection for ... 

the legal driver, when AllMemPro had been 
activated. 

AllMemPro hypervisor traps each access to 
the protected memory region because this 
memory does not have read- and write
permissions. After that, the hypervisor sets the 
corresponding permissions and according to the 
Memory Access Policy allows or disallows 
memory access to this data by changing 
PFN-value. At this step, AllMemPro sets MTF 
and returns control to the guest. After the guest 
executes just one instruction, the control goes to 
the hypervisor again because of MTF. 

Next AllMemPro clears MTF and restores 
original permissions to the memory to be able 
to trap a new access to the protected region. 

As a result, for each memory access attempt , 
AllMemPro has been called two times, which 
leads to time degradation. 

It is possible to partially eliminate this time 
degradation by applying two EPT structures. 
The first EPT structure corresponds to the legal 
driver and its memory and the second EPT - to 
the other memory ranges . However, in this case, 
to isolate the allocated memory of two and more 
drivers from each other and from the other 
drivers it is needed to allocate the separate EPT 
structures for each driver. This approach has 
been implemented in the MemoryMonRWX 
hypervisor by Korkin and Tanda (2017). 

As a result, AllMemPro protects memory, 
which has a low frequency of access, for 
example, the EPROCESS.Token value. 
AllMemPro does not decrease memory access 
time for non-protected memory regions. To 
protect memory, which is very often accessible, 
it is possible to apply multiple EPT structures. 
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Table 8 
Time evaluation 

No 
Cases 

1 without AllMemPro with enabled cache 

2 without AllMemPro with disabled cache 

3 with AllMemPro hypervisor 

Indirect Memory Access. AllMemPro 

determines the source address by reading the 
value of RIP register from VMCS-structure. To 
prevent indirect memory access, AllMemPro 
can additionally check the call stack, but in the 
current version, this is not implemented. 

Self-protection: Resilience to 
Manipulations. Malware driver can access the 
protected data by deliberately changing the 
rules content. It is possible to protect these 
policies by applying the proposed AllMemPro 
hypervisor to protect itself. 

Protect Memory with Shared Access. 
The current AllMemPro protects shared 
memory in the following way. For two drivers, 
using shared memory, all memory regions, 
which are allocated to each of these drivers, are 
available to read- and write- access by either 
driver and are isolated from any other accesses. 
It is possible to provide fine-grained access 
control to shared memory. 

To allow shared access only to the 
programmer-specified buffers, it is necessary to 
integrate AllMemPro at a source level during 
driver development. 

Pagefile Mechanism. It is possible to 
overwrite the third-party driver allocated 
memory by forcing the kernel to page-out the 
kernel memory pool and then locating and 
overwriting the driver memory inside the 
pagefile in the hard disk. This can be used not 
only to attack the memory pool but also to 
overwrite the third-party driver code sections. 
The current version of AllMemPro does not 
protect the pagefile mechanism. 
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Memory Access Latency, TSC 

ticks 

70±2 

100.000±4.000 

500.000±10.000 

Firmware exploitation as a vector of 
infection. This research does not consider 

firmware exploitation as one of the possible 
ways of infections. Because of this infection, the 
malware code is able to tamper both OS and 
hypervisor memory, as well as injecting code 
into OS kernel. Hypervisor-based solutions 
cannot prevent such infections. 

Direct Access to the Physical 
Memory. AllMemPro can potentially prevent 
direct access to the physical memory or access 
to the mapped memory pages by 
MmMapLockedPages(). The current version of 
AllMemPro deliberately converts the virtual 
address to the physical one. At the same time, 
DMA attacks using firmware exploitation and 
hardware are out of the scope of this paper. 

Confidentiality and Integrity of Code 
Sections. The current version of AllMemPro 

protects only allocated data in the kernel mode. 
The protection of code sections from being 
illegally read and overwritten will be 
implemented further. 

Joint work with Windows 10: Device 
Guard and Credential Guard. AllMemPro 
has been successfully tested on default 
installation Windows 10 x64 1709 version, 
which is installed as a BIOS-version. The tested 
on UEFI versions of Windows OS will be 
processed further. 

SGX technology and Virtual Secure 
Mode. The Software Guard Extensions (SGX) 
technology makes it possible to protect the areas 
of execution in memory via enclaves. This 
technology has been integrated into 6th 
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generation Intel CPUs, while AllMemPro 
supports Intel CPUs since Nehalem 
microarchitecture, which is more common now. 

In addition, a similar idea was implemented 
to secure kernel for Windows 10 by leveraging 
Virtual Secure Mode with Virtual Trust Levels 
(VTLs). According to A. Ionescu, it is possible 
to apply VTL to protect some kernel-mode data 
(Juarez, 2015; Ionescu, 2015; Laiho, 2016). 

5. CONCLUSIONS & 
FUTUREWORK 

To sum up, the proposed security system 
AllMemPro has the following competitive 
advantages: 

it provides fine-grained control to 
mediate access from kernel-mode drivers 
to the dynamically allocated memory; 

it protects allocated memory of third
party drivers and the content of OS 
structures; 
it guarantees the integrity and 
confidentiality of the allocated data by 
redirecting unauthorized access without 
crushing OS; 
it is an open-source project with minimal 
lines of code, which can be used for 
educational purposes to teach VT-x & 
EPT. 

Spectre & Meltdown Attacks. 
AllMemPro hypervisor seems to be able to 
prevent sensitive kernel-mode data from being 
stolen using the newest Spectre and Meltdown 
attacks (Horn, 2018); however, further research 
is required. 

With regard to t he future, I would like to 
suggest the following ideas of using AllMemPro 
to prevent: 

leakage of the Windows Telemetry 
memory data; 
drivers' exploitation by validating 
kernel-mode code execution; 
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unauthorized access from kernel-mode 
malware to files, registry, and processes. 

Windows Telemetry leakage. Windows 
Telemetry includes a lot of sensitive user 
information and has to be protected from 
unauthorized access by malware. Another issue 
is to disable the Windows Telemetry data 
reliably. As a result, users will be confident that 
the private data: Browsing History, Voice Input , 
GPS data, etc. will not be collected and 
transferred to anyone. 

Preventing Drivers' Exploitation. To 
reveal the fact that t he driver is being exploited 
I propose t he following. AllMemPro will trap 
and log the driver code execution using a lot of 
valid input data. Secondly, I will analyze the 
progress of code execution and create some 
signatures, using the corresponding control flow 
graph ( CFG). Finally, I will test this code using 
common data or data with exploits. By 
comparing the code execution with signature 
CFG , I will check whether the code executes all 
its parts, or it skips something from CFG. If it 
skips any part, it means that the driver's 
behavior is not normal, and someone is using its 
vulnerability. 

Preventing Kernel-Mode Malware to 
Access Files and Registry. Windows 
security model provides the registry key and file 
security only for user-mode applications. It 
means that kernel-mode drivers do not have any 
limitations to access filesystem and registry. As 
a result , malware driver can read, write, and 
even delete files and registry data, which are 
processed by user-mode applications or other 
drivers. My idea is to adapt the AllMemPro to 
prevent this unauthorized access by monitoring 
and controlling access attempts to filesystem 
and registry. The proposed system will use the 
similar active policies to grant access only to the 
owner and registered drivers and will stop access 
from the illegal ones. 
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