
Annual ADFSL Conference on Digital Forensics, Security and Law 2018
Proceedings

May 17th, 8:45 AM - Mar 17th, 9:20 AM

Hypervisor-Based Active Data Protection for Integrity and Hypervisor-Based Active Data Protection for Integrity and

Confidentiality Of Dynamically Allocated Memory in Windows Confidentiality Of Dynamically Allocated Memory in Windows

Kernel Kernel

Igor Korkin
igor.korkin@gmail.com

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Information Security Commons, and the OS and Networks Commons

Scholarly Commons Citation Scholarly Commons Citation
Korkin, Igor, "Hypervisor-Based Active Data Protection for Integrity and Confidentiality Of Dynamically
Allocated Memory in Windows Kernel" (2018). Annual ADFSL Conference on Digital Forensics, Security
and Law. 13.
https://commons.erau.edu/adfsl/2018/presentations/13

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2018
https://commons.erau.edu/adfsl/2018
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2018/presentations/13?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Hypervisor-Based Active Data Protection for ... CDFSL Proceedings 2018

HYPERVISOR-BASED ACTIVE DATA
PROTECTION FOR INTEGRITY AND

CONFIDENTIALITY OF DYNAMICALLY
ALLOCATED :MEMORY IN WINDOWS KERNEL

Igor Korkin, PhD
Security Researcher

Moscow, Russia
igor.korkin@gmail.com

ABSTRACT

One of the main issues in the OS security is providing trusted code execution in an untrusted
environment. During execution, kernel-mode drivers dynamically allocate memory to store and
process their data: Windows core kernel structures, users' private information, and sensitive data
of third-party drivers. All this data can be tampered with by kernel-mode malware. Attacks on
Windows-based computers can cause not just hiding a malware driver, process privilege escalation,
and stealing private data, but also failures of industrial CNC machines. Windows built-in security
and existing approaches do not provide the integrity and confidentiality of the allocated memory of
third-party drivers. The proposed hypervisor-based system (AllMemPro) protects allocated data
from being modified or stolen. AllMemPro prevents access to even one byte of allocated data, adapts
for newly allocated memory in real time, and protects the driver without its source code. AllMemPro
works well on newest Windows 10 1709 x64.

Keywords: hypervisor-based protection, Windows kernel, Intel, CNC security, rootkits, dynamic
data protection.

1. INTRODUCTION

Currently, protection of data in computer
memory is becoming essential. Growing
integration of ubiquitous Windows-based
computers into industrial automation makes
this security issue critically important. Windows
machines can be attacked when malware kernel
mode code manipulates the memory content of
legal drivers and their dynamically allocated
memory pools, which store critical data.

Intruders can tamper with this data by
installing their own malware driver or using

@ 2018 ADFSL

vulnerabilities of the installed kernel mode
modules (Adler, 2017).

There are a number of vulnerabilities in
Windows kernel core drivers, as well as in the
third-party drivers such as NVIDIA Windows
GPU Display Driver (NVIDIA Corporation,
2017), Audio Driver (Gee, 2017), keyboard
driver (CSO, 2017), Schneider Electric
UnitelWay Device Driver (Langill, 2011). For
example, an attacker could successfully exploit
the CVE-2017-0155 vulnerability in the Win32k
component and run arbitrary code in kernel
mode (Microsoft , 2017).

Page 7

•

•

•

CDFSL Proceedings 2018

The vulnerable VirtualBox driver
(VBoxDrv.sys) has been exploited by Turla
rootkit and allows to write arbitrary values to
any kernel memory (Singh, 2015; Kirda, 2015).

Another vulnerability of CPU-Z driver has
been exploited in HandleMaster project change
granted access rights for handles (MarkHC,
2017).

Additionally, m a recent paper 'Windows
exploitation in 2016,' researchers from ESET
underline the vulnerability of third-party
drivers as a real vector of exploitation (Baranov,
2016).

DriverA f,or
C C machine

I read/write

Hypervisor-Based Active Data Protection for ...

This malicious code is running at the same
privilege level as a Windows kernel. There are
no built-in Windows security control policies to
prevent illegal malware access in the kernel
mode.

As a result , intruders can tamper with the
following allocated data in the kernel-mode, see
Figure 1:

Windows core kernel;

User data;
Industrial automation control software.

-i\l""l'.).\~ ' tr ... -
Access

Driver - ~ '.th ... · evention

System linked list with
dynamic;a,lly allocated stnictw-es

(e.pr,ocess, driver_:ol; e.ct e.tc)

Figure 1. Examples of driver's memory access attempts to the allocated memory: legitimate access attempts are in
green, unauthorized ones are dashed red arrows

Windows kernel security issues. Firstly,
hackers patch allocated system data in
Windows kernel to prevent the detection of
installed malware drivers and escalate process
privileges. Information about a loaded driver is
collected in several system lists, which include
allocated structures connected by linked lists.
Hackers can unlink the structure of malware

Page 8

drivers from all these lists to make them hidden.
Consequently, bytes in these structures in
memory can be deliberately changed and made
useless in finding malware footprints. These
rootkit techniques are known as 'DKOM. ' Also,
rootkits can read the undocumented kernel
mode values. For example, DisPG disables
Windows Kernel P atch Protection by using the

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

undocumented value nt!PoolBigPageTableSize,
which needs to be protected (Korkin & Tanda,
2017).

Usually, malware processes are running with
low privilege, and obtaining high privilege can
allow the malware to perform more operations.
Process privileges can be escalated by exploiting
kernel mode driver bugs using SID List
Patching, Privileges Patching, and Token
Stealing payloads (Perla & Oldani, 2010;
Hasherezade, 2017). The issue of finding and
exploiting kernel-mode vulnerabilities is quite
challenging and powerful because it could allow
compromising the system completely (Cisco,
2017).

Another example of escalating process
privileges is the mimikatz framework, which
loads its own driver and manipulates Token
value from EPROCESS structure (Delpy, 2018).

The ProjectSauron is one of the examples of
kernel-mode malware drivers, which are
classified as Advanced Persistent Threat. It
supports commands to elevate privileges to a
system account (Kaspersky, 2016).

One more example is the CVE-2016-7255
exploit, which uses type-confusion vulnerability
in win32k.sys (CVE-2016-7255) to gain elevated
privileges by patching EPROCESS structure
(Oh & Florio, 2017). The similar Elevation-of
Privilege (EOP) attack was used in Duqu 2.0
exploit (Wook & Florio, 2015).

Another exploit overwrites the Server
Message Block (SMB) connection session
structures to gain Admin/ SYSTEM session
(Rapid7, 2018).

Apart from EPROCESS structures,
attackers are also patching other allocated
Windows objects.

TDL bootkit conceals its presence in the
system by modifying the Startlo field of the
target device 's driver and excluding the target

@ 2018 ADFSL

CDFSL Proceedings 2018

device from the DRIVER OBJECT's linked
list (Rodionov & Matrosov, 2011).

Win32/ Gapz and ProxyBox hook IRP
handlers from
DRIVER_ OBJECT.MajorFunction[I array to
protect itself from being removed from the
system. (Rodionov & Matrosov, 2013; Bingham,
2012).

Another technique is to manipulate IRP
structure and IO STACK LOCATION. For
example, by changing CompletionRoutine
pointer, it is possible to avoid the calling of
completion routine of a filter driver, which
prevents collecting evidence of suspicious
activity (Blunden, 2009).

Windows 10 supports Supervisor Mode
Execution Prevention (SMEP), which prevents
the kernel from executing code in user mode, a
common technique used for local kernel
elevation of privilege (EOP). SMEP requires
processor support found in Intel Ivy Bridge or
later processors, and it also can be bypassed
(Shahat, 2018).

The protection system needs to provide
integrity for the sensitive memory objects,
linked lists as well as preventing modification of
each data structure in these lists, which has
been dynamically allocated by Windows kernel.
Additionally, the security software needs to
prevent illegal reading of critical Windows
kernel values.

User data issues. Secondly, malware can

attack the user data located in the kernel
memory. For example, malware could steal or
overwrite private keys, which are used in
cryptographic drivers and can be used to
decrypt user data. Malware can also attack a
user's privacy by reading Windows telemetry
and other data collected by Windows OS.

The protection system needs to prevent
unauthorized access to memory data
dynamically allocated by third-party drivers.

Page 9

CDFSL Proceedings 2018

Security of industrial automation
control software. Thirdly, malware can cause
considerable damage by attacking industrial
control software. Stuxnet is a famous example
of kernel-mode malware, which took out 1000
centrifuges at Iran's nuclear facility. Its driver
deliberately attacked Windows-based Industrial
Control Systems (ICS) , which is used with
Siemens PLC (Anderson et al., 2017).

A similar vector for cyber-attacks is the
software for the machines with computer
numerical control (CNC), which use computers
to handle various machine tools: lathes,
grinders, drilling machines etc. CNC machines
are extremely popular in the cutting-edge
manufacturing, for example, they are used by
NASA, Boeing, SpaceX etc. (Isakovic, 2018).

Cybersecurity researchers emphasize a
substantial risk of cyber-attacks against
manufacturing systems and CNC machines
(Vincent et al., 2015; Chhetri et al. , 2016).
Researchers illustrate various threatening
scenarios related to remote maintenance of CNC
machines (Mehnen et al., 2017). Security
experts from the USA stress the serious security
risks for CNC machines and provide nine basic
protection tasks to do before connecting
machine tools to the network. One is to "install
a Windows anti-virus protection service"
(Johnson, 2017). However, there are no specific
AV services to protect industrial CNC
machines, and it is obvious that basic desktop
AV s cannot provide full protection for CN C
machines.

The recent report from a German IT
association says that more than a half of
companies in Germany "have been victims of
industrial espionage, sabotage or data theft in
the last two years" and these "companies had
incurred a loss of around 55 billion euros per
year," which is around 64 billion USD (Burgess,
2017).

Page 10

Hypervisor-Based Active Data Protection for ...

Another report released by Trend Micro
Threat Research and Polytechnic University of
Milan demonstrates the cyber-attack
implementations on actual industrial robots.
(Maggi et al., 2017)

There are several Windows-based CN C
control systems such as Fanuc (Fanuc, 2017),
MACH series (Mach, 2018), UCCNC
(CNCdrive, 2018), MicroSystems (WinCNC,
2018) , which use kernel-mode drivers and
dynamically allocate data in kernel mode to
send the control codes to the machines. For
example, UCCNC software provides an
opportunity to control professional CNC
machines using a tablet PC running on
Windows 8.1. (Stoney CNC, 2015; Bozso777,
2015). Another example is Fanuc software,
which leverages a WinIO library and a parallel
port to manage CNC machines (DSP , 2011).

