760 research outputs found

    Imaging Biomarkers for Carotid Artery Atherosclerosis

    Get PDF

    Imaging Biomarkers for Carotid Artery Atherosclerosis

    Get PDF

    Evaluation of semiautomated internal carotid artery stenosis quantification from 3-dimensional contrast-enhanced magnetic resonance angiograms

    Get PDF
    Rationale and Objectives: The performance of a semiautomatic technique for internal carotid artery (ICA) stenosis quantification of the internal carotid artery in contrast-enhanced magnetic resonance angiography was evaluated. Materials and Methods: The degree of stenosis of 52 ICAs was quantified by measuring the cross-sectional area along the center lumen line. This was performed both by 3 independent observers and the semiautomated method. The degree of stenosis was defined as the amount of cross-sectional lumen reduction. Results: Agreement between the method and observers was good (weighted-kappa, kappa(w) = 0.89). Reproducibility of measurements of the semiautomated technique was better (kappa(w) = 0.97) than that of the observers (kappa(w) = 0.76), and the evaluated technique was considerably less time-consuming. Conclusions: Because the user interaction is limited, this technique can be used to replace an expert observer in 3-dimensional stenosis quantification of the ICA at CE-MRA in clinical practice

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Quantifying Carotid Stenosis: History, Current Applications, Limitations, and Potential: How Imaging Is Changing the Scenario

    Get PDF
    Carotid artery stenosis is a major cause of morbidity and mortality. The journey to understanding carotid disease has developed over time and radiology has a pivotal role in diagnosis, risk stratification and therapeutic management. This paper reviews the history of diagnostic imaging in carotid disease, its evolution towards its current applications in the clinical and research fields, and the potential of new technologies to aid clinicians in identifying the disease and tailoring medical and surgical treatment

    Simulated hemodynamics in human carotid bifurcation based on Doppler ultrasound data

    Get PDF
    Background: Atherosclerotic lesions commonly develop at arterial branch sites. Noninvasive carotid artery ultrasound is a well-established and effective method which allows real-time images and measurements of flow velocities. We aimed to develop a methodology for patient-specific computational 3D reconstruction and blood flow simulation based on ultrasound image data.Material and Methods: Subject-specific studies based on the acquisition of a set of longitudinal and sequential cross-sectional ultrasound images and Doppler velocity measurements at common carotid artery (CCA) bifurcation were performed at a university hospital. A developed simulation code of blood flow by the finite element method (FEM) that includes an adequate structured meshing of the common carotid artery bifurcation was used to investigate local flow biomechanics.Results: Hemodynamic simulations of CCA bifurcations for six individuals were analysed. Comparing pairs (Doppler, FEM) of velocity values, Lin's concordance correlation coefficient analysis demonstrated an almost perfect strength of agreement (c = 0.9911), in patients with different degrees of internal carotid artery (ICA) stenosis. Numerical simulations were able to capture areas of low wall shear stress correlated with stagnation zones.Conclusions: Simulated hemodynamic parameters can reproduce the disturbed flow conditions at the bifurcation of CCA and proximal ICA, which play an important role in the development of local atherosclerotic plaques. This novel technology might help to understand the relationship between hemodynamic environment and carotid wall lesions, and have a future impact in carotid stenosis diagnosis and management

    Automated Quantification of Atherosclerosis in CTA of Carotid Arteries

    Get PDF
    How is the human body built and how does it function? What are the causes of disease, and where is disease located? Throughout the history of mankind these questions were answered by the use of invasive methods that included the “opening” of the human body, mainly cadavers. Thanks to these invasive techniques the first precise and complete anatomy works started to appear in the 16th century. The most influential works were published by Leonardo da Vinci and the anatomist and physician Andreas Vesalius. The discovery of X-rays in 1895, and their use for medical applications, introduced a new era, in which non-invasive imaging of the functioning human body became feasible. Nowadays, medical imaging includes many different imaging modalities, such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), nuclear and optical imaging, and has become an indispensable diagnostic tool for a wide range of applications. Initially, the application of medical imaging focused on the visualization of anatomy and on the detection and localization of disease. However, with the development of different modalities it has evolved into a much more versatile tool providing important information on e.g. physiology and organ function, biochemistry and metabolism using nuclear imaging (mainly positron emission tomography (PET) imaging), molecular and processes on the molecular and cellular level using molecular imaging techniques

    Spectral segmentation and radiomic features predict carotid stenosis and ipsilateral ischemic burden from DECT angiography

    Get PDF
    PURPOSEThe purpose of this study is to compare spectral segmentation, spectral radiomic, and single- energy radiomic features in the assessment of internal and common carotid artery (ICA/CCA) stenosis and prediction of surgical outcome.METHODSOur ethical committee–approved, Health Insurance Portability and Accountability Act (HIPAA)- compliant study included 85 patients (mean age, 73 ± 10 years; male : female, 56 : 29) who under- went contrast-enhanced, dual-source dual-energy CT angiography (DECTA) (Siemens Definition Flash) of the neck for assessing ICA/CCA stenosis. Patients with a prior surgical or interventional treatment of carotid stenosis were excluded. Two radiologists graded the severity of carotid ste- nosis on DECTA images as mild (70%) stenosis. Thin-section, low- and high-kV DICOM images from the arterial phase acquisi- tion were processed with a dual-energy CT prototype (DTA, eXamine, Siemens Healthineers) to generate spectral segmentation and radiomic features over regions of interest along the entire length (volume) and separately at a single-section with maximum stenosis. Multiple logistic regressions and area under the receiver operating characteristic curve (AUC) were used for data analysis.RESULTSAmong 85 patients, 22 ICA/CCAs had normal luminal dimensions and 148 ICA/CCAs had luminal stenosis (mild stenosis: 51, moderate: 38, severe: 59). For differentiating non-severe and severe ICA/CCA stenosis, radiomic features (volume: AUC=0.94, 95% CI 0.88-0.96; section: AUC=0.92, 95% CI 0.86-0.93) were significantly better than spectral segmentation features (volume: AUC = 0.86, 95% CI 0.74-0.87; section: AUC = 0.68, 95% CI 0.66-0.78) (P < .001). Spectral radiomic features predicted revascularization procedure (AUC = 0.77) and the presence of ipsilateral intra- cranial ischemic changes (AUC = 0.76).CONCLUSIONSpectral segmentation and radiomic features from DECTA can differentiate patients with differ- ent luminal ICA/CCA stenosis grades
    • …
    corecore