15,179 research outputs found

    Digitally interpreting traditional folk crafts

    Get PDF
    The cultural heritage preservation requires that objects persist throughout time to continue to communicate an intended meaning. The necessity of computer-based preservation and interpretation of traditional folk crafts is validated by the decreasing number of masters, fading technologies, and crafts losing economic ground. We present a long-term applied research project on the development of a mathematical basis, software tools, and technology for application of desktop or personal fabrication using compact, cheap, and environmentally friendly fabrication devices, including '3D printers', in traditional crafts. We illustrate the properties of this new modeling and fabrication system using several case studies involving the digital capture of traditional objects and craft patterns, which we also reuse in modern designs. The test application areas for the development are traditional crafts from different cultural backgrounds, namely Japanese lacquer ware and Norwegian carvings. Our project includes modeling existing artifacts, Web presentations of the models, automation of the models fabrication, and the experimental manufacturing of new designs and forms

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Framework For Efficient Cosimulation And Fast Prototyping on Multi-Components With AAA Methodology: LAR Codec Study Case

    Get PDF
    pp 1667 - 1671Real-time signal and image applications have significant time constraints involving the use of several powerful calculation units. Programmable multi-component architectures have proven to be a suitable solution combining flexibility and computation power. This paper presents a methodology for the fast design of signal and image processing applications. In a unified framework, application modeling, cosimulation and fast implementation onto parallel heterogeneous architectures are enabled and help to reduce time-to-market. Moreover, automatic code generation provides a high abstraction level for users. Finally, the worthwhile nature of Matlab/C language cosimulation is illustrated on a still image codec named LAR

    Virtual Prototyping for Rapid Product Development

    Get PDF
    link_to_OA_fulltex

    A multi-material virtual prototyping system for biomedical applications

    Get PDF
    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module, and a virtual reality (VR) simulation module. The DMMVP module is used for design and process planning of discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multimaterial (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multimaterial objects, which can be subsequently visualized and analyzed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a human dextrocardic heart made of discrete multi-materials and a hip joint assembly of FGM are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show the MMVP system is a practical tool for modelling, visualization, process planning, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. ©2009 IEEE.published_or_final_versionThe IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS) 2009, Hong Kong, 11-13 May 2009. In Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009, p. 73-7
    • …
    corecore