All this industry control software can be
potentially attacked by a malware driver, which
can accomplish both types of attacks: sabotage
and industrial espionage. The first type of
attacks can result in crashing the machine or
"workpiece damage such as spalling or
delamination" (Schulze et al., 2011). The second
type of attacks can result in sensitive
information being stolen to reconstruct the
workpiece or the technologies of processing, such
as know-how, trade secrets, and confidential
information.

The Deutsche Welle reports that one of the
CN C machines in a German engineering firm
was attacked by spyware: "it turns out their
computer controlled molding cutter came spiked
with sophisticated malware that automatically
transferred sensitive data about the new
prototype to Asian-based Internet Protocol
Addresses" (Knigge, 2013). The CNC machines
security is a sensitive topic and existing hush
hush culture makes it very difficult to come up
with concrete examples of the incidents of
cyber-attacks.

@ 2018 ADFSL

•

•

•

•

•

•

•

Hypervisor-Based Active Data Protection for ...

The protection software needs to prevent
illegitimate access to dynamically allocated
buffers m kernel-mode used by industry
software drivers to control CNC machines.

Threat model. Summing up all malware
actions, I would like to introduce a threat
model. The following malware activities will be
considered in this paper, see Figure 1:

Intruders avoid all prevention measures
and can install kernel-mode malware;
Malware driver easily finds the memory
content with sensitive data and code;

Malware driver reads and writes the
memory data allocated by Windows
kernel and any third-party drivers;

Malware reads and writes code sections
of kernel modules.

The Windows operating system includes
several features to prevent illegal memory
access. However, these features provide only the
integrity of code sections of kernel modules and
check the integrity of systems linked lists. They
do not provide the integrity of each structure
from these lists and do not prevent reading of
any kernel memory.

There are several research projects, which
partially solve the problem with protection of
allocated data in the kernel.

In the paper Kernel Data Integrity
Protection via Memory Access Control by
Srivastava et al., 2009 the authors proposed
using a hypervisor to mediate the execution of
instructions attempting to write protected
kernel data. Their system prevents overwriting
only Windows OS critical data: process
credentials for privilege escalation and detects
illegal removing structures from linked lists.
This system does not prevent confidentiality
breach of kernel data and code nor does it track
allocation of memory pools to protect them.

In the paper HAGS: A Hypervisor-Based
Access Control Strategy to Protect Security-

@ 2018 ADFSL

CDFSL Proceedings 2018

Critical Kernel Data by Wang et al., (2017) the
authors focus on rootkits that place a malicious
code in their installation procedure. HACS
maintains a module whitelist: only the modules
in the whitelist are legal to modify the protected
region. Consequently, HACS does not have an
opportunity to provide various memory access
policies for various kernel modules. Given this
opportunity, HACS could prevent illegal
memory access if one of the trusted drivers is
compromised.

Another system DADE (Yi et al., 2017)
provides kernel integrity via periodically
scanning invariant properties and checking
backtraces of kernel function calls. The
invariants describe the behavior expected from
an uncompromised kernel using the source code
of OS kernel. Authors admit that DADE has
only a probabilistic chance to detect integrity
attacks. Neither does DADE protect the
memory of third-party drivers.

As a result, the issue of providing the
integrity and confidentiality of dynamically
allocated data in the kernel mode is unsolved.
At the same time, the illegal memory access to
this data can result in not only hiding malware
drivers and stealing users' private data, but also
in damaging industrial process and stealing
know-how.

The goal of this paper is to tackle this issue.
First, I propose an active data policy to deal
with kernel-mode malware, which has the
following main principles:

Trap each memory access and grant full
access only to the memory data, which
has been allocated by this driver before;

Prevent unauthorized access even to one
byte of memory allocated by another
driver;

Provide integrity and/ or confidentiality
of the allocated data according to the
principle of least privilege;

Page 11

•

•

•

•
•

CDFSL Proceedings 2018

Recover memory content after it was
modified.

This active data policy has to be adapted to
changing situations in the OS and help to
restore the original data:

Separate access memory policies for each
kernel-mode driver;
Automatically update memory access
policies when a new driver is loaded or
any module calls allocation or
deallocation routines.

The purpose of this paper is to present the
design, implementation, and evaluation of a new
hypervisor-based system that protects the
dynamically allocated data in Windows kernel
from being accessed without authorization.

The remainder of the paper proceeds is as
follows:

Section 2 provides the review of newest
kernel mode memory protection features , which
have been integrated into Windows 10 1709.
The comparative analysis of the existing
memory protection approaches will be given
according to the proposed threat model.

Section 3 contains the architecture of
proposed allocated memory protection system -
AllMemPro and the experimental results .

Section 4 focuses on the main conclusions
and further research directions.

2. BACKGROUND

This chapter presents the analysis of the
existing papers and software tools that are
focused on allocated memory protection in OS
kernel. Popular research projects are compared
by their capability to provide integrity and
confidentiality to dynamically allocated memory
and code in kernel-mode for OS core kernel and
third-party drivers.

There are several new protection facilities
which have been integrated on Windows 10

Page 12

Hypervisor-Based Active Data Protection for ...

1709 and have significantly improved the
security of the OS: Device Guard, Credential
Guard, UEFI Secure Boot, updated Kernel
Patch Protection (PatchGuard) , Supervisor
Mode Execution Prevention (SMEP), Early
Launch Antimalware (ELAM), Windows
Defender Exploit Guard (WDEG) etc. Device
Guard and PatchGuard are dealing with the
issues of memory protection in kernel-mode
memory (Zylva, 2016; Hall et al., 2017).

Device Guard includes three basic
components, one of them being the Kernel Mode
Code Integrity (KMCI) which prevents
patching executable pages m the kernel
memory. According to the "Driver compatibility
with Device Guard in Windows 10" memory
pages and sections can never be writable and
executable simultaneously and executable code
cannot be directly modified (Baxter, 2017).

PatchGuard protects critical structures m
the Windows kernel from modification by
unknown code. It stores and periodically verifies
checksums of specific kernel memory areas.
PatchGuard causes a BSOD if a mismatch is
found. "Kernel patching can result m
unpredictable behavior, system instability, and
performance problems like the Blue Screen of
Death" (Field, 2006). For linked lists,
PatchGuard checks only the integrity of the
links between structures and has 4 various types
of BSOD (Marshall, 2017), without preventing
the structure modification. In addition,
PatchGuard reveals the corruption of
MajorFunction table in DRIVER_ OBJECT,
but whether it protects other fields or not is
undocumented (Mei, 2014; OSR, 2016).

In summary, Windows built-in security
features provide the integrity of the following:

code sections of kernel-mode modules;

undocumented internal lists with
allocated structures.

Windows security features do not support
the integrity and confidentiality of allocated

@ 2018 ADFSL

•

•
•

Hypervisor-Based Active Data Protection for ...

memory of third-party drivers. In addition,
Windows PatchGuard does not prevent illegal
memory modifications; it just causes a BSOD in
case of them. These BSODs are not appropriate
for use in critical infrastructure, like CNC
machines and industry.

Security experts investigate these security
issues and propose various solutions to protect
sensitive data in the kernel mode. All projects
can be divided into two groups that are based
on kernel-mode drivers and hardware
virtualization. The scope of this paper is the
hypervisor-based solutions because they work in
a more privileged mode than kernel-mode
malware and are resilient to its attacks.

All hypervisor-based approaches can be
divided into two subgroups according to the
technologies which they use to intercept
memory access in the kernel-mode (Korkin &
Tanda, 2017).

The first subgroup controls memory access
to the sensitive data by marking a memory page
with this data as non-present. Next, each access
to this page generates a page-fault exception
(# PF), which will be trapped and dispatched
by the hypervisor.

The second subgroup leverages a new Intel
VT-x with Extended Page Tables (EPT)
technology. EPT mechanism can separately
intercept read-, write-, and execute access. The
hypervisor allows or disallows access to the
memory page by setting bits in the EPT
memory structures. Thus, any disallowed access
will involve EPT violation and will be processed
by the hypervisor.

EPT mechanism is faster than # PF-based
one. EFT-based approach can intercept, for
example, only write- access and skip others,
while # PF-based one always intercepts all
access to the memory page. At the same time,
PF-based approaches are working on all
computers, while EPT has been integrated into

@ 2018 ADFSL

CDFSL Proceedings 2018

the Intel CPUs since Nehalem
microarchi tecture.

Srivastava et al. , (2009) confirm that
"kernel-level malicious software has full access
to the data and operations of all kernel
components." Their protection system is based
on page-fault exceptions and protects kernel
variable and system data structure elements
from being patched by malware. Their system
Sentry provides only integrity of dynamically
allocated data by partitioning kernel memory
into two parts: protected and unprotected
regions. The authors assume that the core
kernel has full trust , while other drivers hold
only limited trust. Sentry mediates the
execution of instructions attempting to write
protected kernel data and verifies memory
access at the granularity of high-level language
variables in the kernel 's source code. Sentry has
been developed using Linux and Xen hypervisor.

Thus, Sentry does not provide the following:

flexible memory access policy to
protected new allocated data by third
party drivers;

confidentiality of data;
kernel-mode code integrity.

Additionally, Sentry requires the kernel 's
source code, which is not applicable for
Windows OS.

Another system, HACS (Hypervisor-Based
Access Control Strategy) by Wang et al.,
(2017) , leverages EPT technology to intercept
write requests to the protected regions. HACS
can detect modifications of security-critical
kernel data and escalation process privileges by
setting read-only access rights to the
corresponding memory pages. Authors proposed
to use a whitelist-based access control strategy.
The whitelist, which is made by user experience,
contains only credible kernel modules. One of
HACS's features is detecting memory
modifications from a malware code located in
the initialization procedures. This system is

Page 13

CDFSL Proceedings 2018

implemented on BitVisor version 1.4 and tested
on Ubuntu version 14. This project includes the
same disadvantages as the previous one and
HACS provides just two levels of trust:
legitimate or illegitimate modules. As a result,
this system cannot prevent access from a
legitimate module to the memory area, allocated
by another legitimate one.

The project DADE (Data Anomaly
Detection Engine) by Yi et al. , (2017) performs
memory introspection and verifies the integrity
of kernel data by checking whether certain
integrity specifications hold or not. Authors
propose to use EPT facilities to intercept write
access . DADE marks memory pages with
protected data as read-only, and then any write
access to this page generates a page fault, which
is handled by the hypervisor. The key idea of
DADE design is to leverage the information
available at object allocation events, namely
backtraces of kernel function calls. For example,
a malware module attempts to remove their
structure from a system list and produces a
specific deallocation event backtrace. DADE
compares this backtrace with a legitimate one,
which is produced by core kernel when a module
is unloaded. It is obvious that these backtraces
are different and DADE reveals the unlinking
attack. The DADE prototype has been
implemented using KVM hypervisor with Linux
version 3.8.0. DADE requires a source code of
OS kernel.

The issues of preventing commodity OS
kernel from vulnerable loadable kernel modules
are analyzed in the project LKMG (Loadable
Kernel Module Guard) by Tian et al. (2018),
which is related to the second subgroup and uses
EPT technology. LKMG can reveal the
following malware activities in the kernel:
modification of code and data, calling
unauthorized kernel functions and stealing
kernel sensitive information. The authors
propose to use a policy-centric system to isolate
various loadable drivers from the rest of the

Page 14

Hypervisor-Based Active Data Protection for ...

kernel. These security policies are generated
automatically from source codes. LKMG utilizes
the general security policy for dynamic data
access: a driver can only access its own allocated
kernel mode regions. LKMG is based on the Xen
hypervisor and protects only Linux OS.

In comparison with Sentry, HACS, and
DADE, LKMG provides integrity and
confidentiality for allocated data as well as code
integrity. However, all of these require a source
code of OS kernel , which is impossible for
Windows OS.

Hypervisor-based system HUKO (Liu et al.,
2011) protects the kernel integrity for
commodity OS from untrusted extensions. It
uses VT-x and EPT technologies and is able to
track dynamic contents such as dynamic kernel
data, stack and heap region, and loadable
extensions. It is able to protect the integrity of
both kernel code and data. HUKO prevents the
OS data from being modified by kernel-mode
drivers by isolating untrusted extensions from
the OS kernel. HUKO considers three different
categories of memory access subjects: OS kernel ,
trusted extensions, and untrusted extensions.
HUKO does not restrict the OS kernel. Authors
admit "it is possible that attackers can exploit
the legitimate kernel interface to subvert the
integrity of kernel," for example, by exploiting
bugs of the kernel API functions. In addition,
HUKO does not protect privacy and integrity of
the kernel-mode data of third-party drivers from
being tampered.

There are several research projects InkTag
by Hofmann et al. (2013), AppGuard by Zha et
al. (2015), which apply EPT technology to
guarantee data security. However, they protect
user-mode application contexts with code and
data from the OS kernel and other apps and do
not guarantee the security of kernel-mode
memory.

The following research prototypes ExOShim
by Brookes et al. (2016), HyperForce by

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

Gadaleta et al. (2012), and Sprobes by Ge et al.
(2014) prevent memory disclosure attacks and
provide kernel-mode code integrity, without
data protection. These projects only partially
solve the goals of this paper.

Authors proposed to apply the hypervisor
based system to reveal new DKOM attacks,
which tamper with dynamic data structures.
They considered the scenarios when malware
subverts the OS scheduler and proposed an idea
of detecting these anomalies by monitoring and
checking the execution time of all processes.
Their solution can only detect any unauthorized
data modifications, without preventing or
repairing them (Graziano et.al. , 2016).

Security researcher A. Zabrocki proposed an
advanced analog of Patch Guard for Linux-based
OSes. Named Linux Kernel Runtime Guard
(LKRG) , it is a loadable kernel module that
performs runtime integrity checking of the
Linux kernel. LKRG supports from being loaded

@ 2018 ADFSL

CDFSL Proceedings 2018

at early boot stage and "protects the system by
comparing hashes which are calculated from the
most important kernel region/
sections/ structures with the internal database
hashes." A current version of LKMG provides
code integrity and exploit detection. But, it does
not protect allocated memory of third-party
drivers (Zabrocki, 2018).

The summary table with the comparative
analysis of the major papers and projects is
given in

Table 1.

In addition, the vast majority of analyzed
methods require the driver's source code to
protect allocated data. The proposed
AllMemPro system can protect the compiled
code without its source code.

The next section will present the proposed
system, which is said to be free from all the
drawbacks mentioned above .

Page 15

Title, year

OS Kernel Third-Party Kernel-Mode Drivers

OS
Integrity Integrity Confidentiality

Allocated
Data

Code
Allocated

Data
Code

Allocated

Data
Code

Device Guard and Patch

Guard in Windows 10 1709,

2017

+–A + – + – – Windows

Sentry, 2009 + – + – – – Linux

HUKO, 2011 + + +–B – – –
Windows

Linux

HyperForce, 2012; Sprobes,

2014; ExOShim, 2016
– + – – – – Linux

HACS, 2017 + – – – – – Linux

DADE, 2017 + – + – – – Linux

LKMG, 2018 + + +–B + +–B – Linux

LKRG, 2018 + + – + – – Linux

AllMemPro, 2018 + –C + –C + –C Windows

A Windows security features reveal only unlinking critical structures; but they do not prevent changing the

content of these structures;
B HUKO and LKMG systems do not restrict the OS kernel, and as a result, they only partially protect data,

which have been allocated by third party drivers;
C The current version of AllMemPro protects only allocated data in the kernel mode. The protection of code

integrity and confidentiality will be implemented further.

CDFSL Proceedings 2018

Table 1
Summary table of memory protection projects

3. PROPOSED
ALLOCATED JVlEMORY

PROTECTION -
ALLJVlEMPRO

This section covers the details of the proposed
hypervisor-based system to guarantee the
confidentiality and integrity of dynamically
allocated data.

To start with, I will show how to apply a
hypervisor and EPT technologies to prevent
three main scenarios of attacks in kernel-mode
memory using active data protection.

Page 16

Hypervisor-Based Active Data Protection for ...

Afterward, I will present the architecture of
AllMemPro, which realizes the proposed ideas
and will give some details about how to prevent
unauthorized access to the allocated memory
and grant access to the legitimate kernel-mode
module.

Finally, I will show three cases of using the
developed proof of concept prototype to protect
allocated memory for both third-party driver
and Windows kernel.

@ 2018 ADFSL

•

Hypervisor-Based Active Data Protection for ...

3.1 Apply EPT to Guarantee
futegrity and Confidentiality of

Dynamically Allocated Data.

This section suggests using EPT technology to
prevent typical malware attacks.

As was stated above, the dynamically
allocated data can contain sensitive
information, such as crypto keys, users' private
data, parameters of CNC machines, process
privileges and drivers' information.

Three Scenarios of Attacks. Attackers
try to tamper all this data and it is possible to
define three main scenarios, see Figure 1. First,
attackers can steal/ read and modify / write the
allocated data of third-party drivers. Second,
they are also able to steal/ read and patch/ write
the code sections of third-party drivers and
Windows core drivers. Finally, they could
unlink and modify the allocated structures in
Windows internal lists.

To prevent all these three scenarios, I
propose to use an active data policy, which has
a separate rule to protect dynamically allocated
data from being stolen or modified illegally. This
policy can also be applied to guarantee the
integrity and confidentiality of kernel-mode
modules, which are loaded in the memory. The
key feature of the active data policy is that it
avoids illegal access to the protected memory
without deliberately generating BSOD like
Windows built-in security systems (Field, 2006).
It also allows protecting newly allocated
memory regions.

To grant only legal access and prevent all
others it is needed to intercept each memory
access to the sensitive memory regions. The
EPT technology provides an excellent
opportunity to trap and process each read-,
write-, and execute- access on the 4-kilobyte
memory page.

Scenario 1. Stealing and modifying the
allocated data of third-party drivers. Let

@ 2018 ADFSL

CDFSL Proceedings 2018

us consider the first case when malware tries to
access the allocated memory for the third-party
driver.

To protect the dynamically allocated data I
propose to use the active data policy, which
includes the rules, according to which the
hypervisor will grant or prevent particular
access. The hypervisor controls only the
memory regions, whose data is in the list of
rules.

This rule includes the following five values:
DriverStartAddr,
AllocatedStartAddr,

DriverSize,
AllocatedSize, and

SharedAccess. As a result , access attempt to the
memory, which is located between
AllocatedStartAddr and AllocatedStartAddr +
AllocatedSize is granted only to the code from
DriverStartAddr to DriverStartAddr +
DriverSize. An example of such a rule is given
in Table 2.

The default shared access policy prevents
read access (R= 0) and write access (W= 0) to
the memory from other drivers and Windows
kernel.

If this allocated memory needs to be
accessed by another kernel-mode module or
Windows kernel I have to add a similar rule. To
automatically add a corresponding rule, I use a
pre-configured list of driver names, which share
the memory with the protected driver, e.g. for
sharing allocated memory with Windows Kernel
I use ntosknl.exe. Provided I have only a binary
code of the driver module, whose allocated
memory is critical for stealing and modifying I
can apply reverse-engineering analysis to get
such a list of driver names.

The list of rules needs to be updated for each
kernel-mode module, whose memory is
protected. To achieve this, I trap the following
events:

the protected driver is loaded and
unloaded;

Page 17

•

CDFSL Proceedings 2018

the protected module allocates and frees
memory.

To realize the aforementioned active data
policy, I leverage the hypervisor facilities and
EPT technology using five steps.

Step 1. Start: trap loading drivers.
First, the hypervisor is loaded before the
protected driver is loaded to the memory. The

Table 2
A n example of an active data polic rules

Hypervisor-Based Active Data Protection for ...

hypervisor will be notified whenever an image is
loaded into the memory using
PsSetLoadlmageNotifyRoutine and choose,
which kernel-mode driver will be protected
using its name. Apart from module names, the
hypervisor can also use the IMAGE_INFO
structure content; all these parameters need to
be pre-configured.

DriverStartAddr DriverSiz AllocatedStartAdd AllocatedSize SharedAcces

e r s

fffff8016f670000

(mem _ allocator_ driver .sys 0000B000 FFFF A400AF3C3F80 40 R= 0, W = 0
)

fffff80170201000
008D2000 FFFF A400AF3C3F80 40 R=0, W=0

(ntosknl.exe)

Step 2. Trap memory allocation
(deallocation) and update EPT pages
permissions. Second, the hypervisor traps each

memory allocation (deallocation) routines. The
hypervisor will choose only those routines from
all that have been called from the code
belonging to the protected driver. Without the
loss of generality, this paper is essentially
concerned with the use of
ExAllocatePoolWithTag routine to allocate
memory pool and ExFreePoolWithTag to free
allocated memory. This function is used in all
other memory allocation routines, for example,
by ExAllocatePool*, FsRtlAllocatePool*. Also,
it is considered that MiAllocatePoolPages
routine, which is used by
ExAllocatePoolWithTag, has not been called
directly by a kernel-mode driver.

The corresponding rules for active data
policy will be added (removed) in real time each
time when the protected driver calls the
allocation (deallocation) routine.

By applying EPT technology and EPT
paging structures the hypervisor can intercept,

P age 18

process, and control each access to the memory.
The proposed algorithm of using EPT facilities
is taken from the paper by Korkin & Tanda
(2017).

I create EPT paging structures with default
page access bits to permit all access. Next using
the active data policy rules, I limit the access to
the fixed data in the kernel mode memory.

After adding a new rule, t he hypervisor
updates the EPT paging structures: it clears
read- and write- permissions on the pages with
the protected data and it clears read- and write
permissions on the pages with the protected
module. After t he driver has freed memory, the
hypervisor double fills this memory block with
zeroes and removes the corresponding active
data access rule. Removing the rule will cause
restoring the corresponding EPT memory access
permissions.

As a result, each read- and write- access to
the protected memory will cause an EPT
violation.

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

The hypervisor checks firstly whether an
intercepted access belongs to the protected
memory. Next, it checks which module has
accessed the protected memory, according to
the active data policy rules.

Step 3. Grant a legitimate access. The
hypervisor grants access to the memory region
only for the protected module, which has
allocated this memory before, see Table 2. To
achieve it the hypervisor temporarily sets read
or write- permission of the protected page and
sets a Monitor Trap Flag (MTF) . Setting MTF
enables the system to generate VM Exit after
executing each instruction.

After the legitimate code accesses the
memory, the control goes to the hypervisor
again because of VM Exit. At this step, the
hypervisor restores page permission by clearing
access bits and clears MTF.

Step 4. Prevent an unauthorized
access. If a module not mentioned in the active
data policy tries to access the protected
memory, the hypervisor needs to prevent it. To
achieve it, the hypervisor changes the page
frame number (PFN) to the corresponding Page
Table Entry (PTE) for the protected memory

@ 2018 ADFSL

CDFSL Proceedings 2018

and temporarily grants access to the replaced
memory by setting a read- or write- permission.
The hypervisor also sets an MTF.

After an unauthorized module reads or
writes to the replaced page and executes just
one instruction, the control goes to the
hypervisor, because of VM Exit. Next , the
hypervisor restores initial configuration: by
setting an original PFN value for the protected
memory, clearing access bits, and clearing MTF.

Step 5. Finish: trap unloading the
protected driver. After the protected driver

has been unloaded the hypervisor zeroes out the
memory, where this driver had been loaded.

To be notified whenever an image is
unloaded the hypervisor overwrites the function
address of the DriverUnload from the
DRIVER OBJECT (MSDN, n.d.-a; OSR,
2017).

These five steps provide the integrity and
confidentiality for the dynamically allocated
data in Windows kernel, see Figure 2.

The proposed approach can be used for
three malware scenarios, mentioned above.

Page 19

CDFSL Proceedings 2018

VMX non-root VMX-root
mode mode Inititl EPr paging strucrures

AilP8fJ!,&read = true
AJIPages.write = true

AJIPages.- = true

{Kernel-nm.el

read/
write

~sl&2

r------------------~
Acc:ess I ADocatedMemory.read = FALSE 1

1 Alloc:atedMemory.wrne = FALSE : _
1ADoc atedMemory.PFN= ORIGINAL1

AII.OiherMemory.read = true
AilOtherMemo:i:y.write = tru.e
AII.Otherl\,lemory,e:\2C = true

MfF=FALSE

Hypervisor-Based Active Data Protection for ...

LiriofActwe
Memory Polii:e

R-ules

EPr paging strucrures on~ 3

Alloc:atedMemory.read = TRUE
ADocaedl\,lem.ory.write = TRUE

ADocatedMernory.PFN= ORIGINAL

AII.OiherMemory.read = true
AIOtherMemo:i:y.write = true

AII.Otherl\,lemory,e:\2C = true

MTF=TRUE

EPr paging muctures on~ 4

Alloc:atedMemory.read = TRUE
ADocaedl\,lernory.write = TRUE
ADoc atedMemory.PFN=F AKE

AII.OiherMemory.read = true
AilOtherl\,lemo:i:y.write = tru.e
AII.Otherl\,lernory.e:\2C = true

MTF=TRUE

Figure 2. The proposed method of preventing allocated memory from being illegally read or overwritten

Scenario 2. Stealing and patching code
sections. One of the new protection

mechanisms, which has been integrated into
Windows Device Guard in Windows 10, is the
Kernel Mode Code Integrity (KMCI)
component. This component prevents
modification of executable code directly and
does not stop code reading. As a result, the code
confidentiality is still becoming vulnerable.

The preliminary testing of AllMemPro
shows that the proposed approach of
dynamically data protection cannot be used for
code protection because it causes a serious
overhead. One of the possible ideas for code
protection is to apply two EPT structures: first
EPT structure allows execution of the protected
driver and blocks execution from all other
memory; second EPT structure blocks access to
the protected data and allows execution from all
memory apart from the protected driver.

The code protection will be implemented in
further versions of AllMemPro.

Scenario 3. Tampering Windows
Data. To prevent unlinking and modifying the

allocated structures in Windows internal lists, I
add a rule for each structure (Sherer, 2017).

Page 20

For example, to avoid hiding EPROCESS
structure by DKOM patching: structure
unlinking and replacing its content (Korkin &
Nesterow, 2016) , the hypervisor adds rules for
the existing structures. The hypervisor updates
the list of rules and traps newly allocated
structures using
PsSetCreateProcessN otify Routine routine
(MSDN, n.d.-c). The AllocatedDataAddress
and AllocatedDataSize are the address and the
size of an EPROCESS structure; the
ModuleStartAddress and ModuleSize
correspond to the ntosknl.exe.

This section has covered a way of
maintaining the integrity and confidentiality of
dynamically allocated data by using active data
policy and leveraging the hardware-based
hypervisor and EPT technology.

The next section covers the architecture of
the developed prototype, which realizes active
data policy.

3. 2 Architecture of AllMemPro

This section covers the design and architecture
of the developed hardware-based hypervisor
AllMemPro, which realized the active data

@ 2018 ADFSL

•

•

Hypervisor-Based Active Data Protection for ...

policy to protect the dynamically allocated
memory in Windows kernel.

The proposed system includes three main
components: the Controller, Trigger, and
Policy.

The Controller traps loading drivers and
allocation of data. To trap loading of each
driver, the Controller uses
PsSetLoadimageN otify Routine routine, which
registers a driver-supplied callback to notify
whenever a new driver is loaded. A
corresponding callback function gets three basic
values, which are used to separate the protected
drivers from others: full name to the loaded
image file; an ImageBase and an ImageSize of
the loaded driver in the memory (MSDN, n.d.-
b).

In the current version, the Controller
chooses, which driver has to be protected using
its name, but it is also possible to choose the
protected driver using the calculated CRC from
its file in the memory. The Controller intercepts
memory allocation routine
ExAllocatePoolWithTag and memory
deallocation routine ExFreePoolWithTag using
DdiMon developed by Tanda (2016). DdiMon
monitors and controls kernel API calls with
stealth hook using EPT technology.

The Controller intercepts that the protected
driver allocates memory and automatically
sends the following rule structure to the Trigger
and to the Policy, see Figure 3.

The Trigger intercepts access to the
protected memory data using the hypervisor
and EPT facilities. The code of the Trigger is
based on the MemoryMonRWX hypervisor
(Kor kin & Tanda, 2017).

In the beginning, the Trigger allocates EPT
paging structure for all kernel-mode memory
pages and sets default access right to skip all
read-, write-, and execute- accesses. After
receiving a rule from the Controller, it changes

@ 2018 ADFSL

CDFSL Proceedings 2018

memory access permissions to the pages, which
include the protected data by clearing read- and
write- bits. As a result , each memory access
attempt to the protected data will cause EPT
violation.

The Trigger processes all EPT violation and
chooses between using two possible scenarios:
grant and prevent access to the data by calling
the Policy.

In the first case, the Trigger allows access to
the protected data and sets Monitor Trap Flag
(MTF), see EPT structure on step 4 on
Figure 2. As a result, after executing just one
instruction the Trigger traps control again and
restores page permission by clearing read- and
write- bits and clears MTF.

In the second case, as you can see EPT
structure on step 4 Figure 2, the Trigger
redirects access to the fake page by changing
PFN value on the EPT page, which corresponds
to the protected data. The Trigger also allows
access to this data and sets MTF. As a result,
after an unknown code accesses the fake data
and executes just one instruction, the control
goes to the Trigger again. Now the Trigger
restores the original EPT configuration, see
steps 1 & 2 in Figure 2.

The Trigger decides which case is processed
according to the Policy module.

The Policy provides logic to grant and

prevent access to the data according to the
active data policy rules.

The Policy grants full privileges to the
owner of allocated memory. If an unregistered
or unknown code accesses the protected data,
the logic of processing will be the following:

if 'is readable==0' a code cannot read
the data, otherwise it can read them;

if 'is overwritable==0' a code cannot
write to this memory, otherwise it can
write there;

Page 21

•

•

•

CDFSL Proceedings 2018

To allow another driver or Windows Kernel
to read or to write to the protected data, the
similar memory policy rule needs to be added.

In a nutshell, the Policy uses the discrete
access control to prevent illegal access even to
one byte of the protected data.

AllMemPro system is developed using
Microsoft Visual c++ 2015 with integrated
Windows Driver Kit (WDK). It is tested using
Vmware Workstation 14 and Windows 10 1709
Build 16299.15 64-bit and multi-core CPU. The
source code of AllMemPro is here Korkin
(2018).

I can conclude that the proposed hypervisor
based system has the following three
advantages:

it can protect newly allocated memory
using the Controller component;
it can prevent read- and write- access
even to 1 byte of the protected data
using the Trigger and the Policy;

it works even without the source code of
the protected driver.

The next section will cover the three
scenarios to demonstrate the facilities of
AllMemPro.

• typeder •struct · MEKJRY POLICY· { i
• void*• • • ~ ;i
• 11msigned · int64 • drvSize; i
• void*• • • ~ ;i
• 11msigned · int64 • al locSize; i
• int • • • ~ ;i
• int • • • ~ ;i

}MEKJRY POLICY , ·APMEKJRY_POLICT;a

Figure 3. A structure to store a memory control

Page 22

Hypervisor-Based Active Data Protection for ...

3 .3 Demos of AllMeniPro

This section covers the demonstrations of
applying AllMemPro hypervisor to protect
kernel-mode memory. I show how AllMemPro
isolates the dynamically allocated memory of
third-party driver by read- and write- access
from another one.

Firstly, I load the kernel-mode driver
(mem_allocator_driver.sys), which allocates
memory fragment and reads this memory in the
loop as well as updates the content of this
memory after receiving the IOCTL-code from
the console control app
(mem _ allocator_ console.exe).

Next, I load the second kernel-mode driver
(mem _attacker_ driver.sys) , which plays the
role of a spyware driver. This driver reads and
writes to the content of memory, which was
allocated by the first driver. Let me assume that
a spyware driver can find the allocated data
from mem allocator driver.sys without any
issues. I control the second driver using another
console program.

Figure 4 shows the main scheme. The
addresses and sizes of loaded drivers and
allocated data are in Table 3.

This unauthorized access demonstrates the
fact that the allocated memory is not isolated
from unauthorized access from others.

The source
mem allocator driver.sys

code of
and

mem _ attacker_ driver.sys with control console
apps is here Korkin (2018).

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ... CDFSL Proceedings 2018

,-- ,
I ,S I

1 o me1m aUocator consde_,e,:.,e mem attac~er cons.oJ,e_,e..x,e 1

1 6 - ---~------........1 ----~~-~----- I I ,• I
1 M]oadl Send foadl Send 1

1 :::, 11m]oodl IOCTL codes un]oad IOCTL codes 1
--------- -------------------- --- __________ I

mem_aU~~~r_driv er_s.y s. I
(] egitimat,e)

AUocate
memory _

A]focated data. I

mem _ attad~er _driv er_ s.y s.
(a. demo s.pyv.r ru:,e driiv,er)

I

W'ii ndow s. I
Kemd

Other
Th:irvers

__ IC

Figure 4. Illegal driver reads and writes the memory alloca ted by the other driver

Table 3
T he details of objects in m emory for the Fiqure 4

Object in memory Start address Size

mem _ allocator_ driver .sys FFFFF8016F630000 0xb000

Allocated dat a by
FFFF A400AC479FD0

0xlO

mem _ allocator_ driver .sys

mem attacker _ driver. sys.sys FFFFF8016F650000 0x9000 -

Secondly, I load a hypervisor AllMemPro,
see Figure 5 and Table 4 and the following rule
is added automatically, see

Table 5. After that , I restore the allocated
data content using control app for the first
driver and try to read and write this data using
the second driver. I can see that all access

attempts from the second driver fail: after
reading, I get a zero value and writing access
does not change the content. The corresponding
debug output fragments of AllMemPro are in
Figure 6.

@ 2018 ADFSL

I can conclude that AllMemPro provides
integrity and confidentiality for the dynamically
allocated memory.

Page 23

CDFSL Proceedings 2018 Hypervisor-Based Active Data Protection for ...

1- - --~---- - -- - --- - ~- - - - - - - ~- - - -- - ---- - -- - ---- - -- -
:] mem_.:allocator:_oonsole..e~e mem_:_attac~er_oonsol,e.ex,e I :
I S ._ _____________ _. ~-------r---.--------~ I
I II . I
I 55 load/ Send load/ Send 1
1 ~ unload IOCTL oodes unload IOC1L oodes 1

t----------- ------------------- ---------·

1 ,.-...,
I o Q)

mem _.:allocator~driver..sys
{liegi ti mate)

mem _:attacker~driver..sys
(a demo spyvvare driver)

O'"d
I 1-; o
I 6 S
I ,.... ' -Ill
I >,< ~
I ;g_ ~
l >d
I
I
I
I

Allocate
mem,ory

Allocated data
Windows

Kemd
Other

Drivers

~---- -------------------1

I ------ I I >,<b I
1 ;g o Alll\1 e1nPr o 1

I > 1-; """"'------------' -~--~ I
1--k
Figure 5. AllMemPro grants access to the allocated memory only to the first
kernel-mode driver according to the rule

Table 4
T he details of objects in memory for the Fiqure 5

Object in memory Start address

mem _ allocator_ driver .sys FFFFFS0 16F630000

Allocated data by mem _ allocator_ driver .sys FFFF A400AC4 79FD0

mem _ attacker_ driver .sys FFFFFS0 16F650000

nt (ntkrnlmp.exe) FFFFF80170201000

Table 5
The rule allows the mem allocator driver. sys access to the allocated data

rule FFFFF8016F630000 B000 FFFFA400AC479FD0 10

P age 24

Size

0xb000

0xlO

0x9000

0x8D2000

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ... CDFSL Proceedings 2018

Debug Output Fragment for legal read- access:

22:34:47.513 INF # 0 4 7732 System
8= FFFFF8016F6317C8 (FFFFF8016F630000), D= FFFFA400AC479FD8 (0000000000000000), T = R

Debug Output Fragment for legal write- access:

22:34:50.357 INF # 0 8020 8144 mem _ allocator
8= FFFFF8016F6314EA (FFFFF8016F630000), D= FFFF A400AC479FD8 (0000000000000000), T = W,
00 00 00 00 00 00 00 00 01 0a 00 00 00 00 00 00 => 00 00 00 00 00 00 00 00 ba 0a 00 00 00 00 00 00

Debug Output Fragment for illegal read-access:

illegal access FFFFF8016F651228 =>> FFFFA400AC479FD8
** RweHandleMonitorTrapFlag FFFFF8016F651228 FFFF A400AC479FD8 **

22:35:05.952 INF # 0 76 8060 mem allocator
[Protected via ActiveMemPolice] Memory is being READ. Returning fake contents.
22:35:05.952 INF # 0 76 8060 mem _ allocator
8= FFFFF8016F651228 (FFFFF8016F650000) , D= FFFF A400AC479FD8 (0000000000000000), T= R

Debug Output Fragment: for illegal write-access:

illegal access FFFFF8016F651257 = > > FFFF A400AC479FD8
** RweHandleMonitorTrapFlag FFFFF8016F651257 FFFF A400AC479FD8 **

22:35:20.405 INF # 0 76 8060 mem _ allocator
8= FFFFF8016F651257 (FFFFF8016F650000), D= FFFFA400AC479FD8 (0000000000000000), T= W,
0000000000000000~~000000000000 => 0000000000000000~~000000000000

22:35:20.405 INF # 0 76 8060 mem allocator
[Protected via ActiveMemPolice] Memory is being WRITTEN. Returning fake contents.

Figure 6. The fragments of debug output for the Figure 5

Finally, I consider a general case, with
shared memory. Now the first driver uses the
allocated data to retrieve the system
information using Windows Kernel routines, see
Figure 7 and Table 6. To share the allocated
data between the first driver and Windows
Kernel, I use the following two rules, see

@ 2018 ADFSL

Table 7. The first line makes the allocated
buffer available to the first driver, and the
second line - for the Windows kernel ,
(ntoskrnl.exe). Windows routine has
successfully written internal data to this
memory. The AllMemPro isolates this data
from the second driver. All illegal memory
attempts fail, see Figure 8.

Page 25

CDFSL Proceedings 2018 Hypervisor-Based Active Data Protection for ...

1---
:] mem _:allocator_ console.eX:e I mem _:attacker~console.exe :
I ~ ----~~-~----........., --- I

: ~ oad/ send lo1adld Send de :
1 P unload IOCTL oodes un oa IOCTL co s 1

t----------- -----------,

tnem _:allocator~driver..sys
(legitimate)

Allocate Read/
m,emory write data /

·~ - - ,¥
Allocated data vvrite data l

I

mem _:attacker_:dri ver.sys
(a demo spyware driver)

Windovvs
K:emel

Other
Drivers

I 1---- -----------------------
' 1 ><, AlllVI an Pro
·~ e I _____________ _,,, I

l---1
Figure 7. AllMemPro grants access to the allocated memory to the first kernel-mode driver and
Windows Kernel. AllMemPro prevents access to the second, which is not in the list rules

Page 26

Table 6
T he details of objects in memory for the Fiqure 7

Object in memory Start address

mem allocator _ driver.sys FFFFF8016F630000

Shared Allocated data FFFF A400AC4 79F80

mem attacker driver.sys FFFFF8016F650000

nt (ntkrnlmp.exe) FFFFF80170201000

Table 7

Size

0xb000

0x40

0x9000

0x8D2000

The rules allow mem allocator driver. sys and ntkmlmp. exe to access to the allocated memory

/ / for mem _allocator_ driver.sys
rule FFFFF8016F630000 B000 FFFFA400AC479F80 40

/ / for ntkrnlmp.exe
rule FFFFF80170201000 8D2000 FFFF A400AC4 79F80 40

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ... CDFSL Proceedings 2018

Debug Output Fragment for illegal write- access
** RweHandleMonitorTrapFlag FFFFF8016F651228 FFFFA400AC479F80 **

22:58:18.560 INF # 0 76 8060 mem_ allocator_
[Protected via ActiveMemPolice] Memory is being READ. Returning fake contents.

22:58:18.560 INF # 0 76 8060 mem_ allocator_
8= FFFFF8016F651228 (FFFFF8016F650000), D= FFFFA400AC479F80 (0000000000000000), T = R

Debug Output Fragment for legal write-access (mem allocator driver.sys, memset
function fragment):
22:51:03.306 INF # 0 4 7732 System
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8B (0000000000000000), T=
w,
00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00 = > 00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00

22:51:03.306 INF # 0 4 7732 System
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8C (0000000000000000), T =
w,
00 00 00 00 00 00 00 00 00 00 00 00 7 d ff Of 00 = > 00 00 00 00 00 00 00 00 00 00 00 00 00 ff Of 00

22:51:03.306 INF # 0 4 7732 System
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8D (0000000000000000) , T =
w,
00000000000000000000000000fffil00 => 0000000000000000000000000000fil00

22:51:03.306 INF # 0 4 7732 System
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8E (0000000000000000) , T =
w,
0000000000000000000000000000fil00=> 00000000000000000000000000000000

22:51:03.306 INF # 0 4 7732 System
8= FFFFF8016F631743 (FFFFF8016F630000), D= FFFFA400AC479F8F (0000000000000000), T =
w,
00000000000000000000000000000000=> 00000000000000000000000000000000

Debug Output Fragment for legal write-access (ntkrnlmp.exe,
ZwQuerySystemlnformation):
22:51:03.306 INF # 0 4 7732 System
8= FFFFF801702FB65B (FFFFF80170201000), D= FFFF A400AC479F84 (0000000000000000), T =
w,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 = > 00 00 00 00 5a 62 02 00 00 00 00 00 00 00 00 00

22:51:03.306 INF # 0 4 7732 System
8= FFFFF801702FB65F (FFFFF80170201000), D= FFFF A400AC479F88 (0000000000000000), T =
w,

In a similar way, I have successfully checked
AllMemPro possibility of preventing illegal

@ 2018 ADFSL

privileges escalation by directly modifying the
content of EPROCESS structure.

Page 27

CDFSL Proceedings 2018

As a result, AllMemPro prevents stealing
and modifying data, stores in the allocated
memory pools in the kernel-mode and moderate
performance overhead.

4 . ALLJVlEJVIPRO:
POINTS FOR

DEVELOPJVlENT

This chapter focuses on critical analysis of
AllMemPro downsides and possible ways of its
improvement.

AllMemPro Overhead. AllMemPro
causes overhead during accesses to the protected
memory regions,
several reasons,
eliminated.

and this occurs because of
which can be partially

The evaluation of overhead was performed
by measuring the duration of 10 access attempts
to the allocated memory in three cases: without
hypervisor with enabled memory cache; without
hypervisor and disabled cache; and finally, with
AllMemPro hypervisor and time cheating.

All these measures are processed on
VMware Workstation Pro in the release version
of all drivers. To get enough measurements, I
use 200 repetitions, next I delete five maximum
values and five minimum ones, and finally
calculate the average and deviation values; see
Table 8.

In the first case, the latency is quite small
because after first several memory access
attempts, the corresponding virtual and
physical addresses are cached, and further
accesses were processed using these cache
values. To make the comparison with hypervisor
case a bit more appropriate, I applied the second
case with the deliberately disabled cache.

In the third case, I measured the latency of
memory access to the protected memory from

Page 28

Hypervisor-Based Active Data Protection for ...

the legal driver, when AllMemPro had been
activated.

AllMemPro hypervisor traps each access to
the protected memory region because this
memory does not have read- and write
permissions. After that, the hypervisor sets the
corresponding permissions and according to the
Memory Access Policy allows or disallows
memory access to this data by changing
PFN-value. At this step, AllMemPro sets MTF
and returns control to the guest. After the guest
executes just one instruction, the control goes to
the hypervisor again because of MTF.

Next AllMemPro clears MTF and restores
original permissions to the memory to be able
to trap a new access to the protected region.

As a result, for each memory access attempt ,
AllMemPro has been called two times, which
leads to time degradation.

It is possible to partially eliminate this time
degradation by applying two EPT structures.
The first EPT structure corresponds to the legal
driver and its memory and the second EPT - to
the other memory ranges . However, in this case,
to isolate the allocated memory of two and more
drivers from each other and from the other
drivers it is needed to allocate the separate EPT
structures for each driver. This approach has
been implemented in the MemoryMonRWX
hypervisor by Korkin and Tanda (2017).

As a result, AllMemPro protects memory,
which has a low frequency of access, for
example, the EPROCESS.Token value.
AllMemPro does not decrease memory access
time for non-protected memory regions. To
protect memory, which is very often accessible,
it is possible to apply multiple EPT structures.

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

Table 8
Time evaluation

No
Cases

1 without AllMemPro with enabled cache

2 without AllMemPro with disabled cache

3 with AllMemPro hypervisor

Indirect Memory Access. AllMemPro

determines the source address by reading the
value of RIP register from VMCS-structure. To
prevent indirect memory access, AllMemPro
can additionally check the call stack, but in the
current version, this is not implemented.

Self-protection: Resilience to
Manipulations. Malware driver can access the
protected data by deliberately changing the
rules content. It is possible to protect these
policies by applying the proposed AllMemPro
hypervisor to protect itself.

Protect Memory with Shared Access.
The current AllMemPro protects shared
memory in the following way. For two drivers,
using shared memory, all memory regions,
which are allocated to each of these drivers, are
available to read- and write- access by either
driver and are isolated from any other accesses.
It is possible to provide fine-grained access
control to shared memory.

To allow shared access only to the
programmer-specified buffers, it is necessary to
integrate AllMemPro at a source level during
driver development.

Pagefile Mechanism. It is possible to
overwrite the third-party driver allocated
memory by forcing the kernel to page-out the
kernel memory pool and then locating and
overwriting the driver memory inside the
pagefile in the hard disk. This can be used not
only to attack the memory pool but also to
overwrite the third-party driver code sections.
The current version of AllMemPro does not
protect the pagefile mechanism.

@ 2018 ADFSL

CDFSL Proceedings 2018

Memory Access Latency, TSC

ticks

70±2

100.000±4.000

500.000±10.000

Firmware exploitation as a vector of
infection. This research does not consider

firmware exploitation as one of the possible
ways of infections. Because of this infection, the
malware code is able to tamper both OS and
hypervisor memory, as well as injecting code
into OS kernel. Hypervisor-based solutions
cannot prevent such infections.

Direct Access to the Physical
Memory. AllMemPro can potentially prevent
direct access to the physical memory or access
to the mapped memory pages by
MmMapLockedPages(). The current version of
AllMemPro deliberately converts the virtual
address to the physical one. At the same time,
DMA attacks using firmware exploitation and
hardware are out of the scope of this paper.

Confidentiality and Integrity of Code
Sections. The current version of AllMemPro

protects only allocated data in the kernel mode.
The protection of code sections from being
illegally read and overwritten will be
implemented further.

Joint work with Windows 10: Device
Guard and Credential Guard. AllMemPro
has been successfully tested on default
installation Windows 10 x64 1709 version,
which is installed as a BIOS-version. The tested
on UEFI versions of Windows OS will be
processed further.

SGX technology and Virtual Secure
Mode. The Software Guard Extensions (SGX)
technology makes it possible to protect the areas
of execution in memory via enclaves. This
technology has been integrated into 6th

Page 29

•

•

•

•

•

•

•

CDFSL Proceedings 2018

generation Intel CPUs, while AllMemPro
supports Intel CPUs since Nehalem
microarchitecture, which is more common now.

In addition, a similar idea was implemented
to secure kernel for Windows 10 by leveraging
Virtual Secure Mode with Virtual Trust Levels
(VTLs). According to A. Ionescu, it is possible
to apply VTL to protect some kernel-mode data
(Juarez, 2015; Ionescu, 2015; Laiho, 2016).

5. CONCLUSIONS &
FUTUREWORK

To sum up, the proposed security system
AllMemPro has the following competitive
advantages:

it provides fine-grained control to
mediate access from kernel-mode drivers
to the dynamically allocated memory;

it protects allocated memory of third
party drivers and the content of OS
structures;
it guarantees the integrity and
confidentiality of the allocated data by
redirecting unauthorized access without
crushing OS;
it is an open-source project with minimal
lines of code, which can be used for
educational purposes to teach VT-x &
EPT.

Spectre & Meltdown Attacks.
AllMemPro hypervisor seems to be able to
prevent sensitive kernel-mode data from being
stolen using the newest Spectre and Meltdown
attacks (Horn, 2018); however, further research
is required.

With regard to t he future, I would like to
suggest the following ideas of using AllMemPro
to prevent:

leakage of the Windows Telemetry
memory data;
drivers' exploitation by validating
kernel-mode code execution;

Page 30

Hypervisor-Based Active Data Protection for ...

unauthorized access from kernel-mode
malware to files, registry, and processes.

Windows Telemetry leakage. Windows
Telemetry includes a lot of sensitive user
information and has to be protected from
unauthorized access by malware. Another issue
is to disable the Windows Telemetry data
reliably. As a result, users will be confident that
the private data: Browsing History, Voice Input ,
GPS data, etc. will not be collected and
transferred to anyone.

Preventing Drivers' Exploitation. To
reveal the fact that t he driver is being exploited
I propose t he following. AllMemPro will trap
and log the driver code execution using a lot of
valid input data. Secondly, I will analyze the
progress of code execution and create some
signatures, using the corresponding control flow
graph (CFG). Finally, I will test this code using
common data or data with exploits. By
comparing the code execution with signature
CFG , I will check whether the code executes all
its parts, or it skips something from CFG. If it
skips any part, it means that the driver's
behavior is not normal, and someone is using its
vulnerability.

Preventing Kernel-Mode Malware to
Access Files and Registry. Windows
security model provides the registry key and file
security only for user-mode applications. It
means that kernel-mode drivers do not have any
limitations to access filesystem and registry. As
a result , malware driver can read, write, and
even delete files and registry data, which are
processed by user-mode applications or other
drivers. My idea is to adapt the AllMemPro to
prevent this unauthorized access by monitoring
and controlling access attempts to filesystem
and registry. The proposed system will use the
similar active policies to grant access only to the
owner and registered drivers and will stop access
from the illegal ones.

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

ACKNOWLEDGJVIENTS

I thank the anonymous reviewers for their
constructive feedback on this work.

I would like to thank Michael Chaney,
alumnus of Embry Riddle Aeronautical
University, Daytona Beach, Florida, US, Ashlyn
King, an intern at Russian Flagship Center,
University of Wisconsin Madison, Madison,
Wisconsin, US, and Veronika Domova, a
researcher at ABB and Linkoping University,
Sweden for their time and effort in proofreading
this paper.

I would like to especially thank Eugene
Rodionov, a senior security researcher at Intel
for his thorough analysis of this paper and
reasonable comments, which significantly
improved the research.

In addition, I would like to thank the
following security experts for their valuable
comments: Elia Florio, Bruce Dang, Nicola
Cowie, Alex Ionescu, Edgar Barbosa, Mariano
Graziano, Oguzhan Filizlibay, David Kapman,
Alex Tereshkin, Vitaliy Malkin, Nicolas
Alejandro Economou, Jonathan Brossard,
Artem Baranov, Mohamed Saher, Alexandre
Borges, and Kelvin Chan.

@ 2018 ADFSL

CDFSL Proceedings 2018

Page 31

CDFSL Proceedings 2018 Hypervisor-Based Active Data Protection for ...

REFERENCES

Adler, B. (2017, May 17). Windows Kernel
Exploitation via Vulnerable Drivers. RIT
Computing Security Blog. Retrieved from
https: //ritcsec.wordpress.com/ 2017 / 05/ 17 /
windows-kernel-exploitation-via-vulnerable
drivers

Anderson, R., Benjamin, J., Wright, V. ,
Quinones, L., Paz, J. (2017, March). Cyber
Informed Engineering. Idaho National
Laboratory. Retrieved from
https: / / inldigitallibrary.inl.gov / sites/ sti / sti
/ 7323660.pdf

Baranov, A. (2016, December 19). Windows
Exploitation in 2016. ESET. Retrieved from
https: //www.welivesecurity.com/ wp
content/ uploads/ 2017 / 01/ Windows
Exploitation-2016-A4.pdf

Baxter, J. (2017, April 20). Driver compatibility
with Device Guard in Windows 10.
Windows Hardware Certification blog.
Retrieved from
https: / / blogs.msdn.microsoft.com/ windows
hardware certification/ 2015/ 05/ 22/ drive
r-compati bili ty-with-device-guard-in
windows-10

Bingham, J. (2012, August 13).
Backdoor.Proxybox: Kernel File System
Hooking. Symantec Official Blog. Security
Response. Retrieved from
https: //www.symantec.com/ connect / blogs/
backdoorproxybox-kernel-file-system
hooking

Blunden, B. (2009). The Rootkit Arsenal:
Escape and evasion in the dark corners of
the system. (1st ed .). Chapter 8. Deploying
Filter Drivers. Wordware Publishing

Page 32

Bozso777. (2015, November 25). UCCNC &
Toshiba WT7-C100 win8.l Tablet. [Video
file]. Retrieved from
https: / / www.youtube.com/ watch?v= i7weS
fNC9KQ

Brookes, S. , Denz, R., Osterloh, M., Taylor, S.
(2016, March 17-18). ExOShim: Preventing
Memory Disclosure using Execute-Only
Kernel Code. In Proceedings of the 11th
International Conference on Cyber Warfare
and Security (ICCWS'16), pp 56-66, Boston
University, Boston, USA. Retrieved from
http: //thayer.dartmouth.edu/ tr/ reports/ tr
15-001.pdf

Burgess , C. (2017, July 27). Germany Warns of
Nation-State Cyber Espionage Threat. IDG
Communications. Retrieved from
https: / / www.csoonline.com/ article/ 321140
5 / security/ germany-warns-of-nation-state
cyber-espionage-threat.html

Chhetri , S.R., Canedo, A. , Al Faruque M. A.
(2016). KCAD: Kinetic Cyber Attack
Detection Method for Cyber-Physical
Additive Manufacturing Systems.
IEEE/ ACM International Conference on
Computer-Aided Design (ICCAD'16).
Pages. 1-8,
doi.org/ 10 .1145 / 2966986. 2967050

Cisco. (2017, October 10). Microsoft Windows
Kernel-Mode Driver Privilege Escalation
Vulnerability. The Cisco Security Portal.
Retrieved from
https: / / tools.cisco.com/ security / center/ vie
w Alert.x? alertld= 55483

CNCdrive. (2018). UCCNC software. Retrieved
from https: //cncdrive.com/ UCCNC .html

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

CSO. (2017, December 10). Keylogger found in
keyboard driver of 475 HP notebook models.
IDG Communications. Retrieved from
https: //www.csoonline.com/ article/ 324123
7 / security / keylogger-found-in-keyboard
driver-of-475-hp-notebook-models.html

Delpy, B. (2018). Mimikatz Tool. Retrieved
from
https: / / github.com/ gentilkiwi/ mimikatz

DSP. (2011 , November 15). Industrial
robotsV2. Retrieved from
http: //www.readsourcecode.com/ Download
/ item/ id/ 1700003.html

Fanuc. (2017). CNC Controls. FANUC Europe
Corporation. Retrieved from
http: //www.fanuc.eu;- / media/ files / pdf/ pr
oducts/ cnc/ brochures/ mbr-
00011 _ cnc%20product%20overview-
v5 / cnc%20controls%20product%20overview
.pdf

Field, S. (2006, August 12). An Introduction to
Kernel Patch Protection. Retrieved from
https: / / blogs.msdn.microsoft.com/ windows
vistasecuri ty / 2006/ 08/ 12 / an-introduction
to-kernel-patch-protection/

Gadaleta F., Nikiforakis N., Miihlberg J.T.,
Joosen W. (2012) HyperForce: Hypervisor
enForced Execution of Security-Critical
Code. In Proceedings of the 27th IFIP TC
11 International Information Security
Conference. https: //doi.org/ 10.1007 / 978-3-
642-30436-1 11

Ge, X., Vijayakumar, H., Jaeger, T. (2014).
Sprobes: Enforcing Kernel Code Integrity on
the TrustZone Architecture. In Proceedings
of the 3rd IEEE Mobile Security
Technologies Workshop (MoST). Retrieved
from
http: //www.cse.psu.edu;-trjl / papers/ most
14.pdf

Gee, H. (2017, May 21). HP Conexant Audio
Driver Vulnerability. Retrieved from

@ 2018 ADFSL

CDFSL Proceedings 2018

http: //harvey-gee.blogspot.ru/ 2017 / 05/ hp
conexant-audio-driver-vulnerability .html

Graziano, M., Flore, L., Lanzi, A. , Balzarotti,
D. (2016, July 7-8). Subverting Operating
System Properties Through Evolutionary
DKOM Attacks. In Proceedings of the 13th
International Conference Detection of
Intrusions and Malware, and Vulnerability
Assessment (DIMVA). San Sebastian,
Spain, Proceedings, Springer International
Publishing. Retrieved from
http: //s3.eurecom.fr/ docs/ dimva16 _grazia
no.pdf

Hall, J. , Brower, N., D'Souza-Wiltshire, I. , Lich,
B., Castelo Mendez, R. (2017, October 13).
Mitigate threats by using Windows 10
security features. Windows IT Pro Center.
Threat protection. Retrieved from
https: / / docs.microsoft.com/ en-
us / windows/ threat-protection/ overview-of
threat-mitigations-in-windows- I 0

Hasherezade. (2017, June 22). Starting with
Windows Kernel Exploitation - part 3 -
stealing the Access Token. Personal blog.
Retrieved from
https: / / hshrzd.wordpress.com/ 2017 / 06/ 22/
starting-with-windows-kernel-exploitation
part-3-stealing-the-access-token

Hofmann, 0., Kim, S. , Dunn, A., Lee, M.,
Witchel, E. (2013). InkTag: Secure
Applications on an Untrusted Operating
System. In Proceedings of the 18th
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS '13). ACM,
New York, NY, USA, 265-278.
http: //dx.doi.org/ 10.1145/ 2451116.2451146

Horn, J. (2018). Meltdown and Spectre.
Vulnerabilities in Modern Computers Leak
Passwords and Sensitive Data. Retrieved
from https: //meltdownattack.com

Page 33

CDFSL Proceedings 2018

Ionescu, A. (2015). Battle of SKM and IUM
How Windows 10 Rewrites OS Architecture.
BlackHat. Retrieved from http: //www.alex
ionescu.com/ b1ackhat2015. pdf

Isakovic, H. (2018). A Mixed-Criticality
Integration in Cyber-Physical Systems: A
Heterogeneous Time-Triggered Architecture
on a Hybrid SoC Platform. In Druml, N.,
Genser, A., Krieg, A., Menghin, M., Hoeller,
A. (Eds.), Solutions for Cyber-Physical
Systems Ubiquity.
http: //dx.doi.org/ 10.4018 / 978-1-5225-2845-
6.ch007

Johnson, H. (2017, September 10).
Cybersecurity for manufacturers: Staying in
control of CNC machines. CompanyWeek.
Retrieved from
https: / / companyweek.com/ articles/ cyberse
curi ty-for-manufacturers-staying-in-control
of-cnc-machines

Juarez, S. (2015, October 14). Windows 10
Virtual Secure Mode with David Hepkin.
Channel 9. MSDN. Retrieved from
https: //channel9.msdn.com/ Blogs/ Seth-
J uarez / Windows- I 0-Virtual-Secure-Mode
wi th-David-Hepkin

Kaspersky. (2016, August 9). The
ProjectSauron APT. Technical Analysis.
Retrieved from
https: / / securelist.com/ files / 2016/ 07 / The
ProjectSauron-
APT _Technical_ Analysis_ KL. pdf

Kirda, E. (2015, July 4). Detecting and
Analyzing Kernel-Based Malware. Security
Intelligence. Retrieved from
https: / / securityintelligence.com/ detecting
and-analyzing-kernel-based-malware /

Knigge, M., (2013, March 8). German Jitters
Over Cyber Attacks. Deutsche Welle.
Retrieved from
http: //www.dw.com/ en/ german-jitters
over-cyber-attacks / a-16658040

Page 34

Hypervisor-Based Active Data Protection for ...

Korkin, I. (2018). Source code of Hypervisor
based system for Allocated Memory
Protection. GitHub repository. Retrieved
from
https: / / github.com/ IgorKorkin/ AllMemPr
0

Korkin, I., & Nesterow, I. (2016, May 24-26).
Acceleration of Statistical Detection of Zero
day Malware in the Memory Dump Using
CUDA-enabled GPU Hardware. Paper
presented at the Proceedings of the 11th
annual Conference on Digital Forensics,
Security and Law (CDFSL), Embry-Riddle
Aeronautical University, Daytona Beach,
Florida, USA, pp. 47-82 Retrieved from
commons.erau.edu/ adfsl/ 2016/ tuesday / 10

Korkin, I., & Tanda, S. (2017, May 15-16).
Detect Kernel-Mode Rootkits via Real-Time
Logging & Controlling Memory Access.
Paper presented at the Proceedings of the
12th annual Conference on Digital
Forensics, Security and Law (CDFSL),
Embry-Riddle Aeronautical University,
Daytona Beach, Florida, USA. Retrieved
from
commons.erau.edu/ adfsl/ 2017 / papers/ 5/

Laiho, S. (2016, September 26). Learn about
Windows 10 Secure Kernel. Microsoft Ignite.
Y ouTube. [Video file]. Retrieved from
https: //www.youtube.com/ watch?v= 7eMm
R7B-xFk

Langill, J. (2011, October 20). Schneider
Electric UnitelWay Device Driver Buffer
Overflow. SCADAhacker. Retrieved from
https: //www.scadahacker.com/ vulndb/ 201
1 / ics-vuln-schneider-11-277-01.html

Liu, P., Tian, D., & Xiong, X. (2011). Practical
Protection of Kernel Integrity for
Commodity OS from Untrusted Extensions.
In Proceedings of the 18th Annual Network
and Distributed System Security
Symposium (NDSS). Retrieved from
http: //citeseerx.ist.psu.edu/ viewdoc/ downl

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

oad?doi= 10.l.l.477.1924&rep= repl&type=
pdf

Mach (2018). CNC control software. Retrieved
from
http: //www.machsupport.com/ software

Maggi, F. , Quarta, D., Pogliani, M., Polino, M.,
Maggi, F., Zanchettin, A. , and Zanero S.
(2017, May 03). Rogue Robots: Testing the
Limits of an Industrial Robot's Security. A
TrendLabs Research Paper. Retrieved from
https: //documents. trendmicro.com/ assets/
wp/ wp-industrial-robot-security.pdf

MarkHC. (2017, September 5). HandleMaster.
GitHub. Retrieved from
https: / / github.com/ MarkHC / HandleMaste
r

Marshall, D. (2017, May 23). Bug Check 0x109:
CRITICAL STRUCTURE CORRUPTIO
N. Windows Debugging Tools. Retrieved
from https: / / docs.microsoft .com/ en
us / windows-
hard ware/ drivers/ debugger / bug-check-
0x109---critical-structure-corruption

Mehnen, J., He, H., Tedeschi, S., Tapoglou, N.
(201 7, April 5). Practical Security Aspects
of the Internet of Things. Cybersecurity for
Industry 4.0. pp 225-242.
https: //doi.org/ 10.1007 / 978-3-319-50660-
9 9

Mei, V. (2014, November 20). Driver Object
Corruption Triggers Bugcheck 109.
Ntdebugging Blog. Microsoft Advanced
Windows Debugging and Troubleshooting.
Retrieved from
https: / / blogs.msdn.microsoft.com/ ntdebug
ging/ 2014/ 11/ 20 / driver-object-corruption
triggers-bugcheck-109

Microsoft. (2017, November 4). CVE-2017-0155
I Windows Graphics Elevation of Privilege
Vulnerability. Security Tech Center.
Retrieved from
https: / / portal.msrc.microsoft.com/ en-

@ 2018 ADFSL

CDFSL Proceedings 2018

US/ security-guidance/ advisory / CVE-2017-
0155

MSDN (n.d.-a). DRIVER_ OBJECT structure.
Kernel-Mode Driver Reference. Retrieved
from https: //msdn.microsoft.com/ en
us/ library / windows/ hardware/ ff544174(v=
vs.85).aspx

MSDN (n.d.-b).
PLOAD IMAGE NOTIFY ROUTINE
callback function. Kernel-Mode Driver
Reference. Retrieved from
https: //msdn.microsoft.com/ en
us/ library/ windows/ hardware/ mt764088(v
=vs.85) .aspx

MSDN (n.d.-c).
PsSetCreateProcessN otify Routine routine.
Kernel-Mode Driver Reference. Retrieved
from https: / / msdn.microsoft .com/ en
us / library/ windows / hardware/ ff559951 (v=
vs.85).aspx

NVIDIA Corporation. (2017, May 15). Security
Bulletin: NVIDIA Windows GPU Display
Driver contains multiple vulnerabilities in
the kernel mode layer (nvlddmkm.sys)
handler for DxgkDdiEscape. Retrieved from
http: / / nvidia.custhelp.com/ app/ answers/ d
etail/ a_ id/ 4257 ;- / security-bulletin%3A
nvidia-windows-gpu-display-driver
contains-multiple

Oh, M., Florio, E. (2017, January 13) Hardening
Windows 10 With Zero-Day Exploit
Mitigations. Windows Defender Research.
Retrieved from
https: / / cloudblogs.microsoft.com/ microsoft
secure/ 2017 / 01/ 13/ hardening-windows-10-
wi th-zero-day-exploit-mitigations/

OSR. (2016). Questions around patchguard on
Windows 10 latest build. Open Systems
Resources. Retrieved from
https: //www.osronline.com/ showthread.cf
m?link=275607

Page 35

CDFSL Proceedings 2018

OSR. (2017). Driver Unload Notification. Open
Systems Resources. Retrieved from
http: //www.osronline.com/ showThread.CF
M?link= 286734

Perla, E. , & Oldani, M. (2010, September 15).
A Guide to Kernel Exploitation: Attacking
the Core. 1st Edition. Syngress.

Rapid 7. (2018 , January 29). MSl 7-010
EternalSynergy. Metasploi t-Framework.
Retrieved from
https: //github.com/ rapid7 / metasploit
framework/ pull/ 94 73

Rodionov, E., Matrosov, A. (2011 , March 30).
The Evolution of TDL: Conquering x64.
Technical Report. Retrieved from
https: //www.welivesecurity.com/ media_fil
es/ white-
papers/ The _Evolution_ of_ TDL. pdf

Rodionov, E., Matrosov, A. (2013). Mind the
Gapz: The most complex bootkit ever
analyzed? White Paper. Retrieved from
https: //www.welivesecurity.com/ wp
content/ uploads/ 2013 / 04/ gapz-bootkit
whitepaper. pdf

Schulze, V. , Becke, C., Weidenmann, K.,
Dietrich, S. (2011). Machining Strategies for
Hole Making in Composites with Minimal
Workpiece Damage by Directing the Process
Forces Inwards. In Journal of Materials
Processing Technology, Volume 211, Issue 3,
Pages 329-338, ISSN 0924-0136,
https: / / doi.org/ 10.1016 /j.jmatprotec.2010.
10.004

Shahat, M. (2018, January 11). [Kernel
Exploitation] 4: Stack Buffer Overflow
(SMEP Bypass). Personal Blog. Retrieved
from
https: //www.abatchy.com/ 2018/ 01 / kernel
exploitation-4

Sherer, T. (201 7, June 19). Windows Kernel
Opaque Structures. Hardware Dev Center.
Retrieved from

Page 36

Hypervisor-Based Active Data Protection for ...

https: //docs.microsoft.com/ en-us/ windows
hardware / drivers/ kernel/ eprocess

Singh, A. (2015, July 30) . Turla: APT Group
Gives Their Kernel Exploit a Makeover.
Lastline. Retrieved from
https: / / www.lastline.com/ labsblog/ turla
apt-group-gives-their-kernel-exploit-a
makeover /

Srivastava, A., Erete, I., Giffin, J. (2009).
Kernel Data Integrity Protection via
Memory Access Control. Tech. Rep. GT
CS-09-04, Georgia Institute of Technology.
Retrieved from
https: / / smartech.gatech.edu/ handle / 1853 /
30785

Stoney CNC. (2015, May 15). UCCNC Tablet
control of professional CNC machine. [Video
file]. Retrieved from
https: //www.youtube.com/ watch ?v=Sa-

CoJV9Bw

Tanda, S. (2016). Monitor Device Driver
Interfaces (DDIMon). GitHub repository.
Retrieved from
https: / / github.com/ tandasat / DdiMon

Tian, D., Xiong, X., Hu, C. , Liu, P. (2018,
February 9). A Policy-Centric Approach to
Protecting OS Kernel from Vulnerable
LKMs. Journal Name: Software. Practice
and Experience, ISSN 0038-0644. Publisher:
Wiley Blackwell (John Wiley & Sons)
https: / / doi.org/ 10.1002 / spe. 25 76

Vincent , H., Wells, L. , Tarazaga, P. , Camelia,
J. (2015). Trojan Detection and Side
Channel Analyses for Cyber-Security in
Cyber-Physical Manufacturing Systems. In
43rd Proceedings of the North American
Manufacturing Research. Volume 1, Pages
77-85, doi.org/ 10.1016/ j.promfg.2015.09.065

Wang, J.-P., Zhao, P., Ma, H.-T. (2017, July).
HACS: A Hypervisor-Based Access Control
Strategy to Protect Security-Critical Kernel
Data. 2nd International Conference on

@ 2018 ADFSL

Hypervisor-Based Active Data Protection for ...

Computer Science and Technology (CST
2017). Guilin, China,
https: //doi.org/ 10.12783/ dtcse/ cst2017 / 12
516

WinCNC (2018). WinCNC Controller and PC
based motion control. Retrieved from
http: //www.wincnc.net / custom_software.p
hp

Wook, J., Florio, E. (2015, October 1). Duqu 2.0
Win32k Exploit Analysis. In Proceedings of
the VB2015 conference. Prague, Czech
Republic. Retrieved from
https: / / www.virusbulletin.com/ uploads/ pd
f / conference_ slides/ 2015 / 0 hFlorio-
VB 2015. pdf

Yi, H., Cho, Y., Paek, Y., Ko. K., (2017,
September 1). DADE: A Fast Data
Anomaly Detection Engine for Kernel
Integrity Monitoring. The Journal of
Supercomputing.
https: //doi.org/ 10.1007 / s11227-017-2131-6

Zabrocki, A. (2018, March 28). Linux Kernel
Runtime Guard (LKRG). Retrieved from
http: / / openwall.info/ wiki/ p _lkrg/ Main

Zha, Z. , Li, M., Zang, W., Yu, M., Chen, S.
(2015, February 16-19). AppGuard: A
Hardware Virtualization Based Approach
on Protecting User Applications from
Untrusted Commodity Operating System.
In Proceedings of the International
Conference on Computing, Networking and
Communications (ICNC). pp. 685-689.
http: //dx.doi.org/ 10.1109 / ICCNC.2015. 706
9428

Zylva, A. (2016, March 2). Windows 10 Device
Guard and Credential Guard Demystified.
Ash's Blog. Retrieved from
https: //blogs.technet.microsoft.com/ ash/ 20
16 / 03 / 02 / windows-I 0-device-guard-and
credential-guard-demystified

@ 2018 ADFSL

CDFSL Proceedings 2018

Page 37

https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified

CDFSL Proceedings 2018 Hypervisor-Based Active Data Protection for ...

Page 38 @ 2018 ADFSL

	Hypervisor-Based Active Data Protection for Integrity and Confidentiality Of Dynamically Allocated Memory in Windows Kernel
	Scholarly Commons Citation

	Hypervisor-Based Active Data Protection for Integrity and Confidentiality Of Dynamically Allocated Memory in Windows Kernel